125 research outputs found

    The Inflationary Paradigm: Predictions for CMB

    Get PDF
    We review why the search for a causal explanation of the large scale properties of the universe supports the idea that an extended period of accelerated expansion, called inflation, preceded primordial nucleosynthesis. As a consequence of inflation, all pre-existing classical structures are washed out, and the primordial density fluctuations (the seeds of the large scale structures) result from the amplification of vacuum quantum fluctuations. The properties of the spectrum are derived and compared to those of the spectrum of CMB anisotropies. The agreement is striking.Comment: 15 pages, 2 figures, review articl

    A sub-horizon framework for probing the relationship between the cosmological matter distribution and metric perturbations

    Full text link
    The relationship between the metric and nonrelativistic matter distribution depends on the theory of gravity and additional fields, providing a possible way of distinguishing competing theories. With the assumption that the geometry and kinematics of the homogeneous universe have been measured to sufficient accuracy, we present a procedure for understanding and testing the relationship between the cosmological matter distribution and metric perturbations (along with their respective evolution) using the ratio of the physical size of the perturbation to the size of the horizon as our small expansion parameter. We expand around Newtonian gravity on linear, subhorizon scales with coefficient functions in front of the expansion parameter. Our framework relies on an ansatz which ensures that (i) the Poisson equation is recovered on small scales (ii) the metric variables (and any additional fields) are generated and supported by the nonrelativistic matter overdensity. The scales for which our framework is intended are small enough so that cosmic variance does not significantly limit the accuracy of the measurements and large enough to avoid complications from nonlinear effects and baryon cooling. The coefficient functions provide a general framework for contrasting the consequences of Lambda CDM and its alternatives. We calculate the coefficient functions for general relativity with a cosmological constant and dark matter, GR with dark matter and quintessence, scalar-tensor theories, f(R) gravity and braneworld models. We identify a possibly unique signature of braneworld models. Constraining the coefficient functions provides a streamlined approach for testing gravity in a scale dependent manner. We briefly discuss the observations best suited for an application of our framework.Comment: Updated references and minor changes to match the published version in MNRA

    The overdensity and masses of the friends-of-friends halos and universality of the halo mass function

    Full text link
    The friends-of-friends algorithm (hereafter, FOF) is a percolation algorithm which is routinely used to identify dark matter halos from N-body simulations. We use results from percolation theory to show that the boundary of FOF halos does not correspond to a single density threshold but to a range of densities close to a critical value that depends upon the linking length parameter, b. We show that for the commonly used choice of b = 0.2, this critical density is equal to 81.62 times the mean matter density. Consequently, halos identified by the FOF algorithm enclose an average overdensity which depends on their density profile (concentration) and therefore changes with halo mass contrary to the popular belief that the average overdensity is ~180. We derive an analytical expression for the overdensity as a function of the linking length parameter b and the concentration of the halo. Results of tests carried out using simulated and actual FOF halos identified in cosmological simulations show excellent agreement with our analytical prediction. We also find that the mass of the halo that the FOF algorithm selects crucially depends upon mass resolution. We find a percolation theory motivated formula that is able to accurately correct for the dependence on number of particles for the mock realizations of spherical and triaxial Navarro-Frenk-White halos. However, we show that this correction breaks down when applied to the real cosmological FOF halos due to presence of substructures. Given that abundance of substructure depends on redshift and cosmology, we expect that the resolution effects due to substructure on the FOF mass and halo mass function will also depend on redshift and cosmology and will be difficult to correct for in general. Finally, we discuss the implications of our results for the universality of the mass function.Comment: 19 pages, 17 figures, submitted to ApJ supplemen

    Bacteria in milk from anterior and posterior mammary glands in sows affected and unaffected by postpartum dysgalactia syndrome (PPDS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The performance of piglet weight gain is strongly dependent on the sow's ability to meet the demand for adequate milk. Postparturient disorders, especially those subsumed under the term postpartum dysgalactia syndrome (PPDS), can alter or reduce the milk production sensitively, resulting in starving piglets. The aim of this study was to gather further information about the prevalence of different bacterial species in the anterior and posterior mammary glands of sows with respect to the clinical appearance of PPDS.</p> <p>Methods</p> <p>In this study, the health status of 56 sows after farrowing was determined with special regard to mastitis and dysgalactia. Pooled milk samples from anterior and posterior glands were taken from both affected and non-affected animals and analysed bacteriologically for the presence of a wide spectrum of different pathogens.</p> <p>Results</p> <p>Mainly <it>Escherichia coli</it>, staphylococci and streptococci were detected in high percentages but without significant differences in healthy and diseased animals and anterior and posterior glands. However, the large percentages of coliform bacteria suggested a transmission route via faecal contamination.</p> <p>Conclusion</p> <p>In this study, the prevalence of different bacteria in anterior and posterior glands in PPDS positive and negative sows was analysed. No significant differences in bacteria of healthy and diseased sows were assessed. Therefore, the development of clinical PPDS and actual infection seems to be largely dependant on individual resistance in single sows.</p

    A limit on the detectability of the energy scale of inflation

    Get PDF
    We show that the polarization of the cosmic microwave background can be used to detect gravity waves from inflation if the energy scale of inflation is above 3.2 times 10^15 GeV. These gravity waves generate polarization patterns with a curl, whereas (to first order in perturbation theory) density perturbations do not. The limiting ``noise'' arises from the second--order generation of curl from density perturbations, or rather residuals from its subtraction. We calculate optimal sky coverage and detectability limits as a function of detector sensitivity and observing time.Comment: 4 pages, 3 figures, submitted to PR

    A circular polarimeter for the Cosmic Microwave Background

    Full text link
    A primordial degree of circular polarization of the Cosmic Microwave Background is not observationally excluded. The hypothesis of primordial dichroism can be quantitatively falsified if the plasma is magnetized prior to photon decoupling since the initial V-mode polarization affects the evolution of the temperature fluctuations as well as the equations for the linear polarization. The observed values of the temperature and polarization angular power spectra are used to infer constraints on the amplitude and on the spectral slope of the primordial V-mode. Prior to photon decoupling magnetic fields play the role of polarimeters insofar as they unveil the circular dichroism by coupling the V-mode power spectrum to the remaining brightness perturbations. Conversely, for angular scales ranging between 4 deg and 10 deg the joined bounds on the magnitude of circular polarization and on the magnetic field intensity suggest that direct limits on the V-mode power spectrum in the range of 0.01 mK could directly rule out pre-decoupling magnetic fields in the range of 10-100 nG. The frequency dependence of the signal is located, for the present purposes, in the GHz range.Comment: 28 pages, 12 included figures

    The CMBR ISW and HI 21-cm Cross-correlation Angular Power Spectrum

    Full text link
    The late-time growth of large scale structures (LSS) is imprinted in the CMBR anisotropy through the Integrated Sachs Wolfe (ISW) effect. This is perceived to be a very important observational probe of dark energy. Future observations of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI) distribution hold the potential of probing the LSS over a large redshift range. We have investigated the possibility of detecting the ISW through cross-correlations between the CMBR anisotropies and redshifted 21-cm observations. Assuming that the HI traces the dark matter, we find that the ISW-HI cross-correlation angular power spectrum at an angular multipole l is proportional to the dark matter power spectrum evaluated at the comoving wave number l/r, where r is the comoving distance to the redshift from which the HI signal originated. The amplitude of the cross-correlation signal depends on parameters related to the HI distribution and the growth of cosmological perturbations. However the cross-correlation is extremely weak as compared to the CMBR anisotropies and the predicted HI signal. As a consequence the cross-correlation signal is smaller than the cosmic variance, and a statistically significant detection is not very likely.Comment: 13 pages, 4 eps figures, submitte

    The Evolution of Central Group Galaxies in Hydrodynamical Simulations

    Full text link
    We trace the evolution of central galaxies in three ~10^13 M_sun galaxy groups simulated at high resolution in cosmological hydrodynamical simulations. The evolution in the group potential leads, at z=0, to central galaxies that are massive, gas-poor early-type systems supported by stellar velocity dispersion resembling either elliptical or S0 galaxies. Their z~2-2.5 main progenitors are massive M* ~ 3-10 x 10^10 M_sun, star forming (20-60 M_sun/yr) galaxies which host substantial reservoirs of cold gas (~5 x 10^9 M_sun) in extended gas disks. Our simulations thus show that star forming galaxies observed at z~2 are likely the main progenitors of central galaxies in galaxy groups at z=0. Their central stellar densities stay approximately constant from z~1.5 down to z=0. Instead, the galaxies grow inside-out, by acquiring a stellar envelope outside the innermost ~2 kpc. Consequently the density within the effective radius decreases by up to two orders of magnitude. Both major and minor mergers contribute to most of the mass accreted outside the effective radius and thus drive the evolution of the half-mass radii. In one of the three simulated groups the short central cooling time leads to a dramatic rejuvenation of the central group galaxy at z<1, affecting its morphology, kinematics and colors. This episode is eventually terminated by a group-group merger. Our simulations demonstrate that, in galaxy groups, the interplay between halo mass assembly, galaxy merging and gas accretion has a substantial influence on the star formation histories and z=0 morphologies of central galaxies.[Abridged]Comment: 28 pages, 23 figures, 9 tables, accepted to APJ (revised to match accepted version

    Small-Scale Fluctuations in Cosmic X-ray Background : A Power Spectrum Approach

    Get PDF
    Equations to investigate fluctuations in cosmic X-ray background radiation due to point-like sources at high-redshift are formulated in a systematic way. The angular power spectrum of X-ray background fluctuations is investigated from large-scales to small-scales in various cosmological models such as open universe models and models with the cosmological constant, assuming a simple evolution model of the sources. The effect of epoch-dependent bias is demonstrated for small-angle fluctuations. The contribution from shot noise fluctuations is also discussed.Comment: 12 pages, 4 figures, Phys.Rev.D in pres

    Position-Space Description of the Cosmic Microwave Background and Its Temperature Correlation Function

    Get PDF
    We suggest that the cosmic microwave background (CMB) temperature correlation function C(theta) as a function of angle provides a direct connection between experimental data and the fundamental cosmological quantities. The evolution of inhomogeneities in the prerecombination universe is studied using their Green's functions in position space. We find that a primordial adiabatic point perturbation propagates as a sharp-edged spherical acoustic wave. Density singularities at its wavefronts create a feature in the CMB correlation function distinguished by a dip at theta ~ 1.2 deg. Characteristics of the feature are sensitive to the values of cosmological parameters, in particular to the total and the baryon densities.Comment: The version accepted for publication in Phys. Rev. Letters. 4 pages, 3 figure
    corecore