1,627 research outputs found

    Efficient computation of hashes

    Get PDF
    The sequential computation of hashes at the core of many distributed storage systems and found, for example, in grid services can hinder efficiency in service quality and even pose security challenges that can only be addressed by the use of parallel hash tree modes. The main contributions of this paper are, first, the identification of several efficiency and security challenges posed by the use of sequential hash computation based on the Merkle-Damgard engine. In addition, alternatives for the parallel computation of hash trees are discussed, and a prototype for a new parallel implementation of the Keccak function, the SHA-3 winner, is introduced

    Effect of quasi-bound states on coherent electron transport in twisted nanowires

    Get PDF
    Quantum transmission spectra of a twisted electron waveguide expose the coupling between traveling and quasi-bound states. Through a direct numerical solution of the open-boundary Schr\"odinger equation we single out the effects of the twist and show how the presence of a localized state leads to a Breit-Wigner or a Fano resonance in the transmission. We also find that the energy of quasi-bound states is increased by the twist, in spite of the constant section area along the waveguide. While the mixing of different transmission channels is expected to reduce the conductance, the shift of localized levels into the traveling-states energy range can reduce their detrimental effects on coherent transport.Comment: 8 pages, 9 color figures, submitte

    Momentum-Resolved View of Electron-Phonon Coupling in Multilayer WSe2_2

    Full text link
    We investigate the interactions of photoexcited carriers with lattice vibrations in thin films of the layered transition metal dichalcogenide (TMDC) WSe2_2. Employing femtosecond electron diffraction with monocrystalline samples and first principle density functional theory calculations, we obtain a momentum-resolved picture of the energy-transfer from excited electrons to phonons. The measured momentum-dependent phonon population dynamics are compared to first principle calculations of the phonon linewidth and can be rationalized in terms of electronic phase-space arguments. The relaxation of excited states in the conduction band is dominated by intervalley scattering between ÎŁ\Sigma valleys and the emission of zone-boundary phonons. Transiently, the momentum-dependent electron-phonon coupling leads to a non-thermal phonon distribution, which, on longer timescales, relaxes to a thermal distribution via electron-phonon and phonon-phonon collisions. Our results constitute a basis for monitoring and predicting out of equilibrium electrical and thermal transport properties for nanoscale applications of TMDCs

    Réflexion non spéculaire de faisceaux convergents par une interface solide-liquide

    Get PDF
    Le déplacement latéral et la distorsion d'un faisceau optique borné à la réflexion sur une interface liquide-solide ont été étudiés antérieurement lorsque l'incidence est égale à l'angle de Rayleigh . Des résultats analogues à ceux de l'optique dans le cas d'un faisceau acoustique : il y a déplacement angulaire quand le solide est dissipatif, et il y a déplacement du foyer quand l'angle d'incidence diffère légèrement de l'angle critique, Nous présentons des expressions analytiques de ces déplacements dans le cas où la largeur spectrale du faisceau est petite par rapport à la constante d'atténuation a de l'onde de Rayleigh. Dans le cas de faisceaux plus larges, nous présentons des résultats numériques qui mettent en évidence des déplacements relativement importants pour des champs réfléchis .The lateral shift and profile distortion of a bounded beam incident at the Rayleigh angle from a liquid onto a solid has been studied in the past for parallel or divergent beams . In a manner analogous to results obtained in optics, we show that an acoustic beam can also exhibit an angular shift when loss is present in the solid and a shift in the focal point when the angle of incidence deviates slightly from the critical angle . The extent of these shifts is given by analytical expressions for beams whose spectral width is small compared to the attenuation constant a of the Rayleigh wave . For beams having broader spectral widths, we present numerical results for the reflected fields which reveal the presence of relatively strong shifting effects

    On demand entanglement in double quantum dots via coherent carrier scattering

    Get PDF
    We show how two qubits encoded in the orbital states of two quantum dots can be entangled or disentangled in a controlled way through their interaction with a weak electron current. The transmission/reflection spectrum of each scattered electron, acting as an entanglement mediator between the dots, shows a signature of the dot-dot entangled state. Strikingly, while few scattered carriers produce decoherence of the whole two-dots system, a larger number of electrons injected from one lead with proper energy is able to recover its quantum coherence. Our numerical simulations are based on a real-space solution of the three-particle Schroedinger equation with open boundaries. The computed transmission amplitudes are inserted in the analytical expression of the system density matrix in order to evaluate the entanglement.Comment: 20 pages, 5 figure

    Entanglement of a microcanonical ensemble

    Get PDF
    We replace time-averaged entanglement by ensemble-averaged entanglement and derive a simple expression for the latter. We show how to calculate the ensemble average for a two-spin system and for the Jaynes-Cummings model. In both cases the time-dependent entanglement is known as well so that one can verify that the time average coincides with the ensemble average.Comment: 10 page

    From Quantum Query Complexity to State Complexity

    Full text link
    State complexity of quantum finite automata is one of the interesting topics in studying the power of quantum finite automata. It is therefore of importance to develop general methods how to show state succinctness results for quantum finite automata. One such method is presented and demonstrated in this paper. In particular, we show that state succinctness results can be derived out of query complexity results.Comment: Some typos in references were fixed. To appear in Gruska Festschrift (2014). Comments are welcome. arXiv admin note: substantial text overlap with arXiv:1402.7254, arXiv:1309.773

    Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    Full text link
    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e. with coordination number 6), such as Pb2+ or Sn2+, yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures.Comment: 11 pages, 7 figures in J. Am. Chem. Soc, 13 May 201

    Processing Succinct Matrices and Vectors

    Full text link
    We study the complexity of algorithmic problems for matrices that are represented by multi-terminal decision diagrams (MTDD). These are a variant of ordered decision diagrams, where the terminal nodes are labeled with arbitrary elements of a semiring (instead of 0 and 1). A simple example shows that the product of two MTDD-represented matrices cannot be represented by an MTDD of polynomial size. To overcome this deficiency, we extended MTDDs to MTDD_+ by allowing componentwise symbolic addition of variables (of the same dimension) in rules. It is shown that accessing an entry, equality checking, matrix multiplication, and other basic matrix operations can be solved in polynomial time for MTDD_+-represented matrices. On the other hand, testing whether the determinant of a MTDD-represented matrix vanishes PSPACE$-complete, and the same problem is NP-complete for MTDD_+-represented diagonal matrices. Computing a specific entry in a product of MTDD-represented matrices is #P-complete.Comment: An extended abstract of this paper will appear in the Proceedings of CSR 201

    Electronic structure and light-induced conductivity in a transparent refractory oxide

    Get PDF
    Combined first-principles and experimental investigations reveal the underlying mechanism responsible for a drastic change of the conductivity (by 10 orders of magnitude) following hydrogen annealing and UV-irradiation in a transparent oxide, 12CaO.7Al2O3, found by Hayashi et al. The charge transport associated with photo-excitation of an electron from H, occurs by electron hopping. We identify the atoms participating in the hops, determine the exact paths for the carrier migration, estimate the temperature behavior of the hopping transport and predict a way to enhance the conductivity by specific doping.Comment: 4 pages including 4 figure
    • …
    corecore