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Abstract. We show how two qubits encoded in the orbital states of two
quantum dots can be entangled or disentangled in a controlled way through their
interaction with a weak electron current. The transmission/reflection spectrum
of each scattered electron, acting as an entanglement mediator between the
dots, shows a signature of the dot–dot entangled state. Strikingly, while a few
scattered carriers produce decoherence of the whole two-dot system, a larger
number of electrons injected from one lead with proper energy are able to recover
its quantum coherence. Our numerical simulations are based on a real-space
solution of the three-particle Schrödinger equation with open boundaries. The
computed transmission amplitudes are inserted in the analytical expression for
the system density matrix to evaluate the entanglement.
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1. Introduction

Among the various proposals and schemes advanced for reliable quantum computing
architectures [1]–[4], semiconductor double quantum dots (DQDs) are considered very
promising candidates for the realization of quantum bits and gates [3]–[7]. Indeed, these
structures can arbitrarily be scaled to large systems and could be easily integrated with other
microelectronic devices. In addition to their potentialities in the frame of quantum information
science, DQDs are also very interesting from the basic physics point of view, as they enable
both to analyze the peculiar features of electron transport phenomena and to relate them to the
appearance of quantum correlations [8]–[11].

A number of implementations of DQD qubits have been investigated from the theoretical
and experimental points of view [3]–[7]. Two degrees of freedom, spin and charge, can
be used to encode the qubit. While the feasibility of quantum logic gates acting on spin
states is hampered by the need for local magnetic fields [12], state-of-the-art nanofabrication
technology [13]–[15] allows for a precise control of the local charge and orbital degrees of
freedom. Recently, Shinkai et al [15] realized the coherent manipulation of charge states in two
spatially separated DQDs integrated in a GaAs/AlGaAs heterostructure. Specifically, multiple
two-qubit operations, such as the controlled rotation and the swap, have been successfully
implemented.

The main threat to the correct functioning of quantum information processing devices is
represented by the decoherence stemming from the interaction with the external environment
or, from a different perspective, by the uncontrolled entanglement of the qubits with the
environment. For charge states in semiconductor DQDs, the loss of coherence is mainly due
to the coupling of the carriers to crystal lattice vibrations and to the Coulomb interaction with
other charged particles [16]. In fact, the decoherence induced by the electron–phonon interaction
has been widely investigated in the literature [7], [17]–[20], where the quantum dots (QDs) are
usually considered as two point-like systems with two energy levels coupled to the phonon bath.
Analytical estimations of the decoherence effects and of their characteristic timescales have
been given by using various techniques ranging from the Born–Markov approximation [17] to
perturbative calculations in a non-Markovian regime [7, 18]. On the other hand, the role played
by the Coulomb interaction between charge carriers in the loss of coherence has not been deeply
analyzed.
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In this paper, we intend to investigate the entanglement properties of bound electrons
in a GaAs DQD when other electrons pass through the structure. In particular, we focus on
the appearance of quantum correlations in a three-particle scattering, where charged particles
incoming from a lead enter, one at a time, a DQD structure and interact via the Coulomb
potential with two electrons, one in each dot. In our scheme, the electrons crossing the device
have the double role of an entanglement ‘mediator’ between the two dots and between the DQD
system and the leads, i.e. the environment. The aim of this work is to show how the Coulomb
interaction between the system and the ‘mediator’ can be, under certain conditions, a suitable
means of entangling or disentangling in a controlled way the qubit states encoded in single-
particle energy levels of the dots. A detailed theoretical estimation of such effects is of interest
also for the experimental feasibility of the above qubit, as the results obtained in the production,
manipulation and coherent control of charge states in DQDs seem to indicate [13]–[15]. In this
view, the entanglement/disentanglement of DQDs can be connected to precise engineering or
suitable tuning of physical and geometrical parameters, such as the DQD level spacing or the
current intensity, modelled here as the successive injection of carriers in the scattering region.

The numerical procedure used to solve the model is a generalization of the quantum
transmitting boundary method (QTBM) [21, 22]. It allows us to find the reflection and
transmission amplitudes of each scattering channel as a function of the initial kinetic energy of
the incoming carrier and of the state occupation of the dots. Our analysis is time independent,
in the sense that the few-particle scattering states are obtained by the solution of a time-
independent open-boundary Schrödinger equation; therefore it does not permit us to evaluate the
dynamics and the characteristic timescales of quantum correlations [22, 23]. On the other hand,
the QTBM takes explicitly into account the spatial structure and therefore the size and shape
of the dots, thus permitting us to overcome the approximations implied in the description of a
dot in terms of a two-level point-like system. We single out the peculiar mechanisms of electron
transport through DQDs resulting in resonances in the transmission and reflection spectra and
thus leading to entanglement and decoherence [23]–[27]. In the evaluation of such effects, both
the transmitted and reflected components of the scattered wavefunction are taken into account.

The paper is organized as follows. In section 2, we introduce the physical system
reproducing a DQD structure in GaAs and illustrate the computational approach adopted for
finding the few-particle scattering states. A description of the DQD in terms of a two-qubit
model and a discussion of the theoretical procedures used to evaluate the entanglement and
decoherence are presented in section 3. In section 4, we give the numerical results first obtained
for the scattering of a single carrier and then for a weak electric current. For the latter case, the
conditions leading to maximum entanglement production or to complete disentanglement are
analyzed in detail. Finally, in section 5 we comment on the results and present our conclusions.

2. The double quantum dot (DQD) structure and the computational approach

In our model (see figure 1), we consider an electron incoming from the left, with respect to
the DQD one-dimensional (1D) structure, with kinetic energy T0. We examine the case of one
scattered carrier at a time, i.e. we suppose that an electron enters the scattering region only
after the previous one has already left. Such an assumption, and the fact that the charging
energy of the DQD is larger than the spacing between the two-particle energy levels, means
that our system always operates in the three-particle regime. The incident particle is scattered
via Coulomb interaction by the two electrons bound in a structure potential Vs in a region of
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Figure 1. Profile of the potential Vs(x) in the scattering region of length L =

100 nm: the two potential wells are 110 meV deep and 30 nm wide and are
separated by a 20 nm barrier. The dashed lines indicate the single-particle energy
levels E0, E1 and E2 of the ground, first and second excited states of the dots,
respectively, with E0 = −105.6 meV, E1 = −92.5 meV and E2 = −71.5 meV.
With our parameters the levels E2 (and above) are found to have negligible
occupancy. In our numerical calculations we take m∗

= 0.067 me, with me

indicating the bare mass electron, and ε = 12.9.

length L (figure 1) mimicking a DQD structure and constituted by two potential wells separated
by a potential barrier wide enough to make negligible the Coulomb interaction between the two
confined particles. Moreover, the structure is connected to external leads kept at zero potential.
The N two-particle bound states and energies of the DQD will be indicated by |4n〉 and εn,
respectively (with n = 0 indicating the ground state). As will be shown in the following, some
of them can also be expressed in terms of |χR

l χL
m〉 and (ER

l + EL
m), where |χR

l 〉(|χL
m〉) indicates

the single-particle bound state of the right (left) dot with energy ER
l (EL

m). Due to the symmetry
of the potential Vs, ER

l = EL
l .

As anticipated, we restrict our investigation to a 1D analysis. Such an assumption, needed
to solve numerically the few-particle problem with open boundaries, is physically reasonable if
the transverse dimension of the structure is small compared with other length scales. In this case,
all the particles can be supposed to occupy the lowest single-particle transverse subband [28].
Furthermore, we consider for the incoming electrons only energies below the ionization
threshold of the DQD. This means that when the outgoing electrons leave the scattering region,
either reflected or transmitted, the confined particles remain in a bound state of the DQD.

The three-particle Hamiltonian H is given by

H(x1, x2, x3) =H0(x1) +H0(x2) +H0(x3) +
3∑

i=1

i−1∑
j=1

e2

4πεri j
exp(−ri j/λd), (1)

where ri j =
√

(xi − x j)2 + d2 and H0(xi) is a single-particle Hamiltonian,

H0(xi) = −
h̄2

2m∗

∂2

∂x2
i

+ Vs(xi). (2)
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ε and m∗ are the dielectric constant and effective mass of GaAs, respectively. The term
describing the mutual interaction between particles in the rhs of equation (1) is a screened
Coulomb potential with a Debye length λd , here taken as significantly larger than the
characteristic length of the structure. Furthermore, the Coulomb term also accounts for the
transversal dimension d of the confined system (with d = 1 nm) through a cut-off term. In our
approach, the fermionic nature of the carriers is explicitly accounted for by antisymmetrizing
the two- and three-particle wavefunctions 4n(x2, x3) and 9(x1, x2, x3) for any two-particle
exchange. It is worth noting that the Hamiltonian given in equation (1) does not include
spin–orbit terms. As a consequence, since the orbital wavefunction is antisymmetric, we are
simulating a three-particle system with a symmetric spin component as in the case of three
spin-up (or spin-down) electrons. Furthermore, we do not include electron–phonon interaction.
In fact, the aim of this work is to investigate the role of Coulomb interaction among electrons
in the system in the appearance of entanglement and decoherence. Our device is supposed to
operate at a temperature in the mK regime, where only spontaneous emission is effective and
ignoring the coupling of electrons with the surrounding crystal lattice does not constitute a
crucial approximation, as we will describe in the following. In GaAs-based structures with
level splitting of a few meV, single-phonon processes lead to an excited-state lifetime of the
order of 10−10 s, whereas multi-phonon and multi-electron processes are orders of magnitude
less frequent (see [29, 30]). Given a kinetic energy of 15 meV, a single electron traverses our
100 nm long device in about 10−13 s. If we suppose independent electrons injected from the lead
at a mean rate of one every 10−12 s, corresponding to a current of about 0.16 µA, 100 carriers
can be scattered through the double-dot before a phonon-induced relaxation takes place. As a
consequence, in the following sections where we consider a weak electric current, we will limit
our calculation to 60 electrons.

The scattering states of the three particles are obtained by solving the time-independent
open-boundary Schrödinger equation H9 = E9 in the cubic domain {x1, x2, x3} with xi ∈

[0, L] and with the Hamiltonian H given in equation (1). For this purpose, we applied a
few-particle generalization of the so-called QTBM [21], allowing one to include proper open-
boundary conditions for each edge of the domain. These describe the particle coming from the
left as a plane wave with energy T0 and wavevector k0, while the other two electrons are set in a
two-particle bound state |4 j〉 of the DQD with energy ε j . Moreover, to account for the exchange
symmetry of the three-particle wavefunction, also antisymmetry of the boundary conditions is
imposed, as shown in previous works [22, 23].

The correlated scattering state when particle 1 is localized in the left lead (that is, x1 < 0)
reads

9(x1, x2, x3)

∣∣∣
(x1<0)

= 4 j(x2, x3)e
ik0x1 +

M∑
n=0

b jn4n(x2, x3)e
−ik( j−n)x1 +

∞∑
n=M+1

b jn4n(x2, x3)e
k( j−n)x1,

(3)

where j = 0, . . . , N is the index of the initial two-particle DQD state. Analogously, when
particles 2 and 3 are in the left lead, the boundary conditions are 9(x1, x2, x3)|(x2<0) =

−9(x2, x1, x3)|(x2<0) and 9(x1, x2, x3)|(x3<0) = 9(x3, x1, x2)|(x3<0), respectively. In the above
expression k( j−n) =

√
2m∗T( j−n), where T( j−n) denotes the kinetic energy of an electron freely

propagating in the lead, as obtained by energy conservation T( j−n) = T0 + ε j − εn. For the sake
of simplicity, we set h̄ = 1 here and in the following.
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The first term appearing in the rhs of equation (3) describes electron 1 incoming from the
left lead as a plane wave with energy T0, while the other electrons are in the two-particle bound
state |4 j〉. The second term represents the linear combination of all the energetically allowed
possibilities when particle 1 is reflected back as a plane wave with wavevector k( j−n) and the
DQD is in the state |4n〉. M indicates the number of states for which T( j−n) > 0. The last term
accounts for those states with T( j−n) negative, which describe particle 1 as an evanescent wave
in the left lead. Therefore, the coefficients b jn are the transition amplitudes between the initial
state 4 j(x2, x3)eik0x1 and the final state 4n(x2, x3)eik( j−n)x1 when the incoming carrier is reflected.

If particle 1 is in the right lead, the three-particle wavefunction takes a form similar to
expression (3), which describes the outgoing traveling and evanescent modes of the electron in
the right lead (x1 > L):

9(x1, x2, x3)

∣∣∣
(x1>L)

=

M∑
n=0

c jn4n(x2, x3)e
ik( j−n)x1 +

∞∑
n=M+1

c jn4n(x2, x3)e
−k( j−n)x1, (4)

while 9(x1, x2, x3)|(x2>L) = −9(x2, x1, x3)|(x2>L) for x2 > L and 9(x1, x2, x3)|(x3>L) =

9(x3, x1, x2)|(x3>L) for x3 > L . The coefficients c jn describe the transition amplitudes in the nth
channel, i.e. when the bound particles are in the nth state of the DQD. The boundary conditions
are given by equations (3) and (4) with x1 = 0 and x1 = L . They are coupled to the Schrödinger
equation and discretized by a finite-difference method. A system of seven equations is obtained,
whose numerical solution provides the unknown coefficients b jn and c jn and the three-particle
wavefunction 9(x1, x2, x3) in the internal points.

3. Decoherence and entanglement of the two-qubit model

As a consequence of the scattering, quantum correlations between the single-particle energy
levels of the bound electrons and the energies of the scattered electron appear. They are
responsible both for the loss of quantum coherence of the two-particle state of the DQD and
for the building up of quantum entanglement between the two dots. First, we show that under
some approximations the DQD system can be reduced to a two-qubit model. Then, we describe
in detail the theoretical approach used to evaluate entanglement and decoherence in such a
model.

Although the fermionic nature of the carriers has been explicitly taken into account, as
shown in section 2, to solve numerically the physical system, we do not use entanglement
criteria for identical particles [31]–[33]. In fact, the scattered carrier, either transmitted or
reflected, can be assumed to be far from the scattering region, while the bound particles are
essentially trapped in two deep potential wells far away from each other. So the spatial overlap
between the particles is negligible. Therefore, the position variables can be used to distinguish
the particles, while quantum correlations are evaluated between scattering channels [23, 34]. By
moving from spatial to energy representation for the quantum states, and taking as input state
|8IN〉 = |T0ε j〉, which describes the carrier incoming from the left lead with kinetic energy T0

and the particles bound with energy ε j , the output |8OUT〉 reads

|8OUT〉 =

M∑
n=0

b̃ jn|T
<
( j−n)εn〉 +

M∑
n=0

c̃ jn|T
>
( j−n)εn〉, (5)
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Table 1. The table displays the scalar product 〈EL
n ER

m|εl〉 for some values of n, m
and l.

|EL
0 ER

0 〉 |EL
0 ER

1 〉 |EL
1 ER

0 〉 |EL
1 ER

1 〉

|ε0〉 1 0 0 0
|ε1〉 0 −

1
√

2
−

1
√

2
0

|ε2〉 0 −
1

√
2

1
√

2
0

|ε3〉 0 0 0 1

where the coefficients b̃ jn are given by b̃ jn = b jn/(
∑M

n=0(|b jn|
2 + |c jn|

2), and the analogous
expression holds for c̃ jn, while |T <(>)

( j−n)εn〉 indicates the state with the carrier reflected
(transmitted) as a plane wave (with kinetic energy T(n− j) = k2

(n− j)/2m) and the other two
electrons bound in |4n〉 with energy εn. It is worth noting that in the above expression we
have omitted the reflected and transmitted outgoing evanescent modes, since their contribution
to the total current is zero and cannot be responsible for any entanglement.

So far, we considered the case of the injection of a single carrier in the scattering region
when the two particles trapped in the DQD structure are described by a pure state. Let us
now examine the injection of a second electron also with kinetic energy T0 in the scattering
region, occurring after the exit of the previous one from the DQD structure via transmission or
reflection. We indicate as a and b the first and the second injected electron, respectively. When b
enters the DQD, the bound electrons are not in a two-particle pure state, since they are coupled
to the energy levels of carrier a, as shown by equation (5). Therefore, the scattering between
electron b and the other two bound in the DQD will give the four-particle state

|8
(b,a)

OUT〉 =

M∑
n=0

M∑
m=0

b̃ jnb̃nm|T ′<
(n−m)T

<
( j−n)εm〉 +

M∑
n=0

M∑
m=0

b̃ jn c̃nm|T ′>
(n−m)T

<
( j−n)εm〉

+
M∑

n=0

M∑
m=0

c̃ jnb̃nm|T ′<
(n−m)T

>
( j−n)εm〉 +

M∑
n=0

M∑
m=0

c̃ jn c̃nm|T >
(n−m)

(b)T ′>
( j−n)εm〉, (6)

where T ′

(n−m) = T ′

0 + εn − εm and T ′

l has the same meaning as Tl but refers to the second scattered
particle, i.e. electron b. As more electrons are scattered, the output state describing the system
involves more and more terms corresponding to the various scattering channels. For the sake
of simplicity, here we only describe the theoretical procedure used to calculate entanglement
and decoherence in the case of injection of a single carrier. In section 4.2, the evaluation of
decoherence and entanglement due to interactions with a large number of injected carriers
(mimicking an electric current) will be presented for a specific case.

To compute the non-separability degree of the DQD system into the product of single-
particle states of the dots, that is, dot–dot entanglement, we have to move from a description
of the DQD in terms of two-particle bound states to the description in terms of single-particle
bound states of the left and right dots. Thanks to the negligible Coulomb interaction between
the two dots of figure 1, the four lowest two-particle orbital states |εn〉 can be written in terms of
single-particle states |ER

l 〉 and |EL
m〉, of the right and left dots, respectively (table 1). In particular,

|ε0〉 is the product of the ground states of the two dots, while |ε1〉 and |ε2〉 are degenerate, being
each a linear superposition of |EL

0 E0
1〉 and |EL

1 ER
0 〉, which represent one electron in the ground
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state of one dot and the other in the first excited state of the other. |ε3〉 corresponds to the first
excited states of the two dots. States with two electrons in the same dot are included in our
calculations but always have negligible occupancy. This means that the coefficients b̃ jn and c jn

with j > 3 or n > 3 on the right-hand side of equation (5) are 0. For our numerical calculations,
we used the physical parameters of the GaAs material and the DQD potential reported in the
caption of figure 1.

In fact, we restrict our analysis to energies of the incoming particle that enable up to
four scattering channels, i.e. the maximum value of M in expression (5) is 3. Under these
assumptions a system of two qubits is obtained, in the sense that each confined particle can
be described in terms of two states: the ground EL(R)

0 and first excited EL(R)

1 energy level of
the left (right) QD, encoding the |0L(R)〉 and |1L(R)〉 states, respectively. Thus, the three-particle
quantum state of equation (5) can be written as

|8OUT〉 = b̃ j0|T
<
j 0L0R〉 −

b̃ j1 + b̃ j2
√

2
|T <

j−10L1R〉 −
b̃ j1 − b̃ j2

√
2

|T <
j−11L0R〉 + b̃ j3|T

<
j−31L1R〉

+ c̃ j0|T
>
j 0L0R〉 −

c̃ j1 + c̃ j2
√

2
|T >

j−10L1R〉 −
c̃ j1 − c̃ j2

√
2

|T >
j−11L0R〉 + c̃ j3|T

>
j−31L1R〉, (7)

where |T >
j−1〉 = |T >

j−2〉 and |T <
j−1〉 = |T <

j−2〉, deriving from EL
0 + ER

1 = EL
1 + ER

0 , and energy
conservation has been taken into account.

The decoherence undergone by the electrons confined in the dots can be interpreted
in terms of the lack of knowledge of their quantum state due to the interaction with the
environment, namely the injected carrier [35]. In other words, due to the coupling between the
energy states stemming from the scattering event, the two-particle DQD cannot be described
by a pure state anymore but becomes a statistical mixture. A good measure of the degree
of uncertainty for such a system and therefore of its loss of coherence is given by the von
Neumann entropy of the two-particle reduced density matrix ρr, obtained by tracing the three-
particle density matrix ρ = |9OUT〉〈9OUT| over the degrees of freedom T >(<)

l of the scattered
carrier [35]. After the first scattering, the matrix representation of ρr in the standard basis
B = {|0L0R〉, |0L1R〉, |1L0R〉, |1L1R〉} reads

ρr =


|α|

2 0 0 0
0 |β+|

2 + |γ+|
2 β+β

∗

−
+ γ+γ

∗

−
0

0 β∗

+β− + γ ∗

+ γ− |β−|
2 + |γ−|

2 0
0 0 0 |ω|

2

 , (8)

where

|α|
2
= |b̃ j0|

2 + |c̃ j0|
2,

β± =
b̃ j1 ± b̃ j2

√
2

,

γ± =
c̃ j1 ± c̃ j2

√
2

,

|ω|
2
= |b̃ j3|

2 + |c̃ j3|
2. (9)

To obtain expression (8), the orthogonality relations between the states of the scattered carrier,
〈T >(<)

i |T >(<)

j 〉 = δi j and 〈T <
i |T >

j 〉 = 0 ∀ i j , have been used.
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The decoherence ξ can be evaluated by means of the von Neumann entropy as

ξ = −Tr[ρr ln ρr] = −|α|
2 ln |α|

2
− η+ ln η+ − η− ln η− − |ω|

2 ln |ω|
2, (10)

where

η± =
1
2

(
|β+|

2 + |γ+|
2 + |β−|

2 + |γ−|
2
±

√
(|β+|

2 + |γ+|
2 + |β−|2 + |γ−|2)2 − |β+γ−β−γ+|

2
)
. (11)

It ranges from 0 to ln(3/2). For ξ = 0, the two bound particles can be found in a single energy
level and this implies that no correlation is built up between them and the scattered carrier.
When the decoherence reaches its maximum, the DQD is found in a statistical mixture of the
three allowed energies ε0, ε1 and ε3 with equal weight (ε2 is equal to ε1). This implies that the
uncertainty about the system is maximum.

The reduced density matrix ρr describing the bound particles is also used to evaluate the
dot–dot entanglement through Wootters concurrence C [36]. The latter is adopted to quantify
the quantum correlations appearing between two qubits which cannot be described by a pure
two-qubit state because of their coupling with an external environment, like in our scenario.
C is obtained from the density matrix ρr of the two-qubit system as [36, 37]

C = max{0,
√

λ1 −

√
λ2 −

√
λ3 −

√
λ4}, (12)

where λi are the eigenvalues of the matrix ζ = ρr(σ
L
y ⊗ σ R

y )ρ∗

r (σ
L
y ⊗ σ R

y ) arranged in decreasing
order. Here σ L(R)

y is the Pauli matrix (
0
i

−i
0 ) in the basis {|0L(R)〉, |1L(R)〉}, and ρ∗

r describes the
complex conjugation of ρr in the standard basis B. The concurrence varies from C = 0 for a
disentangled state to C = 1 for a maximally entangled state.

The reduced density matrix ρr given in equation (8) shows an X structure; that is, it contains
non-zero elements only along the main diagonal and anti-diagonal. As shown in [38], for such a
class of density matrices the concurrence can be easily evaluated and in the case of ρr it becomes

C = 2 max{0, k}, (13)

where

k = |β+β
∗

−
+ γ+γ

∗

−
| − |α||ω|

=
1
2 |(b̃ j1 + b̃ j2)(b̃∗

j1 − b̃∗

j2) + (c̃ j1 + c̃ j2)(c̃∗

j1 − c̃∗

j2)| −

√
(|b̃ j0|

2 + |c̃2
j0|)(|b̃ j3|

2 + |c̃2
j3|). (14)

C is equal to 0 for |α||ω|> |β+β
∗

−
+ γ+γ

∗

−
|, while it reaches its maximum value 1 if and only if

|β+β
∗

−
+ γ+γ

∗

−
| = 1 and |α| = |ω| = 0 (and therefore the coefficients b̃ j0, c̃ j0, b̃ j3 and c̃ j3 vanish).

In the latter case, the two-qubit system reduces to a Bell-like state 1/
√

2(|0L1R〉 + eiθ
|1L0R〉).

4. Results and discussion

Here we analyze our numerical results on the decoherence ξ undergone by the DQD system and
the dot–dot entanglement C . We stress again that the former corresponds to the entanglement
of the DQD electrons with the transmitted/reflected one, while the latter is the concurrence
between the two bound electrons. In order to single out the specific mechanisms leading to
the appearance of quantum correlations, the transmission and reflection spectra have been
examined.
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Figure 2. Left panels: modulus of the TC and RC of the channels corresponding
to the DQD levels |ε0〉 and |ε2〉 as a function of the initial kinetic energy of the
incident electron T0, ranging from 13.2 to 19.2 meV, for two different input states,
namely |T0ε0〉 (top) and |T0ε2〉 (bottom): RC of the channel |ε0〉 (solid line), TC
of the channel |ε0〉 (dashed line), RC of the channel |ε2〉 (dotted line) and TC of
the channel |ε2〉 (dot-dashed line). The moduli of TC and RC corresponding to
the other two dot states |ε1〉 and |ε3〉 are zero in the region around the resonance
energy T0 = 15.8 meV: for the sake of clarity, they have not been reported. Note
that the sum of moduli of the TC and RC is 1. Right panels: moduli of the TC
and RC of the channels |ε0〉 and |ε2〉 against T0 close to the resonant energy T̄0

for the input states |T0ε0〉 (top) and |T0ε2〉 (bottom).

4.1. Scattering by a single carrier

The system has been solved for the potential profile Vs(x) sketched in figure 1 for various input
states with different energies of the incoming carrier T0. In the top left and bottom left panels of
figure 2, we report the moduli of the transmission coefficients (TCs) and reflection coefficients
(RCs) of various scattering channels (that correspond to the energy levels of the two-particle
DQD system) for input states |T0ε0〉 and |T0ε2〉, respectively, when the incoming electron is
injected with a kinetic energy ranging from 13 to 19 meV. We recall that the two-dot excited
state |ε2〉 can be written in terms of the qubit states as |ε2〉 = 1/

√
2(|0L1R〉 − |1L0R〉), i.e. it is a

Bell state. The TCs and RCs are related to the coefficients b̃ jn and c̃ jn given in expression (5).
For both input configurations, sharp peaks are present only in a small energy interval of the
reflection and transmission spectra. It is worth noting that for different input states, such peaks
appear at different values of T0.

To get better insight into resonances, a zoom of the moduli of TC and RC for various
channels in the energy interval around the resonant condition T̄0 = 15.8 meV is displayed in
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Figure 3. Dot–dot entanglement C and DQD decoherence ξ against the initial
kinetic energy T0 of the incident electron around the resonance condition T̄0,
for two different input states: C(|T0ε0〉) (solid line), ξ(|T0ε0〉) (dashed line),
C(|T0ε2〉) (dash-dotted line) and ξ(|T0ε2〉) (dotted line).

the right panels of figure 2. Whereas for the input state |T0ε2〉 no resonance is present in
this range and the sum of the moduli of the TC and RC of the channel is equal to 1, for
|T0ε0〉 the spectra show a number of sharp resonances (see the top right panel of figure 2).
In particular, the probabilities of finding the DQD in the state |ε2〉 (with the scattered carrier,
either reflected or transmitted) show a symmetric Lorentzian peak around T̄0, while the TCs
and RCs of the scattering channel |ε0〉 exhibit a minimum. Specifically, the RC presents
a symmetric line shape and the TC an asymmetric one. This behavior clearly indicates
that in the transmission and reflection spectra, different kinds of resonances appear, namely
Breit–Wigner [39] and Fano [40], respectively, which have a strong connection to the building
up of quantum correlations, as noted elsewhere [23, 41, 42]. The first ones, exhibiting symmetric
Lorentzian peaks, stem from the coupling of a quasi bound state to the scattering states of the
leads, whereas the second ones, characterized by asymmetric lineshapes, are present when two
competing scattering mechanisms, a resonant one and a non-resonant one, interfere and are due
to electron–electron correlation [22, 23].

Scattering resonances are a signature of peculiar decohering and entangling effects [23], as
shown in figure 3, where the dependences of DQD decoherence ξ and dot–dot entanglement C
are reported as a function of the initial energy of the incoming electron around T̄0 for the input
states |T0ε0〉 and |T0ε2〉. For |T0ε2〉, the decoherence is practically zero, while the entanglement
remains 1, as in the initial state. In fact, as can be gathered by the behavior of TC and RC, the
only coefficients not vanishing in equation (5) are b̃22 and c̃22, and the output state |9OUT〉 of
expression (7) reduces to

|9OUT〉 = −(b̃22|T
<

0 〉 + c̃22|T
>

0 〉)
1

√
2
(|0L1R〉 + |1L0R〉). (15)

This is the factorizable product of a single-particle state of the scattered carrier and a two-
qubit state describing the bound particles in the DQD, the latter being a Bell state. This means
that the entanglement between electrons confined in the dots maintains its maximum value and
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also that the quantum information about the DQD system is maximal since it is in a pure two-
particle state. Thus, the scattering event ‘preserves’ the entanglement between the dots, while
the decoherence effects are negligible. Such behavior, evidencing the existence of decoherence-
free entangled states of two qubits, has been widely discussed in a number of previous works,
which stressed the key role of symmetric coupling of qubits with the environment in preserving
their coherence [43]–[46].

When the input state is |T0ε0〉, both decoherence ξ and entanglement C show a maximum
where the RC and TC of the channel |ε2〉 are resonant (see the top right panel of figure 2). In
particular, ξ reaches ln 2. Such a value is obtained when the DQD states are maximally coupled
only to the energy levels T0 and T−2 of the scattered carrier and this occurs when the probabilities
that the scattering leaves the bound particles in their ground |ε0〉 or excited |ε2〉 state are equal.
Thus, the output state can be written as

|9OUT〉 = (b̃00|T
<

0 〉 + c̃00|T
>

0 〉)|0L0R〉 − (b̃02|T
<
−2〉 + c̃02|T

>
−2〉)

1
√

2
(|0L1R〉 + |1L0R〉), (16)

where |b̃00|
2 + |c̃00|

2
= |b̃02|

2 + |c̃02|
2
≈ 1/2. In this case, from expressions (13) and (14), we

observe that the value of the peak of the dot–dot entanglement is equal to 1/2, as shown in
figure 3. Here, an important point to be stressed is that quantum correlations are created between
bound electrons even if their Coulomb interaction is negligible due to the large distance between
the dots. In fact, even if these can be thought of as totally decoupled subsystems, the external
environment, i.e. the scattered carrier, represents the interaction ‘mediator’ and represents the
means of entangling them. In the literature and on the basis of different physical mechanisms,
the idea of an entanglement mediator has already been used in a number of theoretical and
experimental models to produce bipartite entangled states [26], [47]–[50].

4.2. Scattering by an electric current

The above results indicate that, for two electrons each bound in the ground state of one of the
dots, the interaction with a single incident carrier having a suitable kinetic energy T̄0 excites the
dots. Specifically, the scattering channel corresponding to |ε2〉, namely the Bell state describing
the first DQD excited level, is activated and quantum correlations between the two dots appear
even if the bipartite entanglement production is not maximal and immune to decohering effects.
Indeed, the probability to excite the DQD is smaller than 1. This implies that the two dots cannot
be described in terms of the state |ε2〉 alone. Rather, they are in a statistical mixture of ground
and first excited states.

On the other hand, the scattering between a carrier having kinetic energy T̄0 and the two
electrons in the excited maximally entangled state |ε2〉 leaves unchanged the DQD state, i.e.
the entanglement is preserved and no decoherence effect appears. This behavior suggests that
maximum production of entanglement between dots set initially in their ground state can be
obtained as a consequence of successive scatterings, one at a time, with carriers injected with
energy around T̄0. In fact, at each scattering event the probability of finding the DQD system
in the excited state |ε2〉 becomes larger and the number of quantum correlations between the
dots increases. Such a sequence of carrier injections corresponds to an electric current where
all the electrons entering the device have the same energy T̄0. From an experimental point of
view, such a current can be produced, for example, by using single-electron sources such as
electron pumps [9], resonant tunneling diodes [51] or systems consisting of a QD connected
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to a conductor via a tunnel barrier [52]. All these mechanisms enable us to emit uncorrelated
electrons in a given quantum state with a specific energy.

In order to give a quantitative evaluation of the effect of an electric current on the DQD
state, in the appendix we have explicitly calculated the reduced density matrix ρ(n)

r describing
the two dots after the injection of n carriers. Its expression in the standard basis B is

ρ(n)
r =


pn

00 0 0 0
0 1−pn

00
2

1−pn
00

2 0

0 1−pn
00

2
1−pn

00
2 0

0 0 0 0

 , (17)

where p00 = |b̃00|
2 + |c̃00|

2, ranging from 0 to 1, is the probability that a scattering event leaves
the QDs in the ground energy state when a carrier is injected with kinetic energy T0. As stated
before, for T0 = T̄0, p00 is about 1/2. ρ(n)

r exhibits again an X structure and decoherence and
entanglement of the system can be evaluated from equations (10) and (14) by setting |α|

2
= pn

00,
β+ = β− =

√
(1 − pn

00)/2 and γ+ = γ− = ω = 0. They read

ξ = −pn
00 ln pn

00 − (1 − pn
00) ln (1 − pn

00) and C = 1 − pn
00, (18)

respectively. When n = 0, i.e. no scattering occurs, expression (17) reduces to ρ(0)
r =

|0L0R〉〈0L0R|, which describes the input state where the DQD is in |ε0〉 = |0L0R〉. For n = 1,
ρ(1)

r is the reduced density matrix obtained from equation (16) by tracing over T <(>)

i . In
the limit of large n, ρ(n)

r can be written as limn→∞ ρ(n)
r =

1
2(|0L1R〉〈1R0L| + |0L1R〉〈0R1L| +

|1L0R〉〈1R0L| + |1L0R〉〈0R1L|), which corresponds to the Bell state of the two dots 1
√

2
(|0L1R〉 +

|1L0R〉) completely decoupled from the environment, with ξ = 0 and C = 1. That is, a
current of independent electrons (with energy T̄0) entangles the two dots and does not create
decoherence.

Figure 4 displays the dependence of entanglement on the number n of carriers entering the
device at different values of T0 around the resonant energy T̄0. As shown in the inset of figure 4,
we find that a series of scatterings does not induce decoherence of the DQD first-excited state
even for carriers injected with kinetic energies not exactly equal to but close enough to T̄0.
This implies that maximally entangled states of the DQD are produced as an effect of the flux
of charge carriers even if the energy of the incident electrons is not precisely the resonant one.
Specifically, the farther T0 is from T̄0, the larger is the n needed to produce a Bell state decoupled
from the environment. In fact, when the initial kinetic energy of the carriers gets away from the
resonant one, the parameter p00, acting as a convergence factor, increases and injection of more
carriers into the device is needed to build up the maximum number of quantum correlations
between the dots. From the inset of figure 4, we also note that the number n of electrons needed
to have a vanishing decoherence (i.e. the DQD in a pure state) is lower for T0 closer to T̄0. In
particular, ξ shows a maximum, whose value is about ln 2 when the interaction with the injected
carriers reduces the state of the system to a statistical mixture with equal weights of the ground
|ε0〉 and the excited |ε2〉 states. This occurs for pn

00 = 2−1/n. As expected, the peak is at higher
values of n when the injection energy of the carriers is farther from T̄0 and, as a consequence,
p00 is larger.

In analogy to the case of entanglement creation described above, a current of charge carriers
injected at an appropriate energy can be a means of disentangling the DQD prepared in the
Bell state |ε2〉

1
√

2
(|0L1R〉 + |1L0R〉). To show this, figure 5 displays the disentanglement effect for
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Figure 4. Dot–dot entanglement C as a function of the number n of carriers
injected into the device evaluated at four different values of the kinetic energy
T0 close to the resonance condition T̄0. As input condition, the bound particles
occupy the ground state of the DQD system. All the curves tend to 1 for large
values of n. The farther the kinetic energy of each incident electron from T̄0, the
slower the asymptotic value 1 is reached. The inset displays the dependence of
the DQD decoherence ξ on n, for the same four values of T0.

electrons injected with kinetic energy T0 around 2.6 meV and scattered by the bound particles
of the DQDs. For such a low kinetic energy, the scattering by a single carrier leaves unaltered
the DQD system when the bound electrons are in the ground state |ε0〉. In fact T0 is smaller
than the energy necessary to excite the dots. This means that the scattered carrier has not been
coupled, via Coulomb interaction, to the bound particles, which remain maximally disentangled
(see the bottom inset of figure 5). On the other hand, when the input state of the total system is
|T0ε2〉, the dots can relax. In fact the scattering channels corresponding to |ε0〉 show a peak in
the transmission and reflection spectra (as shown in the top inset of figure 5), thus leading to the
appearance of decoherence and entanglement.

By applying the approach adopted above to build up maximum entanglement between the
bound electrons, we find that scattering by a current of charge carriers with energy around
T0 = 2.6 meV is able to disentangle completely the QDs without introducing any decoherence.
Specifically, after a larger number n of scattered carriers, the bound electrons practically occupy
the ground state of the DQD system: this means that C = 0 and ξ = 0, as reported in figure 5.

5. Conclusions

Coherent manipulation of electron states is a key ingredient of implementing qubits using the
charge or orbital states of DQD nanostructures. Indeed, it implies the controlled production
or destruction and the manipulation and detection of entanglement between the above states.
In this spirit, various proposals to produce bipartite entangled states have been advanced on the
basis of the physical mechanisms requiring two-particle scattering, such as the direct interaction
between two electrons [23]–[25], [33, 53]. In this work, we have investigated the appearance
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Figure 5. Dot–dot entanglement C and DQD decoherence ξ as a function of
the number n of carriers injected into the device at the resonant kinetic energy
T0 = 2.6 meV. As input condition, the bound particles occupy the first excited
state |ε2〉 of the DQD system corresponding to the Bell state 1

√
2
(|0L1R〉 + |1L0R〉).

Both C and ξ vanish at large n. The top inset displays the modulus of the TC and
RC of channels |ε0〉 and |ε2〉 of the DQD as a function of T0 around the resonant
condition when the input state of the total system is |T0ε2〉: the RC of channel |ε0〉

(solid line), TC of channel |ε0〉 (dashed line), RC of channel |ε2〉 (dotted line) and
TC of channel |ε2〉 (dot-dashed line). The bottom inset shows the entanglement
C and decoherence ξ for two input states |T0ε0〉 and |T0ε2〉): C(|T0ε0〉) (solid
line), ξ(|T0ε0〉) (dashed line), C(|T0ε2〉) (dash-dotted line) and ξ(|T0ε2〉) (dotted
line). Note that the abscissa scale is the same in both the top and bottom insets.

of quantum correlations between the two electrons of a GaAs DQD, as a consequence of
the Coulomb scattering by one or more charge carriers injected from a lead. We examined
the scattering event in a three-particle regime (the two electrons trapped in the DQDs and the
passing carrier, explicitly considered indistinguishable); that is, a carrier is supposed to enter the
scattering region only after the previous one has already left. Furthermore, the two dots are taken
distant enough so that the Coulomb repulsion between the two bound electrons is practically
negligible. Therefore, unlike other approaches [23, 25], the scattered carrier represents the
entanglement ‘mediator’; that is, it provides the indirect interaction between the particles that is
needed to entangle them. From this point of view, various schemes where entanglement between
distant particles is produced through their scattering by mobile mediators can be found in the
literature [50, 54]. Unlike our model, there the quantum correlations are built among the spin
degrees of freedom of the particles.

A proper tuning of the carrier energy and the DQD geometry reduces the system examined
here to a simple two-qubit model coupled to the external degrees of freedom by the incident
electrons. Here, the dots have not been considered as point-like systems [7], [17]–[20] but
their effective spatial dimensions are explicitly taken into account in the calculation. Indeed,
knowledge of the electron spatial wavefunctions corresponding to eigenstates of the DQD is
needed in order to obtain the few-particle scattering states. To this end, a time-independent
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approach based on the QTBM has been used [21]–[23]. Its solution gives the reflection and
transmission amplitudes of each scattering channel as a function of the initial energy of the
incoming electron. Such an approach permits us to analyze the relation between the resonances
in the transmission and reflection spectra and the appearance of quantum correlations between
the particles, as already pointed out elsewhere [23, 25, 26]. All the traveling components of
the scattered carrier, both reflected and transmitted, have been used to evaluate the creation of
entanglement between the dots, together with their decoherence.

Our numerical simulations show that as a consequence of the scattering between an
electron injected with a suitable energy and two electrons bound in the ground state of the
DQD system, the latter can be excited, ending up in an entangled state of the constituent dots.
This process leads to the appearance of resonance peaks and dips in transmission and reflection
spectra of the first excited and ground scattering channels, respectively. A side effect of such
a scattering is the loss of quantum coherence of the DQD as a whole due to its coupling to
the scattered carrier. The condition of maximum entanglement between the two dots is reached
when the bound electrons are fully raised to the two-particle first excited level of the DQD
system (which corresponds to a Bell state formed with the single-particle ground and first
excited states of the two dots). In this case, the DQD decoherence is zero, since a single
output channel is possible. However, a single collision is not able to fully excite the dots. We
found that, in order to build up the maximum amount of quantum correlation between them,
a repeated injection of charge carriers, that is, an electric current, is needed. Indeed, at each
scattering event the excitation probability of the dots increases until it reaches asymptotically 1,
which means that a Bell state is obtained, fully decoupled from the degrees of freedom of the
scattered carriers. In other words, the Coulomb interaction between an electric current and two
electrons bound in the ground state of a DQD structure allows for maximum entanglement
production, while the decoherence effects on the system vanish. This is in agreement with the
procedures adopted in other works [26], [47]–[50], where the entangling schemes are based on
the successive interactions of a mediator with the qubits. However, in our scheme, the indirect
coupling of the two dots due to interaction with the scattered carriers can produce disentangling
effects as well. Indeed, a proper tuning of the electric current makes the DQD, initially in a Bell
state, relax to the ground state, with no quantum correlations. Also in this case the process is
robust against decoherence.

Finally, the results reported here show how a suitable electron current, where all the
carriers have almost a given kinetic energy, permits us to switch coherently on and off the
entanglement between the dots of a DQD structure. Although several interaction mechanisms,
such as electron–phonon coupling, can lead to the loss of quantum coherence of the DQD
in a real experimental setup, we showed that interaction with the mediator electrons does not
generate entanglement with the leads. Thus, no intrinsic decoherence is implied.

Appendix. Evaluation of the reduced density matrix ρ(n)
r

Here we shall give an explicit derivation of the reduced density matrix of the two dots (see
equation (17)), initially taken in their ground state, after n carriers injected with kinetic
energy T0 close to T̄0 have been scattered. In order to simplify the calculation, the basis
C = {|ε0〉, |ε1〉, |ε2〉, |ε3〉} of the DQD eigenstates will be used. Once we obtain the reduced
density operator ρ(n)′

r in the C basis, its expression ρ(n)
r in terms of B is straightforward (see

table 1).
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The output three-particle state of equation (16), stemming from the scattering between one
carrier injected in the device with T0 = T̄0 and two electrons in the ground state of the DQD,
can be written as

|9
(1)′

OUT〉 = (b̃00|T
<

0
(1)

〉 + c̃00|T
>

0
(1)

〉)|ε0〉 + (b̃02|T
<
−2

(1)
〉 + c̃02|T

>
−2

(1)
〉)|ε2〉, (A.1)

where superscript (1) means 1 carrier injected, and the reduced density matrix of the DQD
system can be obtained by tracing |9

(1)′

OUT〉〈9
(1)′

OUT| over the degrees of freedom T >(<)(1)

i of the
scattered carrier

ρ(1)
r

′

=


p00 0 0 0

0 0 0 0

0 0 1 − p00 0

0 0 0 0

 . (A.2)

When a second carrier is injected, after the exit of the previous one from the scattering region,
the new output state is

|9
(2)′

OUT〉 = (b̃00|T
<

0
(2)

〉 + c̃00|T
>

0
(2)

〉)(b̃00|T
<

0
(1)

〉 + c̃00|T
>

0
(1)

〉)|ε0〉 + (b̃02|T
<
−2

(2)
〉

+ c̃02|T
>
−2

(2)
〉)(b̃00|T

<
0

(1)
〉 + c̃00|T

>
0

(1)
〉)|ε2〉 + (b̃22|T

<
0

(2)
〉

+ c̃22|T
>

0
(2)

〉)(b̃02|T
<
−2

(1)
〉 + c̃02|T

>
−2

(1)
〉)|ε2〉. (A.3)

As stressed in section 4, when the DQD is in |ε2〉, the scattering event does not produce the
relaxation of the dots that remain in the excited energy level. This means that in the above
expression, |b̃22|

2 + |c̃22|
2
= 1. The reduced density matrix of the DQD computed from the three-

particle state of equation (A.3) is

ρ(2)
r

′

=


p2

00 0 0 0

0 0 0 0

0 0 (1 − p2
00) 0

0 0 0 0

 , (A.4)

where p00 = |b̃00|
2 + |c̃00|

2
= 1 − |b̃02|

2
− |c̃02|

2 have been used. For the case of n scattered
particles, we obtain

ρ(n)
r

′

=


pn

00 0 0 0

0 0 0 0

0 0 (1 − pn
00) 0

0 0 0 0

 , (A.5)

as derived by induction in the following. Assume that expression (A.5) is true for n. This
implies that ρ(n)

r
′
= pn

00|ε0〉〈ε0| + (1 − pn
00)|ε2〉〈ε2|. After the injection of the (n + 1)th carrier,

the density matrix ρ ′(εi , ε j , T <(>)

l

(n+1)
, T <(>)

m
(n+1)

) describing the total system can be evaluated

New Journal of Physics 13 (2011) 013023 (http://www.njp.org/)
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from ρ(n)
r

′
:

ρ ′(εi , ε j , T <(>)

j

(n+1)
, T <(>)

m
(n+1)

)

= pn
00[(b̃00|T

<
0

(n+1)
〉 + c̃00|T

>
0

(n+1)
〉)|ε0〉〈ε0|(b̃

∗

00〈T
<

0
(n+1)

| + c̃∗

00〈T
>

0
(n+1)

|)

+ (b̃00|T
<

0
(n+1)

〉 + c̃00|T
>

0
(n+1)

〉)|ε0〉〈ε2|(b̃
∗

02〈T
<
−2

(n+1)
| + c̃∗

02〈T
>
−2

(n+1)
|)

+ (b̃02|T
<
−2

(n+1)
〉 + c̃02|T

>
−2

(n+1)
〉)|ε2〉〈ε0|(b̃

∗

00〈T
<

0
(n+1)

| + c̃∗

00〈T
>

0
(n+1)

|)

+ (b̃02|T
<
−2

(n+1)
〉 + c̃02|T

>
−2

(n+1)
〉)|ε2〉〈ε2|(b̃

∗

02〈T
<
−2

(n+1)
| + c̃∗

02〈T
>
−2

(n+1)
|)]

+ (1 − pn
00)(b̃22|T

<
0

(n+1)
〉 + c̃22|T

>
0

(n+1)
〉)|ε2〉〈ε2|(b̃

∗

22〈T
<

0
(n+1)

| + c̃∗

22〈T
>

0
(n+1)

|).

(A.6)

By tracing ρ ′(εi , ε j , T <(>)(n+1)

j , T <(>)(n+1))m over the degrees of freedom T <(>)(n+1)

j of the carrier,
one obtains the reduced density matrix ρ(n+1)′

r of the DQD scattered by (n + 1) electrons. Its
expression reads

ρ(n+1)
r

′

= pn
00

(
|b00|

2 + |c00|
2
)
|ε0〉〈ε0| +

(
pn

00(|b02|
2 + |c02|

2) + (1 − pn
00)(|b22|

2 + |c22|
2)

)
|ε2〉〈ε2|

= pn+1
00 |ε0〉〈ε0| + (1 − pn+1

00 )|ε2〉〈ε2|. (A.7)

Thus expression (A.5) is true for n + 1.
Finally, the unitary transformation of table 1 can be applied to ρ(n)′

r to obtain the reduced
density matrix of the two electrons bound in the DQD given in equation (17).
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