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Effect of quasibound states on coherent electron transport in twisted nanowires
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Quantum transmission spectra of a twisted electron waveguide expose the coupling between traveling and
quasibound states. Through a direct numerical solution of the open-boundary Schrödinger equation, we single
out the effects of the twist and show how the presence of a localized state leads to a Breit-Wigner or a Fano
resonance in the transmission. We also find that the energy of quasibound states is increased by the twist, despite
the constant section area along the waveguide. While the mixing of different transmission channels is expected
to reduce the conductance, the shift of localized levels into the traveling-states energy range can reduce their
detrimental effects on coherent transport.
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I. INTRODUCTION

Conductance spectra of quasi-one-dimensional (1D) semi-
conductor structures display many features that directly expose
the quantum nature of carrier transport and are of great interest
both for applications and for fundamental understanding.1,2

Even in the simplest noninteracting carriers approach, the
departure from a constant section of the wire gives rise to
complex resonance patterns in the quantum transmission. This
originates from the coherent coupling of the energy spectra
of different sub-bands and from the interplay of traveling and
localized states.3 Indeed, the case of a discrete energy spectrum
merged with a continuum one, was considered by Fano4 in his
seminal work on inelastic-scattering amplitudes of electrons.
In that case, the two Hamiltonians with discrete and continuous
spectra were that of the electronic degree of freedom of an
atom and that of a free electron, respectively. It was shown
that the coupling induced by the Coulomb interaction led
to a peculiar asymmetric shape of the scattering probability
and a discontinuity of the scattering phase. This behavior of
the scattering amplitude is now identified in many atomic,5

optical,6 and transport7 experiments (for a review, see Ref. 8).
Here, we analyze the zero-temperature coherent transmis-

sion of a quantum waveguide (QW) locally twisted, as depicted
in Fig. 1, with the twist inducing a coupling between the
sub-bands related to different transverse modes. We adopt a
noninteracting carrier model. A local potential, modeling, e.g.,
the effect of impurities, is also included. For argument’s sake,
we assume that such a potential is of an attractive kind, thus,
generating a discrete set of bound states and Fano resonances
in the transmission spectra: The latter will expose the energy of
quasibound9 states of the twisted QW. For energies close to the
above levels, trapping phenomena occur, leading to a reduction
of the conductance as an effect of the local trapping potential.
In this paper, we will show how this effect is partially negated
by the twist. We stress that our results are representative of a
more general case, as, for example, a carrier scattered through

a quantum dot embedded in a QW or a QW whose Hamiltonian
is not separable in the transverse and longitudinal directions,
leading to localized states.

The effect of twisting on the conductance is twofold. On
one side, it is expected to reduce the conductance.10,11 On
the other side, this reduction can be compensated by a partial
destruction of localization effects (e.g., due to external fields
or impurities), induced by the twisting itself. In fact, by means
of the complex-scaling method, it has been shown12 that
stable states associated with a trapping potential may become
resonant states when the QW is twisted. In this paper, we
numerically compute the real and imaginary parts of such
resonances as a function of the twisting parameter in an explicit
model, and we prove that, for such a model, the imaginary
part of these resonances actually takes a negative value, this
indicating that the corresponding states become unstable.
Specifically, our results show that the energy of bound states
of the quantum well in the longitudinal direction is increased
by the twist and, as they enter the continuous-spectrum
range of traveling states, they appear in the transmission
characteristic as symmetric (Breit-Wigner13) or asymmetric
(Fano14) resonant peaks, according to the character of the
original bound wave function. The width of the resonances is
related to the imaginary component of the eigenvalues of the
complex-scaled Hamiltonian,15 as we detail in the following,
and shows a nonmonotonic behavior. A resonant peak may or
may not disappear when its energy reaches the transmission
channel with the same transverse energy as the original bound
state, according to the corresponding bound state in the straight
QW. Indeed, the knowledge of the bound states of the straight
QW allows one to predict the position and type of transmission
resonances in the twisted system. We also conclude that, when
a short-range trapping potential is present, its detrimental effect
on the conductance can be partially negated by twisting the QW
in the spatial region where the external potential is supported.

Our paper is organized as follows. In Sec. II, we describe
the model of the twisted QW and, in the following Sec. III,
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FIG. 1. (Color online) QW with a rectangular cross section (Ly =
20 nm, Lz = 10 nm) twisted for a length of 4λ � 70 nm. Here, the
rotation angle is � = 3

2 π . (Inset) local confining potential, as given
in Eq. (3), with Lp = 10 nm and ν = 2.95 (solid line) or ν = 3.95
(dashed line). The potential well is fully contained in the twisted
region.

we outline the real-space numerical approach adopted for the
calculation of the scattering states and transmission amplitudes
on a non-Cartesian grid. In Sec. IV, the main results of our
paper are presented, with particular attention to the evolution
of resonant peaks with the QW twist. Finally, in Sec. V, we
draw our conclusions. In the final Appendix, analytical details
of the complex-scaling approach, mentioned in the main text,
are given.

II. THE PHYSICAL SYSTEM

We consider a QW with a rectangular cross section, with a
hard-wall confinement. For a straight wire, an elementary so-
lution of the single-band effective-mass Schrödinger equation
gives the energy spectrum,

En,k = En + h̄2

2m
k2, (1)

with

En = h̄2

2m

[ (
nyπ

Ly

)2

+
(

nzπ

Lz

)2 ]
, (2)

where m is the effective mass of the carriers that we consider
isotropic. In fact, here, we neglect atomistic effects and only
consider the geometry of the system. Essentially, we are not
supposing to take a straight semiconductor wire, fix one end,
and rotate the other end by force. Rather, we simply consider
a structure with the shape depicted in Fig. 1. Ly and Lz

(with Ly �= Lz) are the thicknesses of the QW in the two
directions orthogonal to the current propagation, k is the
wave number of the x-propagating plane-wave component
of the wave function. For the sake of brevity, the sub-band
index n = 1,2, . . . (with En,k � E(n+1),k) has been introduced,
summarizing the two positive integers ny and nz. Since k can
be any real number, it is clear that the energy spectrum is
a continuum, with En,k ∈ [E1,+∞). Transmission channels,
identified by the transverse modes in the two leads, can also be
classified according to Eq. (2). As we will show, when the QW
is twisted, the above channels are mixed, that is, a scattering
state with a single incoming transverse component in the

source lead will have many transmitted (reflected) transverse
components in the drain (source) lead.

A confining potential well (depicted in the Fig. 1 inset) is
introduced along the x direction,

V (x) = h̄2

2m

ν(ν + 1)

L2
p

[
tanh2

(
x

Lp

)
− 1

]
, (3)

where the positive parameters ν and Lp set the depth and the
length of the well. Specifically, the minimum of V is −h̄2ν(ν +
1)/(2mL2

p), and the region in which V is significantly different
from zero is about 6Lp. We stress that the form given in
Eq. (3) has been chosen both to mimic a smooth local
confinement and to deal with a potential that has an exact
expression for its bound-state eigenvalues:16

μj = − h̄2

2mL2
p

(ν + 1 − j )2 , j = 1,2, . . . ,�ν�, (4)

where the ceiling function �ν� indicates the smallest integer
not less than ν. The above expression is essential to approach
the problem analytically through the complex-scaling method
that we use to follow the energy vs the twist behavior of the
bound states.

The energetic spectrum of the Schrödinger operator for the
QW with V consists of a discrete and a continuum part,

{En + μj ; n = 1,2, . . . ; j = 1, . . . ,�ν�} ∪ [E1,+∞). (5)

For energies above E1, the two parts overlap, and eigenvalues
of the discrete spectrum are embedded in the continuum
spectrum. However, the two subspectra remain well distinct
since the system Hamiltonian is separable in a transverse (y-z
plane) and a longitudinal (x-direction) component. In fact,
if a given energy corresponds to a discrete level and, at the
same time, it lies inside the continuum, the corresponding state
will be degenerate, with the different eigenfunctions having a
different transverse state. In terms of quantum transport along
the QW, the above system does not mix different transmission
channels or propagating states with bound ones.

Let us now introduce a local twist in the QW. As we
will show, this couples different transverse modes, mixing
their spectra, and shifts the energy of the discrete states. The
deformation adopted, also illustrated in Fig. 1, is a rotation of
the rectangular cross section around its center when moving
along the QW axis. A point of coordinates (x,y,z) of the
straight QW is transformed according to

x ′ = x,

y ′ = y cos [ϕ (x)] + z sin [ϕ (x)] , (6)

z′ = z cos [ϕ (x)] − y sin [ϕ (x)] ,

where

ϕ(x) = �

2

[
erf

(
x

λ

)
+ 1

]
(7)

is the rotation angle as a function of the longitudinal position
x. Here, erf is the error function, � is the total rotation angle,
and λ is a parameter that sets the length of the twisted region.
In particular, the QW twist can be considered effective in a
length 4λ around the origin. Outside the latter region, the QW
is essentially straight.
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FIG. 2. (Color online) Schematic of the relevant energies of
the system without a twist for two different magnitudes ν of the
quantum well described by Eq. (3). The thresholds of the transport
channels, i.e., the transverse modes, are E1 = 70.155 meV, E2 =
112.248 meV, and E3 = 182.403 meV (not shown). The energy of a
bound state of the straight QW is indicated by εn,j , with n indicating
the transverse mode and j the bound state of V in the longitudinal
direction. While the En’s are fixed, the εn,j ’s are increased by the
twist. Note that, without the twist, all states εn,j are bound, while
only those that remain under the E1 threshold are bound as the twist
is applied. The two insets on the right sketch the square modulus
of the transverse component of the traveling-wave functions for the
first (lower) and second (upper) channels with thresholds E1 and E2,
respectively.

For our simulations, we use GaAs effective electron mass
m = 0.067me and adopt the following set of geometric
parameters: Ly = 20 nm, Lz = 10 nm, λ = 17.5 nm (i.e., the
twisted region is about 70 nm), and 0 � � � 3π . Two
attractive potentials, as given in Eq. (3), have been used, both
with Lp = 10 nm (i.e., effective on a length of about 60 nm
around the origin). They differ in their depth: In the first case,
ν = 2.95 (corresponding to a minimum of −66.262 meV), and
in the second case, ν = 3.95 (corresponding to a minimum
of −111.186 meV). The relative positions of relevant energy
levels are reported in Fig. 2 for the two cases. For brevity,
the energies of the discrete states are indicated by εn,j =
En,0 + μj in the following. We stress that the transverse
energies En are fixed, since the cross section is constant,
although rotated. On the contrary, the position of εn,j depends
on the twist, as we will analyze in detail in Sec. IV. In fact, they
are the resonant energies that correspond to a local maximum
(Breit-Wigner) or a zero (Fano) in the transmission spectra.

III. NUMERICAL APPROACH

To obtain the transmission amplitudes of the twisted QW,
we solve the three-dimensional (3D) Schrödinger equation
with open boundaries through the quantum transmitting
boundary method17 (QTBM). Electrons are injected from the
left lead (see Fig. 1) in a given transverse mode and either
can be reflected or can be transmitted to the right lead. With

this boundary condition, the differential equation of motion is
solved in the internal points of the domain, leading to complex
transmission/reflection amplitudes for every channel of the
right/left leads. We adopt a curved coordinate system naturally
defined by the twist function of Eq. (6), r = (x,y,z) → r′ =
(x ′,y ′,z′). This new coordinate system follows the QW twist
and sees a straight QW. However, the equation of motion must
also be transformed according to the r → r′ relation. In order
to do so, we need the metric tensor of the system G(r) with
components Gij (r) = (∂ir′) · (∂j r′), together with its inverse
G−1 with components Gij . Here, we used the definitions
∂i = ∂/∂xi and (x,y,z) = (x1,x2,x3). In the curved coordinate
system, the Hamiltonian reads18,19 as follows:

H(r) = − h̄2

2m

3∑
i,j=1

∂i√
G

(
√

GGij∂j )

= − h̄2

2m

3∑
i,j=1

[
Gij∂2

ij −
(

3∑
k,l=1

Gkl∂2
klr

′ · Gij∂ir′
)

∂j

]
,

where G > 0 is the determinant of G and ∂2
ij = ∂i∂j . Note

that the coupling of different transmission channels is a direct
consequence of the nonzero off-diagonal elements of the
metric tensor G, used to introduce the twist in the equation
of motion. Now, it is easy to define a rectangular mesh
following the QW in the new coordinate system and to
discretize H through a finite-difference scheme. Specifically,
we adopt a first-order scheme for the partial derivatives and
include the leads through an additional self-energy term in
the Hamiltonian20 whose matrix component coupling the grid
points (x,y,z) and (x,y ′,z′) at the left-lead interface x (fixed)
reads

	L(y,z; y ′,z′) =
∑

n

χn(y,z)(−ikn)χn(y ′,z′), (8)

where n indexes the normal eigenmodes of the rectangular-
section leads χn and kn is the kinetic wave vector in the x

direction. For the right lead, the expression for 	R is similar
with the opposite sign. This procedure allows truncating the
real-space Hamiltonian matrix and writing the system equation
of motion in matrix form as follows:⎛

⎜⎜⎜⎜⎝
	L tI . . . 0 0
tI
...
0

H − EI
0
...
tI

0 0 . . . tI 	R

⎞
⎟⎟⎟⎟⎠ ψ =

⎛
⎜⎜⎜⎜⎝

S

0
...
0
0

⎞
⎟⎟⎟⎟⎠ , (9)

where t represents the coupling strength between an internal
point and a point in the leads, E is the total energy of the state
ψ , I is an identity matrix, and S is the source term, namely,
an array of the same dimension as 	L with elements,

S(y,z) =
∑

n

An(−ikn)χn(y,z), (10)

describing the incoming electron wave with amplitude An in
channel n. Equation (9) is then solved numerically for a given
set of An and total energy E. In fact, the QTBM outlined
above takes, as an input, the kinetic energy E − En > 0
of the incoming electron and the wave function χn of the
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transverse modes n and gives, as an output, the wave function
ψ from which the transmission/reflection amplitudes in the
different channels21 are easily obtained. For this reason, a new
calculation must be performed for every E in a chosen set over
the range of interest, with E > En.

Actually, in order to find the resonances, we also used
a complementary technique: the complex-scaling approach
described in the Appendix.12 This method leads to a complex-
eigenvalue problem that allows one to identify, in a straight-
forward way, the resonances originated by the bound states
of V . Moreover, it gives the energy levels of bound states
below E1, not achievable with the QTBM. In fact, the QTBM
gives the transmission amplitude of the different transverse
modes as a function of the carrier energy, and the position
of transport resonances must be detected subsequently, as a
relevant peak or a dip in the transmission probability and as
a continuum (abrupt) phase shift for a Breit-Wigner (Fano)
resonance. However, the complex-scaling method is very
demanding from the computational point of view, and we
used its results only as a reference for specific cases. We
leave the comparison of the two methods for a subsequent
paper.

IV. TRANSMISSION SPECTRA

As anticipated in Sec. II, the transmission spectra of the
straight QW can be obtained from a 1D equation of motion
with the potential V . In order to mix transmission channels, the
transverse/longitudinal separability must be lifted. However,
a generic deformation of the QW section along the wire not
only couples different transverse modes, but also introduces
additional resonant energies, as in the case of a closed cavity
attached at a side.22,23 This can make exposing the sole effect
of the coupling between the continuum and the discrete spectra
difficult. For this reason, as well as for technological relevance,
we choose a kind of deformation that does not alter the shape
of the QW cross section, but only its orientation, and does
not introduce further resonances. In fact, the QW twist has
only two effects: First, it couples the transmission channels
so that the transmission probability for a carrier injected
in a given transverse mode also has traces of quasibound
states of different modes; second, it increases the energies
of quasibound states. This can be considered a consequence of
the 3D-shape modification of the shallow quantum dot formed
by the potential V and the lateral hard-wall confinement. Since
the twist is dependent on x and only is applied to the central
region, the different wave functions of the quasibound states
are affected differently due to their different shapes and peak
extensions. The above effects can be seen from the two panels
of Fig. 3, where we report the position (top panel) and width
(bottom panel) of the resonances in the transmission spectrum
of the ground transverse channel as a function of the twist
angle. In particular, for each angle �, we inject a carrier in
the ground transverse mode (with energy E1) and with several
longitudinal kinetic energies from zero to E2 − E1. From the
curves of transmission amplitude vs total energy E (see, e.g.,
Figs. 4 and 5) we determine the position of the resonances and
obtain the imaginary part of the eigenvalue as −�/2, where � is
the peak or dip width. Note that the above complex eigenvalues
correspond to quasibound states with a mean lifetime h̄/� on
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FIG. 3. (Color online) (Top panel) Position of transmission
resonances in the ground-mode spectrum as a function of the twist
angle �, for ν = 2.95. The resonant energies correspond to the real
part of the complex-scaled eigenvalues. The threshold energies of the
ground and first-excited transverse modes are indicated by the two
horizontal lines labeled E1 and E2, respectively. The three curves
correspond to the quasibound states ε2,3 (dotted line), ε2,2 (dashed
line), and ε2,1 (solid line). (Bottom panel) Imaginary part of the
complex-scaled eigenvalues, corresponding to the half-width of the
resonance peaks or dips. While the two Fano resonances ε2,3 and ε2,2

(see also Fig. 4) disappear as they reach E2, ε2,1 is still present in the
spectrum at energies exceeding E2 in the form of a broad and shallow
dip (see also Fig. 5).

the order of a few hundreds of picoseconds, as indicated on
the right y axis.

By comparing Fig. 3 with the levels of the straight QW
given in Fig. 2, the origin of the two resonances at higher
energy (dotted and dashed lines in Fig. 3) is clear. In fact, for
� ∼ 0, only two quasibound levels lie between E1 and E2,
namely, ε2,2 and ε2,3. They both belong to channel 2 so that,
at zero twist, they do not appear in the transmission spectrum,
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FIG. 4. (Color online) Ground-mode transmission probability
(upper panels) and phase (lower panels) around the resonances ε2,2

(left panels) and ε2,3 (right panels) for a twist angle � = π/2. In both
cases, phase θ shows the typical π discontinuity of Fano resonances.
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FIG. 5. (Color online) Ground-mode transmission probability
(upper panels) and phase (lower panels) around the resonance ε2,1

for two different twist angles, namely, � = π (left panels) and
� = 2.25π (right panels, solid line). In the first case, ε2,1 < E2,
and a sharp Fano dip is found. In the second case, ε2,1 > E2, and its
position is only indicated by a very shallow dip. Also, in the latter
case, the transmission spectrum of the first-excited mode is reported
(dashed line), revealing a pronounced Breit-Wigner resonance.

as can be gathered from the vanishing imaginary part of their
eigenvalues in the bottom panel of Fig. 3. As the twist is
introduced, the two levels above appear as slightly asymmetric
Fano dips in the transmission probability, as reported in the top
panels of Fig. 4 for the case of � = π/2. However, the Fano
character of the resonances is better revealed by the abrupt
jump of π in the transmission phase θ , as shown in the bottom
panels of Fig. 4. The third resonance of Fig. 3 (solid line)
appears around � � 0.85π from the low-energy threshold E1.
Again, it is a Fano resonance, as can be gathered from the left
panels of Fig. 5, showing the transmission probability and
phase at � = π . This is confirmed by results of the complex-
scaling approach, ascribing the resonance to the quasibound
level ε2,1. In fact, as the twist increases from 0 to π , both
levels ε2,1 and ε1,3 reach the threshold E1. However, while the
former shows up as a resonance in the transmission spectrum,
the latter disappears as it enters the traveling-states region, with
its imaginary part going to zero. Again, this behavior can be
traced by the complex-scaling method alone, since the lower
energy accessible with the QTBM is E1. When ε2,1 enters the
energy range of the first-mode traveling states, it appears as
a Fano resonance since it is a second-mode quasibound state.
Moreover, contrary to the other two resonances, it appears with
a significant width (bottom panel of Fig. 3) from the beginning,
since at � � 0.85π , the coupling between the modes is already
strong.

When the twist increases from π to 2π , the three qua-
sibound levels described above also increase their energy.
However, as ε2,2 and ε2,3 approach the threshold of the second
channel, their width decreases, and they finally disappear, with
the width going to zero, when their energy reaches E2. The
behavior of ε2,1 is different. In fact, its resonance width is
always on the order of 4 μeV until the energy reaches E2,
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FIG. 6. (Color online) Same as Fig. 3, but for a deeper potential
well, with ν = 3.95. Here, four quasibound states with a first-excited
transverse mode are present: ε2,1 (solid line, with filled circles), ε2,2

(dashed line), ε2,3 (dotted line), and ε2,4 (dot-dashed line), together
with a quasibound state with a second-excited transverse mode: ε3,1

(solid line with empty squares). The two resonances ε3,1 and ε2,4, with
different transverse modes, cross around � = π with a repulsion of
their imaginary components. All the resonances in the (E1,E2) range
are of Fano type.

where the width increases by orders of magnitude. This is
shown in the right panels of Fig. 5, where the transmission
probability (top) and phase (bottom) are shown for a twist � =
2.25π . Here, ε2,1 > E2, and the second transmission channel
becomes available. The solid line is the first-channel-to-first-
channel transmission and shows a tiny dip at the quasibound
state position, reminiscent of the prominent Fano dip of the
single-channel case. The dashed line is the second-channel-to-
second-channel transmission, showing a clear Breit-Wigner
resonance with the corresponding continuous phase lapse of
π .24 This is not surprising, since in this case, the quasibound
state has the same transverse mode of the transmission
channel.

The case with ν = 3.95, with a deeper potential well V in
the twisted region, presents additional effects. In fact, at zero
twist, the energy range between E1 and E2, where only the
ground channel is open, contains bound states of two different
transverse modes, namely, the first excited (ε2,3 and ε2,4) and
the second excited (ε3,1), as shown in Fig. 2. As the wire
is twisted, the energy of the above three quasibound states
increases, as illustrated in the top panel of Fig. 6. However,
level ε3,1 (solid line with empty squares) increases faster
than the other two, it crosses ε2,4 around � = π and goes
beyond E2. First of all, we note again that, in the (E1,E2)
range, the transport resonances corresponding to the above
quasibound states are Fano resonances, in agreement with
the fact that they originate from a transverse mode different
from that of the transport channel. This is shown in the left
panels of Fig. 7, reporting the transmission probability and
phase of the ground channel at � = π , just after the crossing.
At the crossing, we also find a repulsion of the imaginary
component of the eigenvalues, visible in the bottom panel of
Fig. 6.
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FIG. 7. (Color online) Ground-mode transmission probability
(upper panels) and phase (lower panels) showing the resonance ε3,1

just after the crossing with ε2,4 (at � = π , left panels) and above
the second-mode threshold E2 (at � = 1.25π , right panels). In the
first case, the π discontinuities of the transmission phase evidence
the Fano character of the resonances. In the second case, a third
channel is available, and the resonance does not present either Fano
or Breit-Wigner character.

When ε3,1 > E2, i.e., it enters the energy region with two
transport channels, it does not disappear, as ε2,3 and ε2,4 do
at a larger twist, but simply changes its characters. Now, the
minimum of the dip does not reach zero, and the phase does
not present the π discontinuity (Fig. 7, right panels). Here,
in fact, two continuum energy spectra and a quasibound level
overlap, this lifting the rigid zero-transmission properties of
the previous case where a quasibound state is embedded in a
single continuum.

As already mentioned, the two resonances ε2,3 and ε2,4,
present in the spectrum since small twist angles, disappear as
they reach E2, with their width going to zero. Two additional
resonances enter the ground-mode region at larger twists:
ε2,2 and ε2,1, represented in Fig. 6 by a dashed line and
a solid line, respectively. They are also Fano resonances,
but after reaching E2, they do not vanish. In fact, their
width increases, and their minimum does not reach zero, as
shown in Fig. 8 for ε2,2. Obviously, in this region, they are
also present in the transmission spectrum of the first-excited
channel as Breit-Wigner resonances (dashed line in Fig. 8),
since their transverse mode is the first-excited one as well.
Correspondingly, their transmission phase presents a smooth
evolution of π .

In Fig. 9, we also report the ballistic conductance20 vs EF at
zero temperature in the range E1 < EF < E2 (i.e., where only
the first channel is active), where EF + e�V

2 and EF − e�V
2

are the Fermi energy of the left and right leads, respectively.
We take two different applied biases, namely, �V = 100 μV
(solid lines) and �V = 1 mV (dashed lines), for the same
two twist angles of Fig. 8. Figure 9 shows that the dips in
the conductance should be detectable with a realistic value
of source-drain biases and that the twist is able to clear the
resonance dips of a portion of the transmission spectrum.
Specifically, the range of the figure covers the first transmission
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FIG. 8. (Color online) Transmission probability (upper panels)
and phase (lower panels) around the resonance ε2,2 for the system
with ν = 3.95. Two different twist angles are considered, with the
resonance close to the second-channel threshold: � = 2.875π (left
panels), where ε2,2 < E2 and � = 3.125π (right panels), where
ε2,2 > E2. In the second case, both the ground mode (solid line)
and the first-excited mode (dashed line) transmission probabilities
are reported. As for the case of Fig. 7, after the crossing of E2, the
π discontinuity of the phase is lost due to the availability of a third
transmission channel. The broad peak in the first-excited channel is
a Breit-Wigner resonance.

channel with two resonance dips in the case with the lower
twist (top panel). In the large-twist case (bottom panel), the
two dips coming from the quasibound states ε2,1 and ε2,2 have
been pushed to the right, with the second one outside the
range considered. Furthermore, it is clear from the figure that
the twist does not introduce substantial modifications to the
conductance, as it keeps its maximum value 2e

h
in the range

between the first-channel threshold E1 and the first dip ε2,1,
regardless of the twist.
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FIG. 9. (Color online) Ballistic conductance at zero temperature
vs mean-Fermi energy of source and drain leads for two different
applied biases: 100 μV (solid lines) and 1 mV (dashed lines). Here,
ν = 3.95. Two different twist angles � = 2.875π (upper panel) and
� = 3.125π (lower panels) are considered.
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V. CONCLUSIONS

By solving the open-boundary Schrödinger equation
through the QTBM, we obtained the transmission spectra of
the twisted QW. The effect of the twist can be summarized in
the following points. First, the twist is able to mix different
transmission channels despite the fact that the transverse
QW section is not altered (but only rotated). If no external
potential V is present, no evident resonance peak is found
in the transmission spectra. In particular, no Fano resonance
can exist, since no bound state is present that can become
embedded in the continuum portion of the energy spectrum.25

If the attractive potential V is considered, its bound states are
coupled to traveling states and appear as resonance peaks/dips
in the transmission spectra. However, no additional resonances
are introduced with respect to the straight case. Second, the
character of the resonance depends on the transverse mode of
the original bound state. In fact, when the latter is equal to
the transverse mode of the transmission channel, we find a
Breit-Wigner resonance, otherwise, we find a Fano resonance.
In case more than two channels are available, we do not
find the π discontinuity of the transmission phase typical of
Fano resonances. From a different perspective, the twist allows
controlling whether, at a given injection energy, a quasibound
state affects the conductance through a Breit-Wigner resonance
peak or a Fano resonance dip. Third, the twist increases the
energy of quasibound levels. The higher the transverse mode of
the quasibound state, the faster its energy increases. However,
the change of the resonances width is nonmonotonic with the
twist. In general, it increases from zero when the energy of
the bound state is already in the transport region in the straight
QW and decreases as the above energy reaches the threshold of
the transmission channel with the same transverse mode as the
quasibound state. Fourth, resonances that are present from the
beginning in the first-channel region disappear as they reach
E2, while resonances that enter the E1-E2 region at a finite
twist, persist in the multichannel region. The strict behavior
described above could help in anticipating the characters of
transmission spectra of QW locally twisted once the spectra
of the straight wire are known. Furthermore, it supports the
idea that the twist can reduce the effects of localized states
on quantum conductance, since it shifts their levels toward
higher energies, possibly beyond Fermi level of the quasi-1D
nanostructure.

As a last comment, we note that, in a realistic experimental
setup, operating in a multielectron regime, electron-electron
interaction would likely have a large impact on the transmis-
sion spectra up to concealing the noninteracting single-particle
features reported above. In fact, our paper focuses on the role of
the QW twist on the interplay between discrete and continuum
spectra of the system Schrödinger equation and on its effect
on the transmission probability of the twisted-wire potential
layout. A sensible comparison between our transmission
spectra and the quantum conductance of a real device would
require a strict single-electron occupancy of the device with
densities on the order of 1015 particles/cm3 or less and an
accurate tailoring of the energy of the injected electrons,
e.g., by means of a resonant tunnel diode structure. In the
few-electron limit (i.e., with an average number of electrons
in the device between 2 and about 12) correlation effects can

be important,26 while in the many-electron regime (with a
high electron density on the order of 1018 particles/cm3 or
higher), intercarrier Coulomb interaction can be included in
the model in a Hartree approximation through a self-consistent
Schrödinger-Poisson procedure. The self-consistent potential
will eventually cause a realignment of the band profile in order
to follow the source and drain Fermi levels. Moreover, for low
values of the twist, the bound states of the potential well V (x)
that lie below the lower threshold E1 would be occupied.
On one hand, since these states are not embedded in the
continuum spectrum, they do not take part in the formation of
the transmission resonances. On the other hand, the Coulomb
repulsion between the bound electrons and the traveling one
would substantially modify the profile of the QW conduction
band.
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APPENDIX: COMPLEX-SCALING METHOD

So far, we have identified resonant energies with singu-
lar points of the reflection/transmission coefficient. In the
framework of the complex-scaling method, introduced in the
1970s by Aguilar and Combes27 and Baslev and Combes28

(for a review, see also Ref. 29), resonances were identified
with the complex eigenvalues of a nonsymmetric linear
operator obtained from the original one by analytic complex
deformation. The real part of such complex-valued eigenvalues
coincides with the usual resonance energy level, while the
imaginary part is associated with the resonant state lifetime.
The complex-scaling method has been employed in Ref. 12 to
twisted QW in order to prove the existence of resonances, and
here, we briefly resume it.

As already mentioned in the main text, we use the
complex-scaling method in order to support our findings
by means of an approach complementary to the QTBM.
In fact, the application of complex-scaling to nanowire
transport is very powerful since it allows accessing energy
regimes below the lower traveling state. These regimes are
precluded to standard methods for open systems, such as the
QTBM.

Let ω = (− 1
2Ly,+ 1

2Ly) × (− 1
2Lz,+ 1

2Lz) ⊂ R2 be the
rectangular cross section of our QW. For a given x ∈ R and
(y,z) ∈ ω, we define a generalized mapping of the kind given
in Eq. (6), where ϕ(x) = �α(x) and where α:R → R is a
differentiable function that represents the twisting and � � 0
is a real-valued parameter that represents the strength of the
twist. In order to ease a direct comparison, in this Appendix,
we use the symbols already defined in the main text, even if
the formalism used here is of more general validity. Let �� be
the twisted QW, and let

H� = − h̄2

2m
� + V (x)

be the time-independent Schrödinger operator on ��, that
is, the wave function ψ belongs to L2(��) with Dirichlet
boundary conditions at ∂��. V represents the external

245439-7
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potential Eq. (3), depending only on the longitudinal variable
x. In the following, for the sake of definiteness, let us assume
the unit choice such that h̄2

2m
= 1.

In order to analyze the operator H�, we go back to
the untwisted tube �. The operator H� then takes the
form K�,

K� = −∂2
yy − ∂2

zz − [∂x + �α′(x)∂τ ]2 + V (x) = K0 + U�,

where
∂τ = y∂z − z∂y,

and
K0 = −∂2

xx − ∂2
yy − ∂2

zz + V (x),

and
U� = −[∂x + �α′(x)∂τ ]2 + ∂2

xx

= −2�α′(x)∂2
xτ − �α′′(x)∂τ − �2[α′(x)]2∂2

ττ .

The operator K� is a symmetric operator on L2(�) with
Dirichlet boundary conditions at ∂�. The spectrum of K0 is
given by Eq. (5), that is, the spectrum of K0 admits embedded
eigenvalues in the continuous spectrum. In Ref. 12, it has been
proved that such embedded eigenvalues become resonances
when we add the perturbation U� to K0. Resonances are
defined by employing the method of exterior complex scaling
to the operator K�, provided that the potential V is a bounded
potential that extends to an analytic function with respect to
x in some sector and the twisting function α(x) extends to an
analytic function with respect to x in a suitable complex set.
The exterior complex-scaling method consists of introducing
the mapping Sθ , which acts as a complex dilation in the
longitudinal variable x,

(Sθψ)(x,y,z) = eθ/2ψ(eθx,y,z), θ ∈ C, Imθ > 0.

E1 E2 E3

FIG. 10. The essential spectrum of K�(θ ) is given by the
half-lines En + e−2iImθR+ (full lines). The eigenvalues of K�(θ )
(denoted by open circles) with a strictly negative imaginary part
are the resonances of H�; for energies below the threshold E1, the
eigenvalues of K�(θ ) (denoted by full circles) are purely real valued,
and they are eigenvalues of H�.

The transformed operator is not a symmetric operator, and it
takes the form

K�(θ ) = SθK�S−1
θ = K0(θ ) + U�(θ ),

where

K0(θ ) = SθK0S
−1
θ = −e−2θ ∂2

xx − ∂2
yy − ∂2

zz + V (eθx),

and

U�(θ ) = SθU�S−1
θ

= −2�e−θα′(eθx)∂2
xτ − �α′′(eθx)∂τ

− �2[α′(eθx)]2∂2
ττ .

Then, the essential spectrum of K�(θ ) consists of the
sequence of the half-lines (Fig. 10) En + e−2iImθR+, n =
1,2, . . . , and, by a standard argument, it turns out that the
eigenvalues of K�(θ ) are analytic functions of θ , they are, in
fact, independent of θ . These nonreal eigenvalues of K�(θ ),
for θ such that Im θ > 0, are identified with the resonances of
K� (and, hence, with the resonances of H�).29
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