613 research outputs found

    The Optimal Projection Equations for Fixed-Order Sampled-Data Dynamic Compensation with Computation Delay

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57876/1/FixedOrderSampledData.pd

    Simulation of Hyperspectral Images

    Get PDF
    A software package generates simulated hyperspectral imagery for use in validating algorithms that generate estimates of Earth-surface spectral reflectance from hyperspectral images acquired by airborne and spaceborne instruments. This software is based on a direct simulation Monte Carlo approach for modeling three-dimensional atmospheric radiative transport, as well as reflections from surfaces characterized by spatially inhomogeneous bidirectional reflectance distribution functions. In this approach, "ground truth" is accurately known through input specification of surface and atmospheric properties, and it is practical to consider wide variations of these properties. The software can treat both land and ocean surfaces, as well as the effects of finite clouds with surface shadowing. The spectral/spatial data cubes computed by use of this software can serve both as a substitute for, and a supplement to, field validation data

    Research in the Restricted Problems of Three and Four Bodies Final Scientific Report

    Get PDF
    Seven studies have been conducted on research in the existence and nature of solutions of the restricted problems of three and four bodies. The details and results of five of these research investigations have already been published, and the latest two studies will be published shortly. A complete bibliography of publications is included in this report. This research has been primarily qualitative and has yielded new information on the behavior of trajectories near the libration points in the Earth-Moon-Sun and Sun-Jupiter-Saturn systems, and on the existence of periodic trajectories about the libration points of the circular and elliptical restricted four-body models. We have also implemented Birkhoff's normalization process for conservative and nonconservative Hamiltonian systems with equilibrium points. This makes available a technique for analyzing stability properties of certain nonlinear dynamical systems, and we have applied this technique to the circular and elliptical restricted three-body models. A related study was also conducted to determine the feasibility of using cislunar periodic trajectories for various space missions. Preliminary results suggest that this concept is attractive for space flight safety operations in cislunar space. Results of this research will be of interest to mathematicians, particularly those working in ordinary differential equations, dynamical systems and celestial mechanics; to astronomers; and to space guidance and mission analysts

    The Cosmological Constant is Back

    Get PDF
    A diverse set of observations now compellingly suggest that Universe possesses a nonzero cosmological constant. In the context of quantum-field theory a cosmological constant corresponds to the energy density of the vacuum, and the wanted value for the cosmological constant corresponds to a very tiny vacuum energy density. We discuss future observational tests for a cosmological constant as well as the fundamental theoretical challenges---and opportunities---that this poses for particle physics and for extending our understanding of the evolution of the Universe back to the earliest moments.Comment: latex, 8 pages plus one ps figure available as separate compressed uuencoded fil

    Counting Orbifolds

    Full text link
    We present several methods of counting the orbifolds C^D/Gamma. A correspondence between counting orbifold actions on C^D, brane tilings, and toric diagrams in D-1 dimensions is drawn. Barycentric coordinates and scaling mechanisms are introduced to characterize lattice simplices as toric diagrams. We count orbifolds of C^3, C^4, C^5, C^6 and C^7. Some remarks are made on closed form formulas for the partition function that counts distinct orbifold actions.Comment: 69 pages, 9 figures, 24 tables; minor correction

    Instrumentation progress at the Giant Magellan Telescope project

    Get PDF
    Instrument development for the 24m Giant Magellan Telescope (GMT) is described: current activities, progress, status, and schedule. One instrument team has completed its preliminary design and is currently beginning its final design (GCLEF, an optical 350-950 nm, high-resolution and precision radial velocity echelle spectrograph). A second instrument team is in its conceptual design phase (GMACS, an optical 350-950 nm, medium resolution, 6-10 arcmin field, multiobject spectrograph). A third instrument team is midway through its preliminary design phase (GMTIFS, a near-IR YJHK diffraction-limited imager/integral-field-spectrograph), focused on risk reduction prototyping and design optimization. A fourth instrument team is currently fabricating the 5 silicon immersion gratings needed to begin its preliminary design phase (GMTNIRS, a simultaneous JHKLM high-resolution, AO-fed, echelle spectrograph). And, another instrument team is focusing on technical development and prototyping (MANIFEST, a facility robotic, multifiber-feed, with a 20 arcmin field of view). In addition, a medium-field (6 arcmin, 0.06 arcsec/pix) optical imager will support telescope and AO commissioning activities, and will excel at narrow-band imaging. In the spirit of advancing synergies with other groups, the challenges of running an ELT instrument program and opportunities for cross-ELT collaborations are discussed

    A New Measurement of the π0\pi^0 Radiative Decay Width

    Full text link
    High precision measurements of the differential cross sections for π0\pi^0 photoproduction at forward angles for two nuclei, 12^{12}C and 208^{208}Pb, have been performed for incident photon energies of 4.9 - 5.5 GeV to extract the π0γγ{\pi^0 \to \gamma\gamma} decay width. The experiment was done at Jefferson Lab using the Hall B photon tagger and a high-resolution multichannel calorimeter. The π0γγ{\pi^0 \to \gamma\gamma} decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is Γ(π0γγ)=7.82±0.14 (stat.)±0.17 (syst.) eV\Gamma{(\pi^0 \to \gamma\gamma)} = 7.82 \pm 0.14 ~({\rm stat.}) \pm 0.17 ~({\rm syst.}) ~{\rm eV}. With the 2.8% total uncertainty, this result is a factor of 2.5 more precise than the current PDG average of this fundamental quantity and it is consistent with current theoretical predictions.Comment: 4 pages, 5 figure

    Extragalactic Background Light Inferred from AEGIS Galaxy SED-type Fractions

    Get PDF
    The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for gamma-ray astronomy, but the overall spectrum of the EBL between 0.1-1000 microns has never been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range. The evolving, overall spectrum of the EBL is derived here utilizing a novel method based on observations only. This is achieved from the observed evolution of the rest-frame K-band galaxy luminosity function up to redshift 4 (Cirasuolo et al. 2010), combined with a determination of galaxy SED-type fractions. These are based on fitting SWIRE templates to a multiwavelength sample of about 6000 galaxies in the redshift range from 0.2 to 1 from the All-wavelength Extended Groth Strip International Survey (AEGIS). The changing fractions of quiescent galaxies, star-forming galaxies, starburst galaxies and AGN galaxies in that redshift range are estimated, and two alternative extrapolations of SED-types to higher redshifts are considered. This allows calculation of the evolution of the luminosity densities from the UV to the IR, the evolving star formation rate density of the universe, the evolving contribution to the bolometric EBL from the different galaxy populations including AGN galaxies and the buildup of the EBL. Our EBL calculations are compared with those from a semi-analytic model, from another observationally-based model and observational data. The EBL uncertainties in our modeling based directly on the data are quantified, and their consequences for attenuation of very high energy gamma-rays due to pair production on the EBL are discussed. It is concluded that the EBL is well constrained from the UV to the mid-IR, but independent efforts from infrared and gamma-ray astronomy are needed in order to reduce the uncertainties in the far-IR.Comment: 25 pages, 18 figures, 4 tables; accepted for publication in MNRAS on September 3, 2010. Online material available at http://side.iaa.es/EB
    corecore