25 research outputs found

    Flux Density and VLBI Measurements of the IDV Source 0917+624

    Get PDF
    Extragalactic compact flat spectrum radio sources are known to be highly variable and about 30% of them show intra-day variability (IDV). The quasar 0917+624 was known to show prominent IDV behaviour from the time it was first studied as a short-time variable source. Meanwhile, however, its variability ceased and yet the reason for that is not clear. The working hypothesis for the observations, on which the main part of this thesis is based, was that structural changes of the variable part of the source have caused the variability decline. These changes could be revealed using high resolution observing techniques, namely VLBI. Several epochs of single-dish flux density measurements performed with the Effelsberg 100m radio telescope between 2001 and 2004 as well as several multi-frequency epochs of VLBI observations of 0917+624 over a period of eight years (1999 to 2007) have been analysed concerning particularly kinematic and polarimetric properties and the results are interpreted in terms of Intraday Variability

    The Bonn Astro/Geo Correlator

    Get PDF
    The Bonn Distributed FX (DiFX) correlator is a software correlator operated jointly by the Max- Planck-Institut fur Radioastronomie (MPIfR), the Institut fur Geodasie und Geoinformation der Universitat Bonn (IGG), and the Bundesamt fur Kartographie und Geodasie (BKG) in Frankfurt

    The EUropean-VGOS Project

    Get PDF
    In Spring 2018 the Bonn correlation centre\ua0started a collaboration with the three European stations\ua0of Wettzell, Onsala and Yebes, equipped with\ua0both S/X- and broadband systems, to perform VGOS-like test sessions. The aim is to verify and develop further\ua0the processing chain for VGOS experiments end-to-end, from the scheduling to the analysis of the derived\ua0observables. We will present the current status of\ua0the project

    DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control

    Get PDF
    Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation-positive Burkitt lymphoma, nine BCL2 translocation-positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas

    The genomic and transcriptional landscape of primary central nervous system lymphoma

    Get PDF
    Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations

    Rheinischen Friedrich-Wilhelms-UniversitÀt Bonn

    No full text
    zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen FakultÀt de

    Initial Results Obtained with the First TWIN VLBI Radio Telescope at the Geodetic Observatory Wettzell

    No full text
    Geodetic Very Long Baseline Interferometry (VLBI) uses radio telescopes as sensor networks to determine Earth orientation parameters and baseline vectors between the telescopes. The TWIN Telescope Wettzell 1 (TTW1), the first of the new 13.2 m diameter telescope pair at the Geodetic Observatory Wettzell, Germany, is currently in its commissioning phase. The technology behind this radio telescope including the receiving system and the tri-band feed horn is depicted. Since VLBI telescopes must operate at least in pairs, the existing 20 m diameter Radio Telescope Wettzell (RTW) is used together with TTW1 for practical tests. In addition, selected long baseline setups are investigated. Correlation results portraying the data quality achieved during first initial experiments are discussed. Finally, the local 123 m baseline between the old RTW telescope and the new TTW1 is analyzed and compared with an existing high-precision local survey. Our initial results are very satisfactory for X-band group delays featuring a 3D distance agreement between VLBI data analysis and local ties of 1 to 2 mm in the majority of the experiments. However, S-band data, which suffer much from local radio interference due to WiFi and mobile communications, are about 10 times less precise than X-band data and require further analysis, but evidence is provided that S-band data are well-usable over long baselines where local radio interference patterns decorrelate

    Multicentre external validation of the BIMC model for solid solitary pulmonary nodule malignancy prediction

    No full text
    To provide multicentre external validation of the Bayesian Inference Malignancy Calculator (BIMC) model by assessing diagnostic accuracy in a cohort of solitary pulmonary nodules (SPNs) collected in a clinic-based setting. To assess model impact on SPN decision analysis and to compare findings with those obtained via the Mayo Clinic model

    Baseline Vector Repeatability at the Sub‐Millimeter Level Enabled by Radio Interferometer Phase Delays of Intra‐Site Baselines

    No full text
    We report the results of position ties for short baselines at eight geodetic sites based on phase delays that are extracted from global geodetic very‐long‐baseline interferometry (VLBI) observations rather than dedicated short‐baseline experiments. An analysis of phase delay observables at X band from two antennas at the Geodetic Observatory Wettzell, Germany, extracted from 107 global 24‐hr VLBI sessions since 2019 yields weighted root‐mean‐square scatters about the mean baseline vector of 0.3, 0.3, and 0.8 mm in the east, north, and up directions, respectively. Position ties are also obtained for other short baselines between legacy antennas and nearby, newly built antennas. They are critical for maintaining a consistent continuation of the realization of the terrestrial reference frame, especially when including the new VGOS network. The phase delays of the baseline WETTZ13N–WETTZELL enable an investigation of sources of error at the sub‐millimeter level. We found that a systematic variation of larger than 1 mm can be introduced to the Up estimates of this baseline vector when atmospheric delays were estimated. Although the sub‐millimeter repeatability has been achieved for the baseline vector WETTZ13N–WETTZELL, we conclude that long term monitoring should be conducted for more short baselines to assess the instrumental effects, in particular the systematic differences between phase delays and group delays, and to find common solutions for reducing them. This will be an important step toward the goal of global geodesy at the 1 mm level.Plain Language Summary: We report the results of position ties for short baselines at eight geodetic sites based on phase delays that are extracted from global geodetic very‐long‐baseline interferometry (VLBI) observations rather than dedicated short‐baseline experiments. By using the inherently more precise observables—phase delays, a baseline vector repeatability of WETTZ13N–WETTZELL has been achieved at the sub‐millimeter level for the horizontal directions and at the 1 mm level for the vertical direction based on VLBI experiments of 107 days during 3.5 years. Position ties based on phase delays are also obtained for other short baselines between legacy antennas and nearby, newly built antennas, and they are critical to maintain a consistent continuation of the realization of terrestrial reference frame into the future of a network of these new antennas. We have evaluated the instrumental stability at the 1 mm level, which is an important step toward the goal of global geodesy at this level.Key Points: Baseline vectors between legacy antennas and co‐located VGOS antennas are obtained from phase delays with the highest possible precision. Sources of error in short‐baseline observations are investigated at the 1 mm level in terms of their potential impacts.Academy of Finland http://dx.doi.org/10.13039/501100002341https://ivscc.gsfc.nasa.gov/productsdata/data.htmlhttps://sourceforge.net/projects/nusolve
    corecore