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C1

Introduction

Black holes are among the most fascinating objects in the universe - in any case intriguing
enough for me so as to become an astronomer. It is today generally accepted that black holes are
located in the center of most galaxies. One particular species of galaxies is that of the so-called
Active Galactic Nuclei (AGN) which display energetic phenomena in their central region that
are comparable to or even exceed the energy emitted by all of the galaxies’ stars by orders of
magnitude. The first group of AGN with high central surface brightness, that was observed in
the optical in the early 1940s by Carl Seyfert, had not been considered significant until 1955
when the AGN were identified as radio sources. In the late 1950s the first radio surveys were
performed which enabled an identification of the strongest radio sources with their optical
counterparts which were usually galaxies, but sometimes appeared to be star-like objects. This
consequently led to the term quasi-stellar radio source or quasi-stellar object which later turned
into ’quasar’ or ’QSO’. Only the discovery of Schmidt (1963), that the optical spectrum of the
star-like object 3C273 is in fact highly redshifted and hence of cosmological origin, enabled an
efficient identification of quasars.

In order to put this thesis into a larger context, I shall firstgive an introduction to the
large variety of AGN and part of their characteristics on which this work is based.

1.1 Active Galactic Nuclei and Relativistic Jets

The radio structure of AGN can generally be referred to as either extended, i.e. spatially resolved,
or compact, i.e. unresolved at the corresponding observingfrequency. In the radio bands, the
extended structure is usually double in nature showing two ’lobes’ on either side of the central
source. These structures can reach up to megaparsec dimensions. The lobes are connected to
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the central region via relativistic jets, i.e. plasma streams which seem to transport particles and
energy to the outer lobes with relativistic speeds while emitting synchrotron radiation (e.g.,
Begelman et al. 1984, see also 2.3.1).

Up to the present, numerous work has been done on the structural properties of AGN and
their evolution. But very important questions, such as the detailed process of jet formation,
still remain unanswered. However, the knowledge about whatis going on in the small central
regions of those active galaxies has improved considerablyduring the past decades. Today we
are familiar with a large variety of subclasses of AGN, one ofwhich areSeyfert Galaxies,
named after their above mentioned discoverer. Seyfert Galaxies are lower-luminosity AGN
with a quasar-like nucleus, the host galaxy still being clearly detectable in the optical bands.
They can be divided into two subclasses:Seyfert type 1galaxies show narrow emission lines
referring to low-density ionised gas as well as broad emission lines which can be attributed to
high-density gas. InSeyfert type 2galaxies, only the narrow lines are present. In polarised
light, however, also the broad lines become visible. It is not jet fully understood what causes
the difference between Seyfert type 1 and type 2 galaxies. One hypothesis says that the two
types are intrinsically the same exhibiting both broad and narrow emission lines, however,
Seyfert 2s are probably observed from a different viewing angle such that the broad line region
is hidden by a circumnuclear torus. The radio luminosity of Seyfert Galaxies is only moderate
compared to other more active AGN.Quasars1, on the other hand, the most distant objects
in the universe, are most luminous at every wavelength at which they have been observed,
with bolometric luminosities in the range of 1045 to more than 1048ergs s−1. They display
time-variable continuum flux and broad emission lines and often a large ultraviolet (UV) flux
specified as UV excess. Their high redshift indicates that quasars emerged in an early phase of
the universe which makes them an important cosmological probe. One distinguishes between
radio-loud and radio-quiet quasars, the latter originallyreferred to as QSOs (quasi-stellar
object). Today the terms ’quasar’ and QSO are virtually equivalent.

Radio Galaxies are usually found to be giant ellipticals showing million times brighter
radio luminosity than normal galaxies, although some of thebrightest radio galaxies host in fact
quasar-like nuclei. The bulk radio emission is concentrated in the core and the afore mentioned
radio lobes. Fanaroff & Riley (1974) classified the radio galaxies according to their morphology
into FRI sources with weaker radio flux being brightest in the center,andFRII sources which
have well-defined jets and are more luminous and limb-brightened, i.e. they show hot spots
in their radio lobes. The transition specific luminosity between the two classes is defined
as Lν(1.4GHz)≃ 1032 erg s−1 Hz−1 (Bridle & Perley 1984). Furthermore, we can distinguish
between broad-line radio galaxies (BLRG ) and narrow-line radio galaxies (NLRG ) as the

1The term ’quasar’ originates from their appearance as a quasi-stellar radio source.
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radio-loud analogs to Seyfert galaxies of type 1 and 2.

The main target of this work, 0917+624, belongs to the class ofBlazars, which subsume
a group of radio-loud, core-dominated flat-spectrum2 radio sources consisting of BL Lac
objects, named after the prototype BL Lacertae, and the so-called optically violent variable
(OVV) quasars. They have in common that they are extremely variable on all time scales
and in all bands of the electromagnetic spectrum and tend to have high polarisation of up to
a few percent (in contrast to<1% for most other AGN). Besides, their jet is pointing almost
directly towards us enclosing only a small angle with the line of sight. Aside from that, BL Lac
objects do have no or only weak spectral line emission and absorption features compared to
the continuum, which often impedes a redshift detection (usually z ≤ 2), whereas OVVs have
broad emission lines as long as the continuum is not at its brightest (z ≥ 0.5). It has become
generally accepted that within the blazar class highly variable quasars are related to intrinsically
powerful FRII radio galaxies, and BL Lac objects are relatedto lower luminosity FRI galaxies.
This distinction explains the different emission line properties.

The above described types are the most common classes. Sincethey are partly divided
into subclasses according to their overall spectral energydistribution or emission line types, it
has been found a more general distinction betweentype 1 AGN (showing both broad and narrow
emission lines) andtype 2 AGN (only narrow emission lines), andradio-quiet andradio-loud
objects. The term ’radio-loud’ refers to the ratio R of radioto optical emission at 6 cm and
4400 Å and is generally in the range 10–1000 for radio-loud objects (Kellermann et al. 1989).

1.1.1 Unified Scheme

One of the main achievements in AGN research is the idea abouta unification of the various
different types of AGN, the characteristics of which I will shortly summarise in the following.
Since it is assumed that the above described properties of AGN are mainly depending on the
orientation towards the observer and are less due to real physical differences like, e.g., the
luminosity, it was attempted to find a kind of morphological model which is able to describe
AGN with as few parameters as possible (see, e.g., Urry 2004,Peterson 1997).

The black-hole paradigm states that AGN host a ”central engine” consisting of a supermassive
black hole (107-1010M⊙) encircled by an accretion disk, in which gravitational potential energy
is converted into radiation (ranging from radio to X-ray). Surrounding this is the broad-line
region (BLR), consisting of high velocity gas, followed by the lower density and lower velocity
gas of the narrow-line region (NLR). Around the unresolved components of an AGN there
lies an optically thick obscuring torus that permits the AGNradiation to escape only along the

2Source flux density S depends on observing frequency viaS ν ∝ να with power-law indexα ≥ −0.5



4 1. Introduction

Figure 1.1: Schematic of an AGN according to Urry & Padovani (1995); according to the orientation, this

would be a radio-loud AGN.

torus axis, which leads to observable large-scale ionisation cones. Relativistic jets, formed
within .100 Schwarzschild radii of the black hole (most likely due tothe existence of a toroidal
magnetic field), extend outwards along this torus axis for tens of kpc up to Mpc in some
cases (see Figure 1.1 for a schematic illustration). The alignment of the torus/jet axes seems
to be independent from the rotation axis of the host galaxy (see, e.g., Schmitt et al. 2002 and
references therein).

Apart from intrinsic variations in the black hole mass, size, density, luminosity, etc., the
above basic description is apparently valid for all AGN - with an exception being the relativistic
jets. These are found in most radio-loud AGN but with differences concerning their kinetic
powers. In contrast to the powerful radio jets that expand far into the intergalactic medium,
weaker jets deccelerate relatively close to the central engine, which can be even within the host
galaxy. It is not yet well understood why only 5-10% of the AGNare radio-loud.

Local obscuration has been studied by Antonucci & Miller (1985), who found that the
distinction between type 1 and type 2 AGN seems mainly to be due to the orientation with
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respect to the line of sight, at least locally. Another question is, though, why the fraction of type
2 AGN found at higher redshifts (z>2) is much less than that of type 1 AGN.

It appears that there are in fact two separate unification models by orientation, one is
based mainly on optical observations describing the presence or absence of the BLR depending
on the direction of the obscuring torus, the other is mainly based on radio data explaining
the core-dominated (flat-spectrum) versus lobe-dominated(steep-spectrum) radio-loud AGN
according to the alignment of the jet axis with respect to theline of sight.

1.1.2 Galactic Evolution

From a cosmological viewpoint, AGN belong to earlier statesof cosmological galaxy formation,
thus being far away but still observable due to their high nuclear activities. The observed
redshifts range from z= 0.0018 for the radio galaxy Centaurus A3 (derived from radial velocity
measurements, Graham 1978) to the currently farthest knownz = 6.43 for the quasar CFHQS
J2329-0301 (Willott et al. 2007).

Remains the question, where these supermassive black holes(SMBH), that are supposed
to constitute the central engines of AGN, stem from and how they could develop in such a
– cosmologically – comparatively short time. One assumption is that SMBHs are formed
during mergers of two (or more) galaxies (see, e.g., Schweizer 1986; Barnes & Hernquist
1992; Kauffmann & Haehnelt 2000). Collisions and mergers are thought tobe responsible for
various phenomena such as the triggering of star formation and the fueling of nuclear activity
in quasars, or the formation of disk galaxies (Robertson et al. 2006). Galaxy encounters show
higher activities in the UV, the near-infrared, in optical emission line strength and in radio
emission; besides observations indicate that different types of AGN like Seyfert galaxies or
quasars sometimes exhibit signs of past mergers (see, e.g.,Sánchez et al. 2004 and references
therein).

Ultraluminous infrared galaxies (ULIRGs), a class of objects with luminosities above 1012L⊙
in the Far Infrared, are known to be interacting or merging systems revealing intense starburst
processes (Sanders et al. 1988b; Sanders & Mirabel 1996). Furthermore, a significant fraction
of the ULIRGs also shows evidence for AGN activity (Genzel etal. 1998). These ultraluminous
infrared galaxies may represent an important stage in the formation of quasi-stellar objects and
powerful radio galaxies: ULIRGs are thought be the progenitors of AGN. Sanders et al. (1988a)
suggested a scenario for the formation of ULIRGs through themerger or strong interaction of
two molecular gas-rich spirals. Molecular gas clouds are funneled towards the merger nucleus,

3which is, however, not indicative for its distance due to theproximity of Cen A and the significant superposition
of the proper motion of the galaxy within its group and its cosmological velocity
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which could be responsible for both nuclear starburst and AGN activity. In a transition phase the
AGN might be obscured by the surrounding star forming region(see, e.g., Komossa et al. 2003),
becoming visible later as an optical quasar after the starburst activities have begun to fade. Even
though for QSOs the observational results are not coherent,it seems likely that at least part of
the AGN developes from a preceding ULIRG which has been formed in a merger of galaxies
(Canalizo & Stockton 2001).

The coalescence of SMBH binaries is supposed to be one of the primary sources of very
low frequency gravitational waves (see, e.g., Volonteri etal. 2004; Wen et al. 2008), which is the
main target of the new generation Laser Interferometer Space Antenna (LISA - planned to be
launched around 2019-2020) and thus makes these objects perfectly suitable for future studies.

1.2 Variability in AGN

The flux density variation of compact extragalactic radio sources is known to occur on long
(years to decades) as well as on short (.weeks) time scales over the whole frequency band not
only in the continuum but also in the broad emission lines andin polarised light. Optical contin-
uum variability was already observed before the redshifts of the identified optical counterparts
were fully understood (Matthews & Sandage 1963). The variations were found to be on the
order of 0.3-0.5 mag over time scales of a few months. But somesources showed even faster
variations on time scales of only a few hours. Due to causality arguments that the speed of light
is limited, it was concluded that much of the radiation comesfrom a region of the order of light
hours (light travel time argument). This, however, impliesthat the size of the emitting region
should be as small as the Solar System radiating as much energy as an entire galaxy!

A further probe of the innermost regions of the AGN accretiondisc are the strong vari-
abilities at X-ray energies on time scales of a few hundred to107 seconds (see McHardy
1988). On longer time scales (days or longer), there appearsto be a correlation between X-ray
continuum and UV/optical variations being simultaneous to within a few days or less. The IR
continuum shows the same variations as the UV/optical continuum but with a significant time
delay. This indicates, that the IR emission comes from dust regions far away from the central
engine, being of thermal nature.

In the 1960s two astronomers were independently looking forvariability in the radio
regime, when they both discovered longterm variations on a time scale of 100 days (Sholomitsky
1965) and 1000 days (Dent 1965), respectively, which suggested small source sizes. In the
meantime, even faster variations have been found. One distinguishes between different types
of variability (see, e.g., Wagner & Witzel 1995), among themis flickering which is a synonym
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for a change of the flux density with small amplitudes on a timescale of a few days to weeks
(Heeschen 1984) and could be explained by Refractive Interstellar Scintillation (RISS - see
Chapter 2.2, Heeschen & Rickett 1987). The variability type, which is subject of this thesis, is
calledIntraday Variability (IDV) and describes variations on time scales ofhours to days. The
nature of these variations is still not clear and has been controversially discussed during the
years since its discovery in 1986 (Witzel et al. 1986; Heeschen et al. 1987). A more detailed
description of the phenomenon of IDV and its physical interpretation is given in Chapter 2.2.

Variability in blazars is an important probe for the origin of the continuum radiation and
the underlying physical processes. The strength of the continuum variability is correlated with
the apparent luminosity and the degree of polarisation, which strongly favours a non-thermal
origin (Edelson 1992). Moreover, the observation of variability on short time scales classifies a
source as ultra-compact and most energetic. Hence, variability studies enable to find the smallest
resolvable objects in our universe. This was one of the main reasons for the development
of Very-Long-Baseline Interferometry (VLBI), a high-resolution observing technique which
provides angular resolution down to the submilliarcsecondlevel. VLBI uses the principle of
aperture synthesis (see Ryle & Hewish 1960) which is a type ofinterferometry that combines
signals from multiple telescopes spread over a large area toproduce images having the same
angular resolution as an instrument with the size of this area. Today, numerous VLBI facil-
ities operate worldwide such as the Very Long Baseline Arrayallocated across the US (see
Figure 1.2), with which the larger part of the observations has been performed that are part of
this thesis, the European VLBI Network (EVN) or the Global mm-VLBI Array (operating at a
wavelength of 3 mm), which combines VLBA and EVN telescopes and thus can provide high
angular resolution (up to 50 micro-arcseconds) and high dynamic range (of a few hundred)
images of compact radio sources.

For the future, even larger instruments with increased sensitivity are planned or already
under construction such as the Low Frequency Array (LOFAR),the Atacama Large Millime-
ter/submillimeter Array (ALMA), the VLBI Space Observatory Programme 2 (VSOP-2) or the
Square Kilometer Array (SKA). This next generation of telescopes should be able to see even
further back in time to probe the early Universe.

1.3 Objective and Structure of this Thesis

Working as a researcher in natural science is by and large comparable to working on a jigsaw.
Each scientist tries to add a small piece of the puzzle to the big picture. The objective of this
thesis is to add another portion to the understanding of the IDV phenomenon as well as having
a closer look to the kinematic and polarimetric behaviour ofAGNs. This is done by means of a
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Figure 1.2: Montage of all VLBA telescopes; Image courtesy of NRAO/AUI and Earth image courtesy

of the SeaWiFS Project NASA/GSFC and ORBIMAGE.

detailed inverstigation of the intraday variable quasar S40917+624 (furthermore referred to as
0917+624).

0917+624 was known to show prominent IDV behaviour from the time itwas first stud-
ied as a short-time variable source by Heeschen et al. (1987). Meanwhile, however, its
variability ceased and yet the reason for that is not clear (Quirrenbach et al. 1989b; Kraus et al.
1999). The working hypothesis for the observations, on which the main part of this thesis is
based, was that structural changes of the variable part of the source have caused the variability
decline. These changes could be revealed using high resolution observing techniques, namely
VLBI. As there have been numerous explanations of VLBI principles and the required data
analysis steps in the past, I will not go into detail here but refer to more precise descriptions
where appropriate. Details can be found, e.g., in Thompson et al. (2001) or in the A.S.P.
Conference Series Volume 180 (edited by Taylor et al. 1999),and an overview concerning the
data reduction has been given in my diploma thesis (Friedrichs 2003).
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The following chapters are going to give an introduction to the physical processes that
are associated with IDV and describe the IDV phenomenon and its possible causes as well as the
currently prevailing doctrine. In Chapter 3, I will give a more detailed introduction to the quasar
0917+624. Chapter 4 reports about flux density observations of thesource with the Effelsberg
100m radio telescope. The subsequent chapters present the results of the VLBI observations
of 0917+624, which were analysed in the scope of this work. I shall start with the source
kinematics on VLBI scales (Chapter 5) and introduce a possible binary black hole scenario
for 0917+624 based on the kinematics of one specific trajectory. In Chapter 6, the results of
the polarimetry analysis are described. Each chapter contains a short introduction to the data
analysis. Chapter 7 will join the results from single dish and VLBI observations and give an
interpretation in terms of Intraday Variability. The thesis concludes with a final summary in
Chapter 8.
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Theoretical Basics

2.1 Compact Radio Sources

The radio spectra of compact sources in the center of AGN are flat, i.e., the broad-band SED is
defined asS ν ∝ να with power-law indexα ≥ −0.5. Hence, the radiation is usually expected
to come from several emission regions of non-thermal synchrotron emission (see Chapter 2.3.1
for a more detailed description of the synchrotron spectrum). The spectral indices are close to
flat but gradually steeper at higher frequencies with different regions becoming optically thick
at different wavelengths because of radial gradients in the magnetic field and particle density
within the source. Flat spectra are regarded as a superposition of several structural components
(Kellermann & Pauliny-Toth 1969). In the radio unification scheme, there are many indepen-
dent observational evidences for relativistic motion in the cores of flat-spectrum radio-sources
because of high brightness temperatures, superluminal motion on parsec scales, predominant
one-sided jets due to Doppler-boosting, or the stronger Faraday depolarisation on the counter-jet
side. These points will each be briefly addressed to in the following sections.

2.1.1 Brightness Temperature

In the previous chapter, the small source sizes were alreadymentioned, which were derived
using causality and the light travel time argument. The luminosity of these small regions is
therefore extremely high. This leads to high brightness temperatures and photon densities being
the main ingredients of the underlying physics.

The emissivity of a radio source at a certain frequencyν can be derived from its flux
density Sν and the angular source sizeθ. The blackbody equivalent temperature, i.e. the
temperature the source would have if it was considered to radiate like a blackbody, is called
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brightness temperatureTB. In the Rayleigh-Jeans approximation, the relation between flux
density and brightness temperature is given by

S =
2k
λ2

"
TB(θ, ϕ)dΩ (2.1)

with Boltzmann constantk and wavelengthλ. In convenient units and for a Gaussian brightness
distribution this gives

TB = 1.22 · 1012 S
θ2ν2

K (2.2)

whereS ν is given in Jy,θ in mas and the frequencyν in GHz. The brightness temperature is
equal to the kinetic temperature for an optically thick thermal source (TB is less than kinetic
temperature in the optically thin region). There is an upperlimit for the brightness temperature
of 1012K, the so-called inverse-Compton (IC) limit, for the following reason: ifTB rises –
i.e., the radiation energy density is increased by synchrotron radiation – until it exceeds the
energy density of the magnetic field, the electrons start to inverse-Compton scatter up their own
synchrotron photons (synchrotron self-Compton - SSC) to the X-ray andγ-ray regime. This
runaway process is called the Compton catastrophe and it provides a fast cooling of the plasma
to a point where the IC losses are of the same order as the synchrotron losses, which limits the
brightness temperature toTB ∼ 1012 K (Kellermann & Pauliny-Toth 1969).

Variability studies have revealed that the IC limit appearsto be violated in IDV blazar
cores if one assumes a source intrinsic origin of the variability. For instance, Romero et al.
(1994) refer an extreme case of brightness temperature in the strongly variable IDV source PKS
0537−411 of ∼ 1021K, the same was found for PKS 0405−385 by Kedziora-Chudczer et al.
(1997). Tyul’Bashev (2005) reports about brightness temperatures in four IDV sources of the
order of several 1012 to 1015K (in the case of 0917+624). Even higher values of 1016 to 1018K
for 0917+624 were found by Quirrenbach et al. (1989b) and Kraus et al. (1999). This discloses
severe problems in the theoretical interpretation of short-time variability. Considerations of how
to overcome this brightness temperature problem will be explicated in the following as well as
in section 2.2.

2.1.2 Superluminal Motion, Relativistic Beaming and Doppler Boosting

Since flat spectra and fast flux density variability of compact radio sources are indicative of small
source sizes, these sources always have been subject to numerous VLBI observations. In order
to explain the high apparent brightness temperatures whichhave been deduced from variabil-
ity studies, Rees (1967) theoretically predicted superluminal motion where the bulk relativistic
motion in a jet displays a transversal velocity∼ γc towards an observer1 in excess of the speed

1γ =
√

1− β2 is the Lorentz factor.
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of light. This prediction could be verified observationallylater by means of VLBI (e.g., Cohen
et al. 1979). Sources showing this property usually have a one-sided jet structure and the rela-
tivistic jet points towards the observer at a small angle to the line of sight (Blandford & Königl
1979). The plasma velocities within the jet typically rangefrom 1 to 40c (see, e.g., Zensus &
Pearson 1987; Kellermann et al. 2004; Jorstad et al. 2005; Britzen et al. 2008). The spectra of
many flat-spectrum sources suggest that they are composed ofseveral components which have
different turnover frequencies. If one of these components is moving down the jet with a velocity
v and at an angleθ to the line of sight, it has a transversally directed velocity componentvapp=

βappc which is related to the true velocityv = βc by

βapp=
β sinθ

1− β cosθ
(2.3)

A maximum value ofβapp is obtained for cosθ = γ−1 and thus sinθ =
√

1− β2 = γ−1. This
maximum excesses the speed of light forv = c3√

2
(e.g., Eckart 1983). From the apparent speed,

one can derive a minimum value for the Lorentz factor:γmin =

√

1+ β2
app.

In a relativistically approaching source the observed flux density S is an amplification of
the true flux densityS 0 via

S = S 0δ
3−α (2.4)

whereδ = [γ(1−β cosθ)]−1 is the Doppler factor andα the spectral index. This so-called Doppler
boosting applies only for a single component. For a continuous jet, the exponent reduces to
(2−α) for geometrical reasons (Scheuer & Readhead 1979). The fluxdensity of the approaching
components is amplified, whereas the flux density of the receding components is attenuated. The
flux density ratio between jet (S 1) and counter-jet (S 2) can be determined as

R =
S 1

S 2
=

(

1+ β cosθ
1− β cosθ

)(2−α)

(2.5)

Assuming small angles to the line of sight, the estimation ofDoppler factors usually yields
values of up to 20 (Ghisellini et al. 1993). For small viewingangles (θ → 0), the Doppler factor
approachesδmax = 2γ.

2.2 Intraday Variable Sources

In the previous chapter, the variability of AGN has already been addressed. Flux density flares
on time scales of weeks to months over the whole continuum have been observed, which are
often followed by the ejection of new VLBI components in the core region of these sources.
Relativistic shocks emanating from the core and propagating down the jet are thought to be
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responsible for such kinds of observations. While in the radio regime low frequency variability
(LFV - below 1 GHz) and flickering can be explained by scattering processes in the interstellar
medium (see, e.g., Altschuler 1989; Bondi et al. 1996 for LFV, Heeschen & Rickett 1987 for
flickering), the question about the origin of the IDV seen in the cm-radio bands is still not solved
unambiguously. The models that are under consideration areof either source-intrinsic or extrinsic
nature and will be briefly presented in the following (see also Wagner & Witzel (1995) for a
review; Cimò 2003; Fuhrmann 2004; Marchili 2009).

2.2.1 The IDV Phenomenon

Variability - if assumed to be intrinsic to the observed source - suggests the size of the com-
pact component that is responsible for the variations due tothe light travel time argument (see
Chapter 1.2). The spatial resolution of the variable sourceis restricted tor ≤ c · ∆t with ∆t the
variability time scale. As the sources are redshifted, the time scale of the source is related to the
observer’s time scale via∆tsource= ∆tobs/(1+ z). The variability time scale is defined by means
of the flux densityS and its time derivative via

∆tvar =
S

| ∆S
∆tobs
|
δ

1+ z
(2.6)

(see, e.g. Marscher & Gear 1985; Rybicki & Lightman 1979). The IDV behaviour is classified
according to the variability time scalet into long-term variabletype I (t ≫ 50 hours in the
observer’s frame) and short-term variabletype II (t < 50 hours) sources (Heeschen et al. 1987).
The first order structure functionS F(τ) is used to differ between the two types (Simonetti et al.
1985).

IDV is mainly observable in compact, core dominated flat-spectrum radio sources that
contain∼ 80% of their total flux in the central unresolved region. Observations of a large source
sample taken from the S5-radio catalogue (Kühr et al. 1981a,b) revealed that about 30% of
compact blazar cores show type II IDV (e.g., Quirrenbach et al. 1992, Wagner & Witzel 1995,
Kedziora-Chudczer et al. 2001; Lovell et al. 2003, 2008), one of which is the quasar 0917+624
(z=1.446), that is subject of this thesis. Compactness and small viewing angles seem crucial
ingrediences in order to show IDV behaviour.

The maximum angular extend of a variable component can be derived in terms of the
variability duration∆t via

θ =
(1+ z)2

DL
c∆t (2.7)

whereDL is the luminosity distance for flat cosmologies with cosmological constant according
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to Pen (1999), equation (1). Together with equation 2.2 one can derive a variability brightness
temperature for this variable component which displays a flux variation∆S using

TB = 4.5 · 1010∆S

(

λDL

∆t(1+ z)2

)2

K (2.8)

with flux density∆S given in Jy, wavelengthλ in cm, luminosity distanceDL in Mpc, and time
scale∆t in days.

Radio IDV is characterised by pronounced variations in total as well as in linearly po-
larised flux density. The variability is frequency and source dependent. An important measure
to describe the source variability is the so-called modulation indexm[%] = 100 · σS

<S> , where
σS is the rms flux density variation and<S> the time-averaged flux density. Variations in
total flux density usually range between 5-10% (e.g., Quirrenbach et al. 2000; Kraus et al.
2003), whereas variability in linear polarisation is usually stronger and faster by up to a factor
of two. Total and polarised flux density variations often occur either correlated, as is the
case for 0716+714, or anti-correlated as in the case of 0917+624. The variability timescale
has been found to appear as quasi-periodic oscillations occuring at constant amplitudes,
e.g., in 0917+624 and 0716+714 (Wagner & Witzel 1995), but also seems to vary as has
been observed, e.g., in 0716+714 (Quirrenbach et al. 1991) when a transition from a daily
to a weekly variability mode had occured simultaneously in the radio and optical frequency band.

The most ’extreme’ cases of IDV sources known today are PKS 0405-385, PKS 1257-326
and J1819+384 (see Kedziora-Chudczer et al. 1997; Bignall et al. 2003;Dennett-Thorpe &
de Bruyn 2000). Their very rapid (∼ 0.5 hours) and pronounced variations suggest that these
objects might perhaps form an entirely new class of IDV sources. It is, though, not yet clear
whether the cause of this extraordinary variability is the same as for the classical IDV sources.

Variations of the polarisation angle are of the order of a fewto a few ten degrees (e.g.,
Kraus et al. 2003). However, polarisation angle swings of 180◦ have also been observed in
the case of 0917+624 (Quirrenbach et al. 1989b) or 1150+81 (Kochenov & Gabuzda 1999).
A possibility to explain polarisation IDV is the assumptionthat the observed radio source
exhibits a multiple component structure in its core region.The sub-components seem to be of
different compactness, polarisation intensity and orientation of the polarisation angle. This is in
good agreement with results from VLBI polarimetry observations. In contrast to flux density
variations, polarisation IDV could be directly related to structural changes in the source on
VLBI-scales (see, e.g., Gabuzda et al. 2000b,c; Bach 2004).However, the component sizes
suggested from IDV timescales are much smaller than the angular resolution that can presently
be achieved with ground and space-based VLBI observations (<0.2 mas). Daily polarisation
variations have been reported in the VLBI structure of several sources also in the VLBI jet
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(0716+714, Gabuzda et al. 2000a), suggesting that polarization IDV occurs frequently in at least
some IDV sources.

2.2.2 Intrinsic Explanations

As already addressed in section 2.1.2, therelativistic jet model was introduced in order to ex-
plain the high brightness temperatures which were derived from variability studies. In this model,
knots are moving relativistically in a collimated plasma flow where synchrotron radiation is
beamed on small angles to the line of sight towards an observer (Blandford et al. 1977). This im-
plies that the synchrotron radiation gets Doppler boosted,the observed frequency appears higher
and the variability time scale shorter (see above). The sameis valid for the observed brightness
temperature. It is related to the true brightness temperature via

T obs
B ≃

( D
1+ z

)3

· TB (2.9)

Based on the violation of the IC limit, where apparent brightness temperatures up to 1021K
have been deduced from variability studies, it becomes evident that Doppler factors in the range
of 100 - 1000 are needed in order to reduce the brightness temperature below the IC limit of
1012K. A lower limit on the brightness temperature in the range of∼ 1011K, as was derived
from equipartition arguments by Readhead (1994), would require even higher Doppler factors.
However, even the fastest apparent speeds observed as of today (βapp ∼ 40c, Marscher et al.
2000) only hold for moderate Doppler factors. Since Dopplerboosting is not sufficient in order
to explain the occurence of extremely high apparent brightness temperatures in variable sources,
further theories have been developed to overcome this problem.

Shock-in-jet models describe the afore mentioned knots in terms of a shock wave pass-
ing through an adiabatic, conical, relativistic jet (e.g.,Blandford et al. 1977; Marscher 1978).
The flux density increases at times when the relativistically expanding jet collides with inho-
mogeneities of the surrounding medium. The evolution of theemitted synchrotron spectrum
follows three stages due to (i) Compton, (ii) synchrotron and (iii) adiabatic (non-radiative)
losses. In the first two stages the flux density is expected to increase, whereas adiabatic losses
become dominant in the last stage and the flux density decays (Marscher & Gear 1985). The
outburst is expected to occur at higher frequencies first. The shock-in-jet models are successful
in explaining the different timescales and spectral evolution of observed outbursts. Besides
they are able to interpret polarised flux density variationsas due to the compression of random
magnetic fields in the jet caused by the propagation of the shock wave (e.g., Hughes et al. 1985).
The often observed faster and stronger variability in polarised flux density compared to total
flux density is attributed to two (or more) closely separatedshock waves (Hughes et al. 1989).
Furthermore, rapid variations of the polarisation angle suggest a helical structure of the magnetic
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field where the orientation of the shock wave changes with respect to the jet direction (Königl &
Choudhuri 1985).

In order to explain IDV in terms of a shock-in-jet model, verythin shocks are required to
explain flux density variations on timescales of one day. This, however, implies negligible
radiation losses in contrast to the existing radiation losses in the radio regime (Marscher 1992).

The geometry of the jets also can play an important role, which is explicated in several
geometrical models. For instance, Camenzind & Krockenberger (1992) introducethe so-called
lighthouse effect where non-axisymmetric bubbles of jet plasma are propagating along relativis-
tic magnetised jets. Taking into account the rapid rotationof plasma near a rotating black hole,
they relate the observed quasi-periodic outbursts to the fundamental period of the rotating jet
plasma provided the jet is well-colimated with an opening angle≤ 0.1◦.

The lighthouse effect in combination with the shock-in-jet model is used by Qian et al.
(1991) in order to explain the fast variations observed in 0917+624. Gopal-Krishna & Wiita
(1992) suggest a model where the direction of the shocks propagating down relativistic jets
slightly changes. This simple model can reproduce the observed (anti-)correlations between the
varying total and polarized flux densities as well as the timelags reported between the extrema
of these quantities.

The high brightness temperature problem could also be overcome by adopting a different
radiation mechanism:coherentanisotropicemission(e.g., Melrose 1991) which could replace
the prevailing picture of incoherent radiation in synchrotron jets. Coherent emission can be
produced by the scattering of energetic electron streams inregions of plasma turbulence as
is prevailing in relativistic jets. The mechanism can be a lot more efficient than synchrotron
radiation (e.g., Weatherall & Benford 1991). For instance,Lesch & Pohl (1992) suggested a
model, in which electron beams emanate from magnetic reconnection zones above the accretion
disk which are accelerated to relativistic energies. The electron beams cause instabilities
in the plasma and subsequently excite Langmuir waves. This leads to coherent emission of
electromagnetic waves by inverse Compton scattering.

Although laboratory experiments have shown that coherent emission is able to enhance
synchrotron emission by factors of∼ 106 (e.g., Benford & Tzach 2000), there is no evidence that
this mechanism allows to explain all IDV related phenomena,let alone whether it operates in
AGN at all. Besides, it is not understood how the large scale coherent emission can be sustained
that is required for distant extragalactic sources to have asignificant effect on the total flux
density. On the other hand, recent detections of circular polarisation (e.g., Aller et al. 2003;
Macquart 2003) might be interpreted as a confirmation of the existence of coherent emission
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in AGN since it was predicted to occur for coherent mechanisms. It was, e.g., suggested by
Begelman et al. (2005) that circular polarisation (CP) could be caused by cyclotron maser
emission from relativistic jets.

2.2.3 Extrinsic Explanations

The radiation emitted by compact extragalactic sources propagates through the interstellar
medium (ISM) on its way to the observer and is exposed to turbulences or inhomogeneities
in the electron density distribution of the ISM. To simplifymatters, a thin layer in the ISM is
considered as a so-called scattering screen. If the screen is moving with respect to the observer,
the phase of an incoming wave is changed due to fluctuation of the refraction index. This leads
to spatial variations in the observed flux density. The mechanism is comparable to the twin-
kling of starlight due to scattering in the atmosphere of theEarth and is known asInterstellar
Scintillation (ISS). One discriminates between strong and weak ISS depending on the Fresnel
scale

rF =

√

λD
2π

(2.10)

whereλ is the wavelength of the incoming radiation andD is the distance between screen and
observer (Narayan 1992). The diffractive scale

rdiff =
λ

2πθscatt
(2.11)

is the transverse separation over which the phase fluctuations are coherent and considered to
be constant within 1 rad, whereθscatt is the angular size associated with the electron density
distribution that causes the scattering. A source only scintillates if its apparent size is smaller
thanθscatt. For weak interstellar scintillation (WISS) rdiff ≫ rF; and the timescale of WISS is
consistent with the Fresnel timescaletF = rF/v with v the screen velocity relative to the observer.

With increasing wavelengthλ or distance D, one approaches the transition between weak
andstrong interstellar scintillation where the diffractive and Fresnel scales are approximately
the same. This transition is expected to occur between 1 and 5GHz (e.g., Walker 1998). A
further length scale is introduced in the strong scatteringregime, the refractive scale

rref =
r2

F

rdiff
≫ rdiff. (2.12)

If a source size is smaller thanrdiff andrref, rdiff is dominating which is denoted asdiffractive
interstellar scintillation (DISS) with the related timescaletdiff = rdiff/v. DISS until recently
had only been observed for pulsars, i.e. very small and point-like sources. In contrast IDV
sources, although being very compact, are slightly extended and their angular extend merely
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has to be smaller thanθscatt = rref/D with the related timescaletref = rref/v. This is referred
to asrefractive interstellar scintillation (RISS - see Figure 2.1 for an illustration of the strong
scintillation length scales). However, Macquart et al. (2003) observed short-time variations in
the 21 cm lightcurves of the quasar J1819+385 which they interpret in terms of DISS from an
extremely compact region of the source.

rdiff

rQuelle

F

r Quelle

r refr~

r  >> rF diff

Figure 2.1: Diagram of the scintillation scales; DISS appears in the regime wherersource≪ rdiff , RISS

occurs forrdiff < rsource< rref (Friedrichs 2003).

If the scattering screen is located beyond the solar system and for observational frequency
.1 GHz, the source size is always much larger than the Fresnel scale and the amplitude of the
variations is quenched. The typical variability timescaleis stretched by the large size of the
source (Beckert et al. 2002).

Since the angular size of variable sources is typically smaller than the Fresnel scale, RISS is
certainly causing short-time variability in the source flux. Moreover, polarisation variability can
also be interpreted in terms of interstellar scintillation(Rickett 2001; Rickett et al. 2002a,b; Qian
et al. 2002). Even the 180◦-swing of the polarisation angle observed in some sources could be ex-
plained by means of multi-component models within the ISS theory (e.g., Qian et al. 2006, 2007).

Within the RISS scenario, theannual modulation model describes a seasonal change of
the variability timescale due to the Earth’s orbital motionaround the sun (Bondi et al. 1994).
The modulation is caused by changes of the transverse velocity of the Earth with respect to the
scattering medium and depends on three different parameters: the orbital motion of the Earth,
the Sun’s motion towards the solar Apex and the motion of the scattering screen relative to the
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Local Standard of Rest (LSR). The annual modulation scenario could successfully be applied
for several IDV sources already, e.g., for J1819+3845 (Dennett-Thorpe & de Bruyn 2003), PKS
1257-326 (Bignall et al. 2003), or 1128+592 (Gabányi et al. 2007).

It was also proposed thatmicrolensing could initiate short-time variability. The deflec-
tion of the light of extragalactic objects caused by the gravitational field of a foreground galaxy
is known as gravitational lensing. Chang & Refsdal (1979) proposed that this effect could also be
due to a single star from a foreground galaxy close to the lineof sight. The amplification factor
of the lense could vary because of the relative movement between source, star and observer
which consequently would lead to flux density variations. There are, however, several arguments
against this scenario (see, e.g., Wagner 1992): for instance, the variability timescale defined by
microlensing requires relativistic velocities for the star transverse to the line of sight which is in
contrast to the observed velocities of stars. Besides, microlensing effects are achromatic, i.e.,
the caused variability should be frequency-independent which is, however, not the case.

Interstellar scintillation in the meantime has become the broadly accepted predominant
explanation of the IDV phenomenon. It is for example regarded to be the main cause of the
extreme IDV cases previously described. Owing to the fact that IDV sources are found to be very
small in size (typically smaller than the Fresnel scale), itis almost certain that they do vary due
to ISS. But some effects remain that cannot simply be explained by means of ISS. In particular,
scattering in the ISM cannot account for the quasi-periodicity that has been observed in some
sources. The radio-optical correlation in the variabilitypattern of 0716+714 and 0954+658
(Wagner et al. 1996, 1993) is not explicable in terms of ISS either, as towards higher frequencies
(optical regime) ISS is virtually non-existent. The observed brightness temperatures which
have been derived for IDV sources from ISS theory are somewhat lower compared to intrinsic
explanation models, and scale only linearly with the Doppler factor. Nevertheless, brightness
temperatures in excess of the IC limit (∼ 1013 - 1014) continue to be observed within the ISS
scenario (e.g., Rickett et al. 2002b). Therefore, a high Doppler boosting (∼ 101 to 102) is still
necessary depending on the adopted distance of the scattering screen.

2.3 Polarisation Properties of AGN

2.3.1 Magnetic Fields and Synchrotron Radiation

As previously mentioned, magnetic fields are thought to signresponsible for the emergence and
existence of the jets of AGN. In fact, the observation of linearly polarised radiation furnished
proof that the radio emission of AGN is actually (non-thermal) synchrotron radiation stemming
from energetic electrons spiraling around magnetic field lines. While the electrons gyrate in the
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magnetic field, they are accelerated and emit synchrotron photons in a collimated radiation cone.
The emission frequency of the photon is directly related to the speed of the electron. The Larmor
or cyclotron frequencyω of an oscillating electron is defined as

ωL =
eB
mec

(2.13)

with magnetic fieldB, electron chargee, and electron massme. In the relativistic case this results
in the synchrotron frequencyω = γ2ωL whereγ is the Lorentz factor. The relativistic electron
radiates in a collimated narrow cone with width of order 1/γ in the direction of motion.

The energy distribution of an ensemble of electronsN(E)dE is described as a power-law

N(E)dE ∝ E−sdE (2.14)

with spectral index of the electron energys, which produces a synchrotron spectrum that is also
a power-law distribution

S (ν) ∝ να (2.15)

with spectral index of the synchrotron emissionα = 1−s
2 . Thus, we can derive the spectrum

of the electron energy distribution s from the spectral index α. At lower frequencies the spec-
trum declines at the so-called turn-over frequency and the source appears optically thick due to
synchrotron self-absorption. The turn-over frequency is defined as (Kellermann & Pauliny-Toth
1969)

νn =
c
ω

√

2S n

kTBπ(1− z)
(2.16)

with the solid angle of the sourceω, brightness temperatureTB in K, Boltzmann constantk,
flux density at turn-overS n in W m−2 Hz−1, and redshiftz. The spectrum of a homogeneous
synchrotron component is characterised by an optically thick part (optical depthτ >1 andν < νn)
with a spectral indexα = 2.5, and an optically thin part (τ <1, ν < νn) with α close to -0.5.
Knowing the spectral shape of a source and the size of the emitting regionθ, allows to calculate
the magnetic field strength (in Gauss) via

B = 10−5b(α)
θ4ν5

nδ

S 2
ν(1+ z)

(2.17)

with Doppler factorδ, source flux densityS ν in Jy, andb(α) a tabulated value of the spectral
index according to Marscher (1983).
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2.3.2 Polarisation and Stokes Parameters

Synchrotron radiation exhibits a high degree of polarisation, particularly in the optically thick
part. If relativistic electrons are located in an ordered magnetic field, which is supposed to be
the case in relativistic jets of AGN, they will produce linearly polarised radiation. The degree of
linear polarisation (LP) is defined as

Π =
s + 1

s + 7/3
. (2.18)

For a typical spectral index of the electron energys = 2, this results in a polarisation degree of
about 70%.

In the following, a brief mathematic summary on polarisation characteristics is given.
More details can be found, e.g., in Friedrichs (2003) or Jackson (1975). In general, a monochro-
matic electromagnetic wave is elliptically polarised. This can be described by the superposition
of either two linearly polarised or two circularly polarised waves. Regarding the case of two
circularly polarised waves, it is

E(x, t) = (ǫ+E+ + ǫ−E−)eik·x−iωt (2.19)

with complex orthogonal unit vectorsǫ±, and complex amplitudesE+/− = a+/−eiδ+/− . δ− − δ+ is
the phase difference between the two circularly polarised waves. TheStokes parametersare
defined via

I = a2
+ + a2

− (2.20)

Q = 2a+a− cos(δ− − δ+) (2.21)

U = 2a+a− sin(δ− − δ+) (2.22)

V = a2
+ − a2

− (2.23)

I describes the total intensity,Q andU taken together identify the LP, andV specifies the CP of
the wave. The polarisation angle results from

χ =
1
2

arctan
(Q
U

)

. (2.24)

A monochromatic wave is completely polarised which implies

I2 = Q2 + U2 + V2 (2.25)

whereas in the case of a superposition of multiple waves, Stokes parameters averaged over time
have to be considered. Hence, the wave is not completely polarized and it is

I2 > Q2 + U2 + V2 (2.26)
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Extragalactic radio sources usually exhibit LP in the orderof a few percent, while mostly CP
≤ 0.1% (e.g., Weiler & de Pater 1983; Komesaroff et al. 1984), which is generally below the
detection limit. Hence, CP is considered to be negligble in this work and only LP is regarded.

There was a large temporal gap between early integrated CP measurements carried out
from the 1970s to early 1980s and the high-resolution VLBA measurements that started in the
mid 1990s. Recently, however, several observations yielded in the detection of CP in a number
of extragalactic radio sources (e.g., Homan & Wardle 1999; Aller et al. 2003, 2006a,b; Homan
& Lister 2006; Gabuzda et al. 2008), which could not least be attributed to the improvement
of facilities (Rayner et al. 2000, Australia Telescope Compact Array - ATCA) and techniques
for deriving CP information on parsec scales (Homan & Wardle1999). Aside from CP being
produced as an intrinsic component of the emitted synchrotron radiation, another more favorable
mechanism is the Faraday conversion of linear polarizationinto circular during propagation
through a magnetised plasma (Jones & Odell 1977; Wardle & Homan 2003). Faraday effects
will be briefly addressed to in the following section.

2.3.3 Faraday Rotation and Depolarisation

If a linearly polarised wave travels through a magneto-optic plasma it will experienceFaraday
rotation . The incident wave is decomposed into two circularly polarized rays which propagate
at different speeds which causes a rotation of the polarisation angle:

∆χ = RM · λ2 (2.27)

where RM is the rotation measure that is determined by the integral of the electron density and
the dot product of the magnetic field and the path length alongthe line of sight. Knowing the
RM should in princple enable to back-extrapolate the observed polarisation angle to the true
intrinsic one viaχ(λ) = χ0 + RMλ2. Two problems occur in the determination of the Faraday
rotation. One is the polarisation angle suffering from a 180◦-ambiguity which could be overcome
by observing at two different frequencies, whereλ1 =

√
2λ2 as was suggested by Reuter &

Klein (1996). The other difficulty is a source-intrinsic effect where single source components at
different frequencies make multiple contributions to the overall source polarisation. This cannot
be resolved in single-dish observations and could mimic an additional rotation.

A further effect is theFaraday depolarisation of polarised waves. This is caused by dif-
ferent electron densities or magnetic field strengths within single patches of the magnetised
medium meaning that the polarisation angle is rotated differently in each patch. If those patches
are too small to be resolved by the telescope beam, the observed polarisation vector will be
the sum of numerous states of the according patches which might result in a smaller degree of
polarisation following
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P(λ) = P(0) exp(−const · RM2 · λ4) (2.28)

according to Burn (1966). This also applies to the afore mentioned intrinsic depolarisation where
the superposition of several components within a source cannot be resolved by a single tele-
scope. VLBI measurements, however, due to their higher resolution enable to observe single
components in some sources with considerably higher degrees of polarisation (e.g., Gabuzda
et al. 1992).

2.4 Precession of the Jet Base

From kinematic analyses of long-term VLBI observations it has been deduced that an increasing
number of sources displays a regular or irregular swing of the innermost jet structural position
angle in the plane of the sky (e.g., in BL Lac, Stirling et al. 2003; in OJ 287, Tateyama &
Kingham 2004; in 3C 345, Lobanov & Roland 2005; in S5 0716+71, Bach et al. 2005; in 3C
273, Savolainen et al. 2006; in 1803+784 Kudryavtseva et al. 2006; in NRAO 150, Agudo et al.
2007). The reported time scales range typically between 2 and 15 years and structural position-
angle oscillations show amplitudes between∼25◦ and 45◦. This precession of the base of the jet
is not yet understood but it seems to be related to jet-curvature or helical structures that have been
observed in the jets of AGN also on larger scales, in the sensethat the triggering mechanism is
supposed to be the same in both cases. A regular precession ofthe accretion disk is often cited
as one possible explanation. Mathematical descriptions ofthe precessing jet model have been
given previously, e.g., in the case of 3C279 (Carrara et al. 1993; Abraham & Carrara 1998) or in
the case of 3C345 (Qian et al. 1992; Steffen et al. 1995; Qian et al. 1996a). Various theories exist
that are trying to shed light on the cause of this interestingphenomenon, e.g.:

• Binary Black Holes Scenario: As already explicated in Chapter 1.1.2, it appears likely
that in the course of galactic evolution galaxies regularlyundergo merging events. The
central black holes of the two interacting systems will meetin the center of the newly
formed system and eventually coalesce. But before they formone single supermassive
black hole, there will be a period in which the two bodies encircle each other. Provided one
(or both) black hole(s) is/are surrounded by an accretion disk and emit(s) jets along their
rotation axis, the accretion disk(s) will experience gravitational torques which will finally
lead to twisted jets. This scenario has already been proposed for several sources such as
3C345, OJ287 or PKS 0420-014 (Klare 2003; Klare et al. 2005; Lobanov & Roland 2005;
Valtonen et al. 2008; Britzen et al. 2001). An example for thebinary black hole model and
its mathematical application to VLBI data is described in Appendix C according to Roland
et al. (2008). In the framework of this thesis, the model was applied to one selected dataset
that resulted from the kinematic analysis of the VLBI observations of 0917+624. The
result is presented in Chapter 5.2.5.
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• Kelvin-Helmholtz Instabilities can emerge when velocity shear is present within a con-
tinuous fluid or, when there is sufficient velocity difference across the interface between
two fluids. The theory can be used to predict the origin of instability and transition to
turbulent flow in fluids of different densities and speeds and was applied to model helical
structures in relativistic jets (e.g., Hardee 2003; Perucho et al. 2006).

• Lense-Thirring Effect: Also known as rotational frame-dragging, the Lense-Thirring ef-
fect is a prediction resulting from general relativity in which the rotation of an object
would alter space and time, dragging a nearby object out of position. The effect was first
predicted by Austrian physicists Joseph Lense and Hans Thirring in 1918. Relativistic jets
may furnish proof for the reality of frame-dragging. Gravitomagnetic forces produced by
the Lense-Thirring effect within the ergosphere of rotating black holes combined with the
Penrose mechanism2 (Penrose 1969) have been used to explain the observed properties of
relativistic jets. Williams (1995, 2004) proved this theory to be able to extract relativistic
particle energy and subsequently showed that it is a possible mechanism for the formation
of jets.

2The Penrose mechanism is a process theoretised by Sir Roger Penrose in which energy can be extracted from a
black hole.





C3

The Quasar 0917+624

Extragalactic compact flat spectrum radio sources are knownto be highly variable and about
30% of them show intra-day variability (IDV) (e.g., Quirrenbach et al. 1992, Wagner & Witzel
1995, Kedziora-Chudczer et al. 2001). 0917+624 is a type-II IDV quasar at a redshift of
z = 1.446. The source used to be strongly variable on timescales of0.5 to 1.6 days with
modulation indices1 m of 3 to 5% at cm-wavelengths from 1985 to 1998 (Heeschen et al.1987,
Quirrenbach et al. 1992, Kraus et al. 2003). Moreover, in thepolarised flux, as well as in the
polarisation angle, even faster variability was detected with modulation indices ranging between
15 and 30 %; the polarised flux usually being anti-correlatedwith the total flux (Quirrenbach
et al. 1989b, Kraus et al. 2003). Figure 3.1 shows a typical example of lightcurves for total
and polarised intensity and polarisation angle changes during a 2.5 days observation with the
Effelsberg 100m telescope in June 1993. A visual inspection already reveals the afore mentioned
anti-correlation between total and polarised intensity (top and middle panel respectively).

On milliacrsecond-scales, the source structure consists of a compact core with a jet emerging
in north-western direction at a position angleΘ ∼ −60◦, and after about 0.5 mas pointing in
northerly direction (Θ ∼ −30◦). 1.45 GHz-maps from the archive of the Very Large Array
(VLA) reveal that on arcsecond-scales the source is mainly pointlike showing a jet-like feature
developing 15 arcsecs to the south-west. Standke et al. (1996) showed a VLA-map at 8.4 GHz
that displays some weak source structure 4 arcsecs from the core at a position angle of about
-135◦ at the 5σ level which needed to be confirmed according to their estimation. However, this
feature was observed earlier by Murphy et al. (1993) as well.Taken altogether, this indicates
that there is a strong misalignment between the jet on the inner and outer kpc-scales (see also
Figure 3.2).

1m[%] = 100· σS
<S> , whereσS is the rms flux density
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Figure 3.1: 5 GHz lightcurves of 0917+624 observed with the 100m Effelsberg telescope in July 1993,

courtesy of A. Kraus. Panels show from top to bottom total intensity, polarised intensity, and polarisation

angle plotted versus time (J.D. in days).
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In 1989, Quirrenbach et al. (1989b, 2000) observed a 180◦ polarisation angle swing event
in 0917+624 within one day (J.D. 2447526). They interpreted this event in terms of a helical
jet model where potentially a relativistic shock propagates along the jet, which illuminates the
jet’s helical magnetic field by enhanced synchrotron emission. This is an interpretation of a
model proposed by Königl & Choudhuri (1985) concerning polarization angle swing events
on timescales of months or years, applied to intraday timescales. Their model is based on the
effects of relativistic aberration when the transverse component of the magnetic field constantly
rotates along the jet.

In the subsequent years, the polarization angle swing eventhas been subject to numerous
attempts of interpretation. For instance, Qian et al. (1991, 2002) suggested a two-component
model within a relativistic shock-in-jet model with one steady polarized component and another
one produced by the shock, which is variable in in its degree and angle of polarisation. The vec-
tor combination of both components could then produce the observed polarisation angle swing
where the variations of the shock component only need to occur on small scales. Gopal-Krishna
& Wiita (1992) proposed thin relativistic shocks moving on slightly bent trajectories causing
correlated as well as anti-correlated variations in total and polarised flux in IDV sources. In
this case the shock component would change its degree of polarisation because of relativistic
aberration effects.

Although Rickett et al. (1995) tried to explain the variations in intensity and polarisation
of 0917+624 within a scintillation model, they could not account forthe polarisation angle
swing event and suggested, it could be due to low-level intrinsic variability. However, it
remained unclear to what extent RISS and intrinsic variability have to work together in order to
produce the polarisation angle swing of 180◦. Simonetti (1991) attempted to explain the swing
event in terms of refractive focussing-defocussing by an interstellar shock passing in front of
the source. Within this model, the source is supposed to havetwo polarised components with
their polarisation angles differing by∼ 90◦. As the shock is passing the line of sight, the first
component is strongly focussed, inducing a rapid increase in total and polarised intensity such
that the overall source polarisation angle will be close to that of the first component. With the
postshock passing in front of the source, the first componentis defocussed again, showing a
rapid decrease in its total and polarised intensity and the source polarisation angle is dominated
by that of the second component. However, this assumption can only account for a 180◦ jump
and not for a continuous variation, as has been observed by Quirrenbach et al. (1989b), and
Simonetti (1991) suggested that some intrinsic mechanism or focussing by another cloud might
be responsible for that. Besides, the rapid increase in total flux density, as proposed by the
refractive focussing-defocussing model, had not been measured either.
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It has been only recently, that approaches have been made to interpret short-term polarisation
angle swings in terms of RISS by a continuous medium or refractive focussing-defocussing by
interstellar clouds. For instance, Kochenov & Gabuzda (1999) reported a polarisation angle
swing event observed in the source QSO 1150+812, which was interpreted by Qian et al. (2006)
in terms of refractive focussing-defocussing by interstellar clouds serving as a plasma-lens,
assuming a 3-component model. The angle swing event in 0917+624 was also explained in
this sense, but here a 4-component model, consisting of one non-polarised and three polarised
components, was necessary in order to substantiate the underlying physics not only concerning
the angle swing but also the variations in total and polarised intensity (Qian et al. 2007).

In September 1998, Kraus et al. (1999) discovered that the rapid variability had stopped and
instead a slow, monotonic increase of 7% in total flux densitywas observed during the 5-day
observing session. Observations made in February 1999 revealed that 0917+624 was varying
again on a time scale of 1.3 days. However, since September 2000 the variability of the source
has ceased again, showing only moderate modulation indicesof the order of∼ 0.5% until April
2002 (see Fuhrmann et al. 2002, Fuhrmann 2004).

The question whether the origin of IDV is source extrinsic, i.e. due to scintillation in the
Interstellar Medium (ISM), or intrinsic, is still not solved. The shock-in-jet model has, for
instance, been proposed in the case of 0917+624 by Qian et al. (1991, 1996b). It is expected,
though, that IDV blazar cores feature micro- or even nanoarcsecond angular sizes and therefore
must scintillate through the ISM, as has also been suggestedfor 0917+624 (e.g., Rickett
et al. 1995; Jauncey & Macquart 2001). Qian et al. (2002) present a combination of extrinsic
and intrinsic effects, which could appropriately explain results obtained from multifrequency
polarisation observations. After the subtraction of scintillation-induced effects, an additional
variable component remained which was subsequently interpreted in terms of a shock model.
Whether it be extrinsic or intrinsic, possible explanations for the reduced IDV activity could be,
e.g., that the scintillating medium has changed (e.g., strength of turbulence, distance), or the
flux of the scintillating component(s) has now decreased andbecome less dominant. Another
possibility is a general change in the alignement of the source relative to the line of sight owing
to the precession of the footpoint of the jet, which has been proposed in the cases of 0716+714
(Bach et al. 2005) and 1803+784 (Kudryavtseva et al. 2006). The size of the VLBI core changes
with time due to its changing orientation towards the line ofsight.

A possibility to explain the behavior of 0917+624 within an ISS model was given by
Rickett (2001) (see also Jauncey & Macquart 2001). They suggested that the observed change
in the variability time scale depends on the time of the year and thus reflects the orbital motion
of the Earth relative to the ISM. Fuhrmann et al. (2002) further investigated the applicability of
this so-called annual modulation scenario (see page 19) for0917+624 by means of a one-year
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a)

b)

c)

Figure 3.2: 0917+624 maps observed at different frequencies showing the strong misalignment between

the jet on kpc and pc-scales; a) VLA-map at 1.45 GHz, June 1994, beam (5.34×4.41) mas; b) 15 GHz map

of 0917+624 observed in June 2002, taken from the MOJAVE/2cm Survey Data Archive; 43 GHz map

taken from the Radio Reference Frame Image Database (RRFID).

6cm-flux monitoring program with the Effelsberg telescope. This could, however, not confirm
the model predictions. Instead, the source showed a radicalchange in its IDV behaviour by
reducing its variability (see above). Meanwhile though, recent studies by Marchili (2009)
with the Chinese Urumqi 25-m radio telescope seem to supportthe applicability of an annual
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modulation model in the case of 0917+624 provided that the scattering screen is much closer
to the earth (≤ 50pc) than previoulsy concluded by Rickett et al. (1995); Rickett (2001) of the
order of 170 - 200 pc.

The earlier slow-down of 0917+624 in September 1998 was interpreted by Kraus et al.
(1999) as probably due to either a disappearance of the scintillating compact component or
an increase in its angular size, which could be caused by the ejection of a new jet component
(see also Krichbaum et al. 2002). The ejection could temporarily lead to a core size exceeding
the Fresnel scale defined by the scattering medium. Consequently, only strongly quenched
scintillation is observed. When the component moves further down the jet, it will separate from
the core at some point whereby the size of the scintillating component decreases again. At that
time, the variability is expected to reappear. However, this has not been the case - at least until
April 2002. Given that the variability ceased again in 2000,even more than one component
should have been emitted since. In order to test this scenario, we analysed several epochs of
VLBI observations of 0917+624 over a period of eight years (1999 to 2007) which were partly
performed at different frequencies. The analysis and results are described in Chapter 5.



C4

Effelsberg Flux Density Monitoring of
0917+624

As 0917+624 has established to be a prominent IDV source, it is - amongother sources - fre-
quently monitored with the Effelsberg 100-meter radio telescope of the Max-Planck-Institut für
Radioastronomie in Bonn (see Figure 4.1). A monitoring program was set up in order to test
the reliability of the annual modulation model and to searchfor new IDV and calibrator sources.
The available Effelsberg data of 0917+624 observed after 2000 were so far only reduced in to-
tal intensity - that is in terms of variability analyses (Fuhrmann et al. 2002, Fuhrmann 2004).
Hence, I continued the data reduction focussing also on the polarisation characteristics. My aim
was to investigate the polarisation variability behavior in order to further complement our current
knowledge about the source in this parameter space. The analysis of the total intensity data was
carried out in left hand circular polarisation only which isstill a sufficient approximation to the
results for total polarised intensity since the total intensity is defined asI = 1

2(LL + RR) whereR
andL denote the right and left hand circular feeds of the receiving system1. The observing tech-
nique and data reduction steps for the Effelsberg 100m telescope have already been described
in detail in previous works (see, e.g., Quirrenbach et al. 1989a, Kraus 1997, Fuhrmann 2004,
Fuhrmann et al. 2008). Hence, I will merely give a brief summary on the applied methods.

4.1 Observations and Data Reduction

From the available data that have been obtained with the Effelsberg telescope at 4.85 GHz, I
took a subsample observed between March 2001 and December 2004 which has a sufficient ob-
servational duration of at least 24 hours up to 80 hours. Three epochs with single measurements
were added, which were observed during the VLBI experimentsdescribed in Chapter 5. The

1Is it assumed thatV ≃ 0, i.e. LL ≃ RR
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Figure 4.1: The 100-meter telescope of the Max-Planck-Institut für Radioastronomie located in a valley

near Effelsberg, Eifel region.

appropriate epochs are listed in the first column of Table 4.1. Although various sources had been
observed, I am only concentrating on the results for 0917+624. Other - non-variable - sources
included in the observations for calibration purposes were, e.g., 0836+710 and 0951+699 for
gain and time-dependent corrections (see below) and standard flux density calibrators such as
3C286, 3C48, and NGC7027.

The observations were carried out with the 4.85 GHz receiver, that is mounted in the tele-
scope’s secondary focus. It consists of two horns enabling ’software beam-switching’ (Emerson
et al. 1979): by means of a second horn, which is directed nextto the source position, the
atmospheric contribution to the measurements can be determined and subtracted from the source
signal in the subsequent data reduction process. It is a 4-channel system, the frontend consisting
of two dewars, each of them containing one horn, a cooled directional coupler, circular (RHC
and LHC) transducer and 2 High Electron Mobility Transistor(HEMT) amplifiers. The backend
comprises a ZF-polarimeter and delivers both total power and full polarisation information of
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the received signal.

The measurements were done using cross-scans in azimuth andelevation across the source
position, which results in Gaussian profiles with an amplitude proportional to the measured flux
density. The cross-scan method is best suited for short-time variability observations since the
compact and bright sources appear point-like within the telescope beam. From the difference
between real target position and observed maximum the pointing offset can be determined and
be corrected. The number of sub-scans and duration depends on the source brightness at the
observed frequency and in the given case was usually eight for the stronger sources (∼ 1 Jy) and
12 for the weaker ones with a duration of 20-30 seconds per scan. The scan length is equivalent
to 4-5 times the half power beamwidth (HPBW) of the telescopebeam, which is necessary to
determine the noise level and baseline left and right hand ofthe source. In the case of a 4.85 GHz
observation, the HPBW corresponds to 144”.

4.1.1 Data Reduction Steps

• CONT2: For a start, the Gaussian fit is applied to the observed signalusing the program
CONT2 which is part of the MPIfR’s software package TOOLBOX,the standard Effels-
berg data reduction package. The fit results in the signal amplitude as a measure for the flux
density of the source, the pointing offset from the center position and the measured HPBW.
Afterwards, poor-quality sub-scans have to be removed fromthe data. For IDV measure-
ments, this procedure is based on the following criteria: the amplitude should deviate less
than 5 % from the mean; the pointing error should differ less than 10 % from the HPBW
and the measured HPBW should lie within 10 % of the average value. For the polarisation
analysis, the Stokes parametersQ andU have to be fitted in a similar way. However, since
the polarised signals are generally very weak, the sub-scans in one driving direction are
first averaged using fixed position and HPBW. This implies, that the amplitude remains the
only free fit parameter and makes a pointing correction redundant.

• Pointing Correction: The following steps make use of the software which A. Kraus de-
veloped in the scope of his thesis (Kraus 1997). In order to apply the pointing correction,
first of all the mean deviation from the center position of thescans in azimuth and el-
evation and the average HPBW are determined. Assuming a two-dimensional Gaussian
profile, one can now calculate the deviation of the measured amplitudeS from the cen-
ter position in one direction by means of the pointing offset in the other direction. As an
exemplification, the correction in elevation is given by

S corr
elv = S elv · exp(4 · ln2 ·

x2
azi

θ2
azi

) (4.1)
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wherexazi is the pointing offset andθazi is the HPBW in azimuth. By means of the aver-
age values, a correction factor is determined and applied toall sub-scans in azimuth and
elevation respectively. Afterwards, all sub-scans are averaged using a weighted mean.

• Gain Correction: In general, the heavy construction of radio telescope parabolic dishes
leads to gravitational deformation of the dish surface withchanging elevation. Corre-
spondingly, the surface accuarcy changes and the focal point is shifted which influences
the sensitivity of the telescope. The Effelsberg 100m dish was constructed according to
the principle of ’homologous deformation’ meaning that a gravitational distortion of the
dish always transfers into another paraboloid. Hence, an adjustment of the focus in three
axes during changes in elevation always keeps the receiver in the focal plane. However,
the sensitivity is a function of changing elevation due to the distortion of the surface, be-
ing highest around 35◦ and decreasing towards higher and lower elevation. Besides, the
atmospheric absorption increases with decreasing elevation. This is usually corrected for
separately (so-calledτ correction), especially in case of higher frequencies (> 5 GHz). To
be able to compensate for these effects, secondary non-variable calibrators are frequently
observed additionally to the target sources, ideally covering a great part of the whole ele-
vation range. The normalised amplitudes plotted versus elevation can best be represented
by a second-order polynomial (’gain curve’) which is used toremove the distortion effects
from the data. In case of the present observations, 0836+710 and 0951+699 were regularly
observed for this pupose and some other sources were added when available.

• Time-dependent Corrections:Additional effects on the flux density result from changes
in weather, thermal expansion of the telescope dish leadingto focus changes, fluctuations
in the receiving system, etc. These time-dependent systematics can also be removed by
means of a mean correction curve fitted to the secondary calibrator fluxes over the complete
observing time range.

Finally, the measured amplitudes of all sources have to be adjusted to the absolute flux
density scale (Baars et al. 1977, Ott et al. 1994) using the primary calibrator measurements
which were frequently monitored.

It turns out that the errors according to error propagation of the applied corrections are
generally smaller than the uncertainties remaining from the scatter of the secondary cal-
ibrators. Hence, the resulting errors from the uncertainties of the calibrator sources are
assigned to the final error values. This leads to error measurements below one percent,
under good observing conditions even. 0.3%.

• Corrections for Polarisation: The polarisation data are calibrated according to the
method of Turlo et al. (1985). The observed signal is regarded as a vector consisting of
the three Stokes parametersI, Q, andU (ommitting small circular polarisationV). The true
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(source intrinsic) flux densities can now be described usinga 3×3 matrix2, called Müller
matrix Mij :

S obs(I,Q,U) = ||Mij ||S true(I,Q,U) (4.2)

with i,j=1,2,3. The Müller matrix can be decomposed into a matrixT describing the in-
strumental effects (D-terms) and a matrixP containing the parallactic angle (γ) rotation:
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(4.3)

It is necessary to frequently observe calibrator sources ofknown high polarisation (such
as 0836+710), i.e., covering an utmost large range of the parallactic angle, in order to
determine theT matrix. The use of data from unpolarised sources (e.g., 0951+966) further
helps to improve the analysis, in particular for the adjustment of the matrix elementsT21

andT31, which describe the instrumental polarisation. With knownS true and the measured
quantitiesS obs and parallactic angleγ, one can derive the elementsTij by means of three
least-square-fits, one for each Stokes parameter. Now the correction can be applied by
inverting Equation 4.3. Since in practice the influence of polarised flux density on total
flux density is usually negligible (regarding matrix elements T12 and T13), only Stokes
parametersQ andU are corrected for usingIobs:
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(4.4)

whereT̂ij denotes for the inverted correction matrixT−1. The uncertainties are again esti-
mated by means of the secondary calibrators as in the case of total intensity.

The final calibration of the polarisation data is done by means of the calibrator source
3C286 which has proven to be non-variable in the cm regime. At4.85 GHz, the values are
11.0 % for percental polarisation and 33◦ for the polarisation angle (Kraus 1997 and ref-
erences therein). The individual measurement errors are typically ∆P ∼5 % for polarised
intensity and∆χ= 1-3 ◦ for polarisation angle. In case of highly polarised sourcesthe er-
rors are even lower. A gain and time-dependent correction, as done for total intensity, is
usually not applied forQ andU.

2If circular polarisation has to be taken into account, the matrix has to be generalised to a 4×4 matrix.
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4.1.2 Tools for IDV Analysis

The observed time dependent flux density variations yield a time series which is characterized
using the following basic parameters.

• Modulation Index m gives the strength of the observed variability as a functionof mean
flux density〈S〉 and its standard deviationσS :

m[%] = 100· σS

< S >
(4.5)

External effects, such as changing weather conditions or receiver instabilities, are respon-
sible for systematic changes in the variability pattern. Hence, it is useful to comparem
to the average modulation index of the non-variable calibrator sources. This leads to the
definition of the variability amplitude (Heeschen et al. 1987, Quirrenbach et al. 1992):

• Variability Amplitude

Y[%] = 3
√

m2 − m2
0 (4.6)

with m0 the mean modulation index of the secondary calibrators. In case ofm≤m0 the
variability amplitude of the affected source is set to zero.

The modulation indices for the polarised quantities are derived in a similar way. For the polarised
intensityP, we use

mP[%] = 100· σP

< P >
(4.7)

YP[%] = 3
√

m2
P − m2

P,0 (4.8)

For the polarisation angleχ it is defined as follows:

mχ[
◦] = σχ (4.9)

Yχ[
◦] = 3

√

σ2
χ − σ2

χ,0 (4.10)

So far, only the statistical variance of the data has been considered. In order to regard the indi-
vidual measurement errors, one has to apply a further method.

• Theχ2-Test is an established method to test hypotheses (see, e.g., Bevington & Robinson
1992). In order to probe the variability of a source, in fact the hypothesis of stationarity is
tested, assuming a constant source flux. The light curve of the respective source is fitted by
a constant function〈S〉 as follows (cf., e.g., Heeschen et al. 1987; Quirrenbach et al. 1992;
Kraus et al. 2003):
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χ2 =

n
∑

i=1

(

S i− < S >

∆S i

)2

(4.11)

whereS i denotes the individual flux densities and∆S i their errors. A division ofχ2 by the
degrees of freedom (here N-1, N number of measurements) leads toχ2

r (reducedχ2). Only
sources, for which the probability not to be modeled by a constant function is≥99.9%, are
considered to be variable. The probability can be verified bycomparing the results of the
χ2

r -test to relevant collections of tables from the literature(e.g., Bronstein & Semendjajev
1989).

To analyse the differences in IDV behaviour between total and polarised flux density, a time scale
analysis was performed using the correlation function.

• TheCorrelation Function ρ(τ) measures the correlation of two signals at different times
(see Edelson & Krolik 1988 for more details) as

ρS 1,S 2(τ) =< S 1(t + τ) · S 2(t) >t (4.12)

In case ofS 1 = S 2 this results in an auto-correlation function of a time series which
is a measure for the self-similarity of a time-dependent signal. Here, however, I am in-
terested in the correlation between total and polarised intensity and therefore apply the
cross-correlation function. Maxima and minima in the cross-correlation function denote
correlations and anti-correlations, respectively, of theunderlying data sets. In case of a
complete correlation or anti-correlation, values of+1 or -1 are expected. If maxima ap-
pear at different times, this denotes the time lag between the two data sets. Correlation
coefficients below 0.6 are considered to be insignificant.

4.2 Results

The resulting plots of total and polarised intensity light curves and polarisation angle are
displayed in Appendix A except from epochs March 2002, July 2002, and April 2004, where
only single measurements were available.

An inspection of the flux density plots (Figures A.1 - A.6, upper panels) shows that the
total intensity variability is only marginal throughout all epochs compared to its former activity
(cf. Fig. 3.1). This becomes especially evident when looking at the right axis, which displays the
normalised flux density. It is not feasible to identify any regularities or (anti-)correlations with
polarised intensity or polarisation angle by eye. On the other hand, the polarisation intensity
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is varying quite fast on a seemingly regular time scale of 0.4-0.5 days. The polarisation angle
variations, however, are also less pronounced than before ranging from modulation indices of
0.5 to a maximum value of 1.7◦ in contrast to earlier observed values between 7 and 18◦ (Kraus
et al. 2003).

-2 -1 0 1 2
timelag [days]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C
C

F

-2 -1 0 1 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 4.2: Cross-correlation function between polarisation angleχ of 0917+624 and 0716+714 (left

panel) and 0917+624 and 0954+658 (right panel) in epoch 2001-03-24; the left panel shows asystematic

correlation for every 0.5 days whereas the right panel displays an anti-correlation within the same period.

The results of the variability analysis for the IDV data on 0917+624 are listed in Table 4.1. The
upper part of the table displays the total intensityI results, whereas the lower part contains the
findings for polarised intensityP and polarisation angleχ. The first column gives the observing
epochs; stars mark the epochs which have already been analysed in total intensity in Fuhrmann
(2004). The second column shows the number of measurements Nperformed in each epoch. N
sometimes differs for polarisation measurements (bottom part of the table) due to the removal of
poor quality scans. The upper part further gives total flux density (column 3), modulation index
for total intensitymI and for comparison mean modulation indexm0 of the secondary calibrators
(0836+710, 0951+699) in columns 4 and 5. The resulting variability amplitudeY is listed in col-
umn 6; column 7 displaysχ2

r followed by the reducedχ2 (column 8) that results for a stationarity
probability of 99.9 % from the given number of measurements in the respective epoch. The same
arrangement holds for polarised flux densityP and polarisation angleχ (columns 8 to 13) in the
lower part of the table. The last column of the upper part contains the fractional polarisation3 p
of 0917+624 for each epoch.

3fractional polarisationp= |P|I [%], whereP is the polarised andI the total intensity.
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Table 4.1: Results of the Effelsberg 4.85 GHz observations

Epoch N∗ I [Jy] mI [%] m0 [%] Y [%] χ2
r χ2

99.9 p‡[%]
2001-03-24⋆ 57 1.419±0.012 0.87 0.20 2.53 2.803 1.6868 3.85
2001-05-04⋆ 65 1.383±0.007 0.47 0.20 1.29 3.598 1.6362 4.23
2001-08-03⋆ 138 1.438±0.007 0.51 0.20 1.41 4.108 1.4187 4.42
2001-10-20 82 1.416±0.006 0.43 0.20 1.14 3.689 1.5566 5.01
2001-12-26⋆ 38 1.440±0.005 0.38 0.15 1.04 3.220 1.8742 4.58
2002-03-27† 1 1.322±0.002 - - - - - 4.55
2002-04-12⋆ 15 1.315±0.011 0.79 0.30 2.23 7.674 2.5802 4.62
2002-07-13† 2 1.214±0.001 - - - - - 4.68
2003-04-10† 1 1.057±0.006 - - - - - 4.62
2003-11-14 47 0.884±0.008 1.14 0.22 3.37 17.508 1.7696 3.54
2004-07-16 46 0.801±0.007 0.90 0.21 2.64 12.471 1.7795 2.90
2004-08-12 112 0.791±0.005 0.68 0.21 1.93 6.652 1.4689 2.90
2004-12-19 32 0.769±0.004 0.53 0.15 1.52 5.984 1.9709 3.15

Epoch N P [Jy] mP [%] mP,0 [%] Y P [%] χ2
r χ [◦] mχ[◦] mχ,0[◦] Yχ[◦] χ2

r χ2
99.9

2001-03-24 55 0.055±0.0015 2.75 1.50 6.92 2.631 44.00 0.94 0.50 2.37 3.151 1.7013
2001-05-04 65 0.059±0.0015 2.50 1.20 6.57 2.889 43.27 0.65 0.30 1.73 3.759 1.6362
2001-08-03 137 0.064±0.0016 2.42 2.00 - 1.251 40.45 0.60 0.50 1.00 5.588 1.4187
2001-10-20 84 0.071±0.0015 2.07 1.00 5.43 2.802 39.58 0.65 0.40 1.53 3.331 1.5490
2001-12-26 38 0.066±0.0012 1.87 1.40 - 1.316 41.52 0.53 0.50 - 0.962 1.8742
2002-03-27 1 0.060±0.0010 - - - - 44.75 0.21 - - - -
2002-04-12 15 0.061±0.0015 2.41 1.50 6.42 3.101 45.61 0.91 0.50 2.67 10.438 2.5802
2002-07-13 2 0.057±0.0010 - - - - 43.24 0.12 - - - -
2003-04-10 1 0.049±0.0001 - - - - 45.68 0.06 - - - -
2003-11-14 47 0.031±0.0013 4.19 1.00 12.20 101.02449.19 1.09 0.50 2.90 109.946 1.7696
2004-07-16 46 0.023±0.0013 5.74 1.60 16.55 10.58854.92 1.25 0.50 3.45 5.124 1.7795
2004-08-12 107 0.023±0.0013 5.55 1.30 16.19 16.99852.89 1.74 0.50 5.01 9.382 1.4812
2004-12-19 32 0.024±0.0014 5.78 1.70 16.56 8.192 50.26 1.57 0.30 4.63 22.162 1.9709
∗Number of measurements,⋆total intensity also analysed in Fuhrmann (2004),†VLBI-epochs (see Chapter 5),‡fractional polarisation



42 4. Effelsberg Flux Density Monitoring of 0917+624

-2 -1 0 1 2

-0.4

-0.2

0

0.2

0.4

0.6

Figure 4.3: Cross-correlation function between polarisation angleχ of 0917+624 and the unpolarised

secondary calibrator 0951+699 in epoch 2001-03-24; weak systematics of 0.5 days could in principle be

interpreted from this plot (cf. Figure 4.2 and text).

Remarkably, the modulation index of the polarised flux almost triples from below 2 to almost
6 % between 2002 and December 2004, whereas at the same timemχ only slightly increases
and mI marginally rises until the end of 2003 to a maximum value of 1.14 % (being approx.
one-third of former values) and then drops off again. Still, the variability in polarisation is as
well far below the formerly observed modulation indices of more than 15 %. As an example for
the calibration accuracy we show in Figure A.1 (right panel)the flux density of the secondary
calibrator source 0836+710 plotted versus time.

To rule out whether the deduced polarisation variations aredue to some residual gain ef-
fects of the telescope, which are usually not corrected for in the polarisation analysis, I
calculated the cross-correlation function betweenχ of 0917+624 and other polarised sources
(0836+710, 0716+714 and 0954+658) since these gain systematics should also affect the data
of the other sources. The cross-correlation analysis partly yielded positive results in some
epochs, two example plots are given in Figure 4.2. A systematic with a half-day period in the
cross-correlation of the polarisation angles is clearly visible, and the same is valid for polarised
intensity (not displayed). Even the cross-correlation betweenχ of a polarised and an unpolarised
source results in some, however, weak (anti-)correlation (cf. Figure 4.3). These systematics
might be induced by the changing elevation due to the earth rotation leading to quasi-sinusoidal
pattern in the light curves of the sources. Therefore, we inspected the behaviour of the Stokes
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parametersQ andU of the target source and of some polarisation calibrator sources with respect
to elevation after the final polarisation calibration was applied to the data. In four epochs we
found that, while the calibration of the Stokes parameters yields a flat curve for the calibrator
source as expected, there still remain residual effects in the data of the target source. Plotting
the Stokes parameters versus parallactic angle revealed similar results in terms of a sinusoidal
pattern in the calibrated data of the target source which we are not able to explain at this point.
In Figure 4.4, an example plot is given where the normalisedQ andU values of 0917+624 and
0836+710 are plotted versus time.
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Figure 4.4: Normalised Stokes parametersQ andU of calibrated 0917+624 and 0836+710 data plotted

versus time for epoch 2004-08-12; a residual pattern is still visible in the data of the target source.

Hence, we have to be careful in interpreting the polarisation variability as real. As the variations
for 0917+624 are less pronounced than before 2000, it might well be that the variability pattern
we see is dominated by systematic effects which we usually do not see when the source is much
brighter and the residual variations appear less pronounced.
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Figure 4.5: Cross-correlation function between total and polarised flux density of epoch 2001-10-20.

The correlation function analysis did not reveal any significant correlations between the vari-
ability pattern ofI andP. For an example, the cross-correlation function of epoch 2001-10-20 is
plotted in Figure 4.5.

Total and polarised flux density of 0917+624 decreased between 2001 and 2004 which is dis-
played in the upper panels of Figure 4.6 . The bottom panel contains the fractional polarisation
p. The latter shows a slight increase towards the end of 2001 from roughly 4 to 5 % where the
total intensity remains rather constant and the polarised flux is slightly increasing. The fractional
polarisation then decreases until the end of the observing period (to a value around 3 %) since
the decline in polarised flux is stronger compared to the decline in total intensity. As can be seen
from Figure 4.7,σP is nearly constant throughout the observations as opposed to σI, whereas
total and polarised flux density both decrease. Hence, it is justified to plot the modulation indices
of I andP and directly compare them, as is done in the same Figure (bottom panel). During the
4 years of observations, the orientation of the polarisation angle made an overall change of∼14◦

between 40 and 54◦ (Figure 4.6, third panel), withχ andmχ following the same fluctuations as
mP (see bottom panel of Figure 4.7).
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Figure 4.6: Panels display from top to bottom: total flux density I, polarised flux density P, polarisation

angle P.A. of 0917+624 observed with the Effelsberg telescope at 4.85 GHz between March 2001 and

December 2004; bottom panel: fractional polarisation p.
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Effelsberg telescope at 4.85 GHz between March 2001 and December 2004; bottom panel: modulation

indices ofI, P andχ.
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The Kinematics of 0917+624 between 1999
and 2007 at Different Frequencies

As already pointed out in Chapter 3, in September 1998, Krauset al. (1999) discovered that the
rapid variability of 0917+624 had stopped and instead a slow, monotonic increase of 7% in total
flux density was observed during the 5-day observing session. Observations made in February
1999 revealed that the source was varying again on a time scale of 1.3 days. However, since
September 2000 its variability has ceased again, showing only moderate modulation indices of
the order of∼ 0.5% (see Fuhrmann 2004, Fuhrmann et al. 2002 and Chapter 4), and to date the
source has not restarted its former activity.

Furthermore, the earlier slow-down of 0917+624 in September 1998 was interpreted by
Kraus et al. (1999) as due to a possible increase in the angular size of the scintillating compo-
nent, which could be caused by the ejection of a new jet component (see also Krichbaum et al.
2002). The ejection could temporarily lead to a core size exceeding the Fresnel scale defined by
the scattering medium. Consequently, only strongly quenched scintillation would be observed.
When the component moves further down the jet, it will separate from the core at some point
whereby the size of the scintillating component decreases again. At that time, the variability
is expected to reappear. Given that the variability ceased again in 2000, even more than one
component should have been emitted since. In order to test this scenario, several epochs of VLBI
observations of 0917+624 were analysed which were partly performed at different frequencies.
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Table 5.1: Observing epochs and participating antennas

# epoch notation frequency [GHz] array comments
1 1999-11-20 1999.888 5, 15 VLBA + EB1 + Y2

2 2000-03-06 2000.183 5, 15 VLBA + EB+ Y BR3 flagged at 15 GHz
3 2000-11-30 2000.915 5, 15 VLBA + EB+ Y
4 2001-12-26 2001.988 5, 15, 22 VLBA + EB no IF2 for EB
5 2002-03-27 2002.241 5, 15, 22 VLBA + EB KP4 flagged at 22 GHz
6 2002-06-15 2002.458 15 VLBA
7 2002-07-13 2002.536 5, 15, 22 VLBA + EB PT5 flagged at 15 GHz
8 2003-04-10 2003.277 5, 15, 22 VLBA + EB no IF2 for EB, MK6 flagged,

no IF2 for SC7 at 22 GHz
9 2003-06-15 2003.458 15 VLBA
10 2004-02-15 2004.124 24 VLBA
11 2004-12-14 2004.955 24 VLBA
12 2005-02-05 2005.097 15 VLBA
13 2005-06-15 2005.458 15 VLBA
14 2005-09-19 2005.719 15 VLBA
15 2006-08-09 2006.608 15 VLBA
16 2007-06-03 2007.425 15 VLBA
17 2007-09-06 2007.683 15 VLBA

1Effelsberg telescope,21 antenna of the Very Large Array (VLA),3VLBA-Kitt Peak, 4VLBA-Brewster,
5VLBA-Kitt Peak, 6VLBA-Mauna Kea
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Figure 5.1: 15 GHz maps of all epochs of 0917+624; numbers denote epochs as given in Table 5.1;

parameters are listed in Table 5.2; contours are given in steps of 2.
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Figure 5.2: 5 GHz maps of all epochs of 0917+624; numbers denote epochs as given in Table 5.1; map

parameters are listed in Table 5.2; contours are given in steps of 2.

5.1 Observations and Data Analysis

The data were obtained from different VLBI observing campaigns. The main emphasis is lying
on VLBI observations of 0917+624 at 5, 15 and 22 GHz during 4 epochs from December 2001
until April 2003, in the following called epoch 2001.988 (26December 2001), epoch 2002.241
(27 March 2002), epoch 2002.536 (13 July 2002) and epoch 2003.277 (10 April 2003), hereafter
referred to as ’core campaign’. The observations were carried out with the antennas of the
Very Long Baseline Array (VLBA) together with the Effelsberg 100m telescope and lasted 12
hours, respectively. A detailed description on the principles of radio interferometry and aperture
synthesis and the methods of image reconstruction can be found in, e.g., Thompson et al. (2001).

Three previous epochs between November 1999 and November 2000 were taken from an
observing campaign of the target source NGC3079 with the VLBA and one antenna of the Very
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Table 5.2: Parameters of the 0917+624 maps produced by Difmap.
epoch Stot Beam bpa1 Peak flux lowest contours

[Jy] [mas] [◦] [Jy/beam] [mJy/beam]
5 GHz
1999.888 1.49 1.76 x 0.75 -44.3 1.04 0.9
2000.183 1.41 1.25 x 0.88 -50.0 1.03 1.2
2000.915 1.36 0.87 x 0.79 -38.1 0.88 0.45
2001.988 1.36 1.10 x 0.86 3.7 0.925 0.6
2002.241 1.23 0.98 x 0.86 -31.1 0.81 0.35
2002.536 1.13 0.97 x 0.84 -17.2 0.711 0.5
2003.277 0.98 1.02 x 0.85 -26.2 0.589 0.4
15 GHz
1999.888 1.20 0.57 x 0.28 -48.2 0.601 1.5
2000.183 1.12 0.48 x 0.24 -53.4 0.518 0.6
2000.915 1.06 0.28 x 0.27 -20.5 0.354 1.5
2001.988 1.03 0.36 x 0.29 10.7 0.405 1.2
2002.241 0.89 0.33 x 0.27 -41.1 0.353 1.2
2002.458 0.87 0.67 x 0.53 -71.4 0.497 1.3
2002.536 0.83 0.34 x 0.26 -26.9 0.276 0.9
2003.277 0.66 0.34 x 0.26 -18 0.202 0.6
2003.458 0.66 0.56 x 0.51 -72.9 0.311 1.8
2005.097 0.81 0.77 x 0.70 53.7 0.644 1.0
2005.458 0.92 0.62 x 0.48 10.8 0.746 1.1
2005.719 1.02 0.59 x 0.48 -50.3 0.856 1.2
2006.608 1.05 0.54 x 0.51 17.5 0.832 1.5
2007.425 1.04 0.58 x 0.52 -65.2 0.715 1.8
2007.683 0.98 0.56 x 0.54 -22 0.615 1.2
22/24 GHz
2001.988 0.82 0.26 x 0.19 -24.7 0.242 1.2
2002.241 0.65 0.23 x 0.18 -37.8 0.169 1.2
2002.536 0.55 0.29 x 0.16 -33.7 0.166 0.9
2003.277 0.56 0.25 x 0.17 -21.6 0.171 0.7
2004.124 0.56 0.59 x 0.27 -4.6 0.366 5.0
2004.955 0.61 0.38 x 0.31 67.6 0.469 4.0
1Beam Position Angle
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Large Array (VLA) plus Effelsberg at 1.6, 5 and 15 GHz in which 0917+624 was used as a
calibrator. Seven additional epochs were chosen from the MOJAVE1 (Lister & Homan 2005)
and 2cm Survey (Kellermann et al. 2004) programs observed between June 2002 and September
2007 at 15 GHz. Finally two further epochs were received fromthe RRFID (Radio Reference
Frame Image Database) observed at 24 GHz in February and December 2004. The afore listed
epochs are in the following referred to as ’additional epochs’.

In Table 5.1 we summarise the experiments analysed and used in this thesis. In column 2
we show the observing epochs, column 3 gives the mean fractional observing dates denoting
their further notation within this work. Column 4 lists the observing frequencies and column 5
the participating antenna arrays. The last column containsfurther information on problems that
occured during the individual experiments and flagged antennas due to poor data quality.

The data reduction of the core campaign was done using the NRAO Astronomical Image
Processing System (A) for the apriori calibration. Afterwards the resulting data were exported
in (u, v)-fits format and further processed in Difmap (Shepherd et al. 1994), a part of the
Caltech VLBI analysis programs (Pearson & Readhead 1984). Difmap uses the C algorithm
(Hoegbom 1983) and S procedures for phase and amplitude self-calibration. The data of
the additional epochs were already fully calibrated and available as (u, v)-fits files. Figures 5.1,
5.2 and 5.3 show the resulting maps of all epochs for the different frequencies respectively. The
related image parameters are listed in Table 5.2 where column 2 gives the total flux density,
columns 3 and 4 list the size of the beam and beam position angle, respectively. The peak flux
density is given in column 5 and the lowest map contours at a 3σ-level2 are listed in column 6.

A good description of the principles of radio interferometry, data calibration and imag-
ing can, for instance, be found in Klare (2003). A brief list of the standard proce-
dures for the apriori calibration in A is given in Bach (2004). More useful infor-
mation concerning the application of the analysis programsis contained in their so-
called CookBooks which can be found athttp://www.aips.nrao.edu/cook.html and
ftp://ftp.astro.caltech.edu/pub/difmap/difmap.html.

To investigate the jet kinematics of 0917+624, a number of circular Gaussian components
was fitted to the calibrated visibilities in order to describe the brightness distribution of the
source with as few parameters as possible. For each epoch andfrequency we cross-identified
individual model components along the jet using their distance r from the VLBI core, the flux
density S and size (full width at half maximum - FWHM). In thisidentification scenario, we
assumed that the VLBI core remained stationary. The model fitting was done repeatedly to verify

1Monitoring of Jets in Active galactic nuclei with VLBA Experiments
2σ is the residual noise of the map after subtraction of the model
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Figure 5.3: 22 GHz maps of all epochs of 0917+624; numbers denote epochs as given in Table 5.1;

parameters are listed in Table 5.2; contours are given in steps of 2.

the consistency of the number of components, and additionally the results were compared to the
adjacent epochs. Literature research gave no results about0917+624 exhibiting a counter-jet.
Hence, the outermost eastern component was assumed to represent the VLBI core (i.e., the
footpoint of the jet) and its position was fixed to (0,0). It appeared, that this component was
not necessarily the brightest one. The positions of the other components were measured with
respect to the core component which was assumed to be stationary.

The assumption of the stationarity for the VLBI core is basedon the following considera-
tions: since the observations were not carried out in phase-referencing mode, the information
about the absolute source position got lost. Therefore, thefinal model fitting results for all fre-
quencies of the simultaneously observed epochs were compared and inspected for position shifts
due to opacity effects (Lobanov 1998; Kovalev et al. 2008). Since the positionoffset between
higher and lower frequencies is 0.15 mas at its maximum, the VLBI core was considered to be
stationary.

For the flux density, the measurement error was derived from uncertainties of the ampli-
tude calibration as well as formal errors of the model fit procedure. The position errors were
calculated according to Fomalont (1989) via∆r ∝ FWHM

2×S NR where SNR is the signal-to-noise
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ratio. This, however, tends to underestimate the error in case of very compact small components
because the resulting error lies below the cell size of the map. In that case an additional
minimum error according to the map cell size was included which corresponds to 0.5 mas in
case of the 5 GHz data, 0.05 mas at 15 GHz and 0.04 mas in case of 22 GHz.

In the following I will first describe the kinematic results for each individual frequency
separately before directly comparing them in the subsequent section. The chapter closes with
the introduction of a model calculation for a possible binary black hole scenario in the case of
0917+624.

Table 5.3: Results for the fit on the core separation of the modelfit components at 15 GHz; given are the

annual separation rateµ, apparent velocityβapp and time of zero core separation t0 for each component.

Id1 µ [mas/year] βapp [c] t0

J11 0.04±0.003 2.76±0.17 2003.2±1.3
J10 0.17±0.01 10.57±0.59 2004.5±2.1
J9 0.12±0.01 7.28±0.35 2000.4±1.5
J8 0.13±0.01 7.97±0.29 1998.2±1.2
J7 0.13±0.01 8.12±0.64 1996.7±1.2
J6 0.12±0.01 7.68±0.86 1995.1±1.5
J5 0.14±0.01 9.06±0.53 1992.7±0.8
J4 0.20±0.02 12.33±1.10 1990.0±1.8
J3 0.01±0.01 0.38±0.54 -
J2 0.31±0.04 19.20±1.66 1983.2±1.9

1Identification of the individual components

5.2 Results and Discussion

5.2.1 Source Kinematics at 15 GHz

The available VLBI data consist of 15 observing epochs at 15 GHz covering a period of almost
eight years from December 1999 until September 2007 (see Table 5.1). This enabled a more
detailed kinematic analysis as for the 5 GHz and 22 GHz data. As the resolution of the individual
epochs was slightly different due to the presence or absence of the longest possible baselines
(i.e., observations with or without the Effelsberg telescope), the data were weighted accordingly
during the model fitting process to achieve an utmost similarresolution for all epochs. Figure 5.5
presents the resulting maps from the model fitting procedure. For each epoch we cross-identified
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the individual model fit components along the jet using theirdistance from the VLBI core, the
flux density and FWHM. Table B.1 in Appendix B contains the corresponding fit parameters.

Guided by a graphical analysis, which is presented in Figure5.4, we obtained an ade-
quate identification scheme for the kinematics in the jet of 0917+624 at 15 GHz. This scenario
consists of 11 (superluminal) components in total, approximately moving linearly away from
the core, the innermost 7 of which are displayed here. The higher numbered components are the
ones that were expelled last.

To describe the component motion, the function f(t)= a+b*t was fitted to the trajectory of
each component. The linear regression was calculated by assuming that the uncertaintyσi is
associated with the distance of each component from the VLBIcore. The results of the fits
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Figure 5.4: Relative core separation of the innermost modelfit components at 15 GHz. Colors denote for

different components, dashed lines give the result of a linear regression analysis. The horizontal dashed-

dotted line indicates the estimate of the scattering size (∼ 0.07 mas, Rickett et al. (1995)).
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are presented in Table 5.3 which gives for each component (column 1) the separation rateµ in
milliarc-seconds per year in column 2, the apparent velocity in column 3, and the time of zero
core separation in column 4.

For the calculation of the apparent velocity we adopted the standard cosmological param-
eters measured by the Wilkinson Microwave Anisotropy Probe(WMAP) following Spergel
et al. (2003): a Hubble constant of H0=71 h km s−1 Mpc−1 or (expressed in mas yr−1) of
15.83×10−3 h mas yr−1, a dark energy density ofΩΛ = 0.7, and a pressureless matter content
of Ωm = 0.3. We adopt the analytical fit to the luminosity distance for flat cosmologies with
cosmological constant according to Pen (1999), equation (1). For the transformation of apparent
angular separation ratesµ into spatial apparent speedsβapp we use

βapp =
µdL

c(1+ z)
(5.1)

following Pearson & Zensus (1987). Applying the redshift z= 1.446 of 0917+624, one
milliarcsec at the source distance corresponds to a scale of8.5 pc.

From the slope of the linear fit to the path of the components, the individual apparent velocities
can be calculated. The results are listed in Table 5.3. The inner components J10, J9, J8, J7, J6,
J5 move with an apparent speed ofβapp = (7− 10) c which is in good agreement with previous
findings (Krichbaum et al. 2002). Moreover, a back-extrapolation of the fitted line to the time
axis delivers an approximate ejection date, i.e. time of zero core separation for the respective
component (see Table 5.3). For component J8, the ejection date lies around 1998.2, which is in
the range of earlier results found by Krichbaum et al. (2002)and Fuhrmann (2004). This event
corresponds to a high level of variability. The modulation index lies at∼5% and decreases in the
aftermath to∼1.5% (see bottom panel of Figure 5.14). That was about the time when the size of
the core and the emitted component exceed the typical scattering size of the medium (indicated
by the dashed-dotted line in Figure 5.4), presumably resulting in strongly quenched scintillation.
Considering the succeeding increase in the modulation index in early 1999, the behaviour of J8
would in principle confirm our working hypothesis that the earlier variability decline was caused
by the ejection of a new component.

Component J9 was emitted around 2000.4, which overlaps witha period of very low
variability according to the modulation indices around that time. Two more components were
ejected during 2003 or 2004 as can be seen from the modelfits ofthe last epoch in 2004
(2004.955) and the last epoch in 2005 (2005.719). The back-extrapolation yields an approximate
time of zero core separation of 2004.5 for component J10 and 2003.2 for J11. Component
J11 seems to travel at a significantly lower apparent velocity (βapp = 2.76± 0.17 c) than J10
(10.57±0.59 c). Although the present component identification appears to us to be the most
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Figure 5.5: 15 GHz modelfits of 0917+624 convolved with a circular beam of (0.4×0.4) mas; numbers

refer to epoch listed in Table 5.1; lowest contour starts at 0.75 mJy/beam and increases in steps of 2; lowest

level skipped for maps of epochs 2, 4, 5, 6, 9, 15, 16, 17; contours of epochs 1 and 3 start at the third level.
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Figure 5.6: Relative Right Ascension (rel. R.A.) plotted vs. Relative Declination (rel. Decl.) at 15 GHz

starting from the inner jet components (left panel) to the outer ones (right panel).

reasonable, it is nevertheless possible that we are dealingwith blending effects due to strong
activity and hence an expansion of the VLBI core, but insufficient observational resolution. We
yet suspect that a further component ejection is already underway.

Component J3 at a relative core separation of∼6 mas appears to remain at a constant po-
sition with an annual core separation of (-0.01±0.01) mas. It is the only component that could
be identified as stationary in position within our modelfit scenario for the 15 GHz data.

The maximum apparent velocity displayed by component J2 (βapp = 19.20 ± 1.66 c) is
somewhat faster than what was found by Lister et al. (2009) who give a maximum jet speed of
15.57c (µ = 229± 17µas/yr). Taking the apparent speed of J2, we can derive a minimum value

for the Lorentz factorγmin = 19.23 viaγmin =

√

1+ β2
app. The resulting jet inclination angleθmax,

for which βapp is maximised, isθmax = 3.0◦. This is less than half of the value previously found
by Standke et al. (1996) of 7.4◦. From the minimum Lorentz factor we can calculate a minimum

value for the Doppler factor usingδmin = [γmin(1−βmin cosθmax)]−1 with βmin =

√

1− γ−2
min, which

yieldsδmin = 19.23. A maximum Doppler factor is achieved for even smallerinclination angles
(β→ 0, δmax = 2γ). Hence, for component J2 we obtain Doppler factors in the range of 19 to 38
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at inclination angles between 0◦ and 3.0◦.

Figure 5.6 presents the position of the jet components on thesky in terms of Relative
Right Ascension (rel. R.A.) and Relative Declination (rel.Decl.). The different panels
separate the inner and outer components for purpose of clarity. The jet reveals a bent
structure which becomes particularly obvious in the middlepanel where the intermediate
jet components J4 to J7 are displayed ranging from∼0.5 to 3.5 mas. An exception is again
component J3 which barely moves during the 8 years of observations (see right panel of Fig. 5.6).

Regarding the position angle (furthermore referred to as P.A.) of the components shown in
Figure 5.7, i.e., the angular distance from the core, one cansee a clearly increasing trend for the
innermost six components J5 to J11, apart from J10, which shows a rather convoluted behaviour
like J4. A cubic or higher order fit to the latter trajectoriesrevealed to be more appropriate than
a linear fit (not plotted). The P.A. of the outer components J2and J3 is constant. The P.A. of the
inner components rotates in the range of∼ 4◦ on average per year – an indication for a swing
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Figure 5.7: Position angle (P.A.) of the modelfit components at 15 GHz; upper panel: inner jet compo-

nents show an increase in P.A.; bottom panel: outer jet components have a rather constant P.A. whereas

J10 and J4 appear quite convoluted.
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Figure 5.8: Relative R.A. (x) and rel. Declination (y) of the modelfit components at 15 GHz plotted

versus time; the black lines display cubic fits to the data which indicates that the components do not move

linearly.

of the jet base. This hypothesis is also supported by the drift in P.A. between the ejection of J8
and J11, displayed as a kind of opening cone of the jet base in the left panel of Figure 5.6. The
observed changes of the P.A. with time clearly indicate motion on bent-non-ballistic trajectories.

The bent jet structure suggests that a linear fit to the component motion is possibly not the most
suitable. Hence, we took the three best defined components, J7, J8, and J9, and used a cubic fit
according toy = a0 + a1x+ a2x2 + a3x3 to model the rel. R.A. and rel. Decl. coordinates in what
looks the more appropriate way. The fit parameters are presented in Table 5.4. The graphical
result is presented in Figure 5.8 indicating that a linear fitis only a rough approximation to the
underlying jet kinematics. This could in principle as well imply an accelerated motion of the
components along the jet, which is also suggested by the increasing apparent speeds of the
components with increasing distance to the VLBI core. However, J10 does not fit into this
picture because its apparent velocity is twice as high as would be expected in case of a steadily
accelerating jet (see Table 5.3).

Figure 5.9 displays component size (FWHM) versus P.A. of J7,which showed the strongest
curvature in our analysis (cf. Figure 5.8). In Figure 5.10, the FWHM is displayed versus time.
It is remarkable that the size of J7 (and also J11, J10, J8, J5)increases systematically as it
separates from the core, especially beyond a distance of 0.8mas which was reached sometime



5.2. Results and Discussion 61

Table 5.4: Results for the cubic fits on the x-y coordinates of components J9, J8 and J7.
Id1 a0 a1 a2 a3

J9 x -2.2892e+07 34269 -17.1 0.0028442
J9 y 3.11e+07 46537 23.212 -0.0038592
J8 x -5.6812e+06 8517.3 -4.2564 0.00070902
J8 y 2.2805e+07 34129 17.026 -0.0028311
J7 x 4.4647e+07 66859 33.374 -0.0055531
J7 y 7.6735e+07 1.1489e+05 57.339 -0.0095388
1Identification of the individual components

after 2004 (cf. also Figure 5.12). The correlation of FWHM with orientation (P.A.) suggests
a geometrical origin, i.e. a projection effect. If the components are not spherical but form
an intrinsically oblique structure (e.g., a thin shock), relativistic aberration effects would lead
to apparent rotation in the observer’s frame causing the observed patterns (cf. left panel of
Figure 5.9). According to a size change from 0.1 to 0.5 mas forthe FWHM of J7, the differential
Doppler factor would have changed by∆δ = 5, which for an assumed constant jet speed of
γ = 8.18 could be caused by a change of the viewing angle of∆φ ∼ 1.5◦.

The flux density of the individual components of 0917+624 is plotted in Figure 5.11. For the
sake of clarity, the plot is split into several panels. The top panel shows the total flux density
resulting from single dish measurements of the Effelsberg and UMRAO3 radio telescopes at

3University of Michigan Radio Astronomy Observatory
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Figure 5.9: Left panel: illustration of helical component motion in thejet; right panel: FWHM of modelfit

component J7 plotted vs. P.A. at 15 GHz.
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Figure 5.12: FWHM of the modelfit components at 15 GHz plotted versus core separation; the component

size or jet width increases with increasing distance to the core; the jet appears collimated within the inner

0.7 mas and starts expanding beyond; the black line represents fits to the colimated and expanding parts

of the jet (see text).

5 GHz and 15 GHz, respectively, as well as the total VLBI flux from adding up the individual
component fluxes for each epoch. The total flux density decreases from the first epoch in 1999
until the end of 2004, afterwards it increases again.

There is a clear decreasing trend in flux density for the outerjet components J2 and J5 to
J9. Moreover, the component size systematically increaseswith increasing distance to the VLBI
core. This is diplayed in the top (J11, J10) and middle panel (J8, J7, J5) of Figure 5.10 and in
Figure 5.12, where the FWHM is plotted versus time and distance from the core, respectively.
The jet is collimated within the inner 0.7 mas and starts expanding beyond. This is in accordance
with the theory of an adiabatically expanding jet (e.g., Blandford & Königl 1979). From the
increasing jet width (i.e., the component size) one can deduce the opening angle of the jet via
tanφ = FWHM

r which results inφ = 20.9◦. We are now able to derive the Mach number M of the
jet plasma at the point of the jet opening via sinφ = 1

M . The jet moves with a supersonic flow of
M = 2.8.

As already addressed previously, the VLBI core J0 is sometimes fainter than the first jet
component (J8 and J9, respectively) until the middle of 2002(epoch 2002.536) where the flux
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of the VLBI core component and the first jet component J9 are ofthe same order. Component
J9, which was emitted around the middle of 2000, becomes firstvisible in epoch 2001.988,
showing significantly higher flux density than J0. As the component travels down the jet it
fades similar to the outer jet components, until a new component (J10) becomes visible in epoch
2005.097. Our analysis shows that in 0917+624 approx. 75% of the total flux is concentrated
in the core region (cf. also Standke et al. 1996) which can be seen in the second panel of
Figure 5.11. Between 2005 and 2007 the flux density in the outer jet has faded whereas the main
portion is focussed within the inner 0.4 mas. A measure for the compactness is also displayed in
Figure 5.13 which shows the visibility amplitudes for each epoch plotted versus the (u,v)-radius

Figure 5.13: Visibility amplitudes at 15 GHz plotted versus (u, v)-radius given in Mega-wavelength (Mλ),

read from left to right starting with the first epoch in the topleft panel; the distribution of visibility points

according to (u, v)-distance denotes the source compactness (see text).
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at 15 GHz. The panels in the second but last row display all three epochs in 2005 where the
source is most compact and contains∼90% of its total flux in the center, losing its compactness
again in 2007 when component J10 moves beyond 0.4 mas distance from the core.

A summary of the results for the four innermost components J0, J11, J10, and J9 is presented in
Figure 5.14. The correlation between flux and FWHM is not as clear as for the outer components
J5 to J8 (cf. middle panels of Figure 5.11 and 5.10). During the first half of the observations
(epochs 1999.888 to 2003.458), the overall source spectrumis slightly steeper than during
the second half (see middle panel in Figure 5.14). The main source flux density is distributed
among the inner 5 components (J6 to J9 and J0) at a time when thesource is less compact
(cf. above), hence appearing optically thinner than in single dish observations. The spectrum
begins to flatten after 2003 which coincides with the time of zero core separation of component
J11 (2003.2). In the second half of the observations (epoch 2005.097 to 2007.683), the overall
source spectrum is dominated by the innermost components J0, J10, and J11. The components
are bright and only small in size (FWHM). This is also demonstrated in the second but last panel
of Figure 5.14 where the brightness temperature for each component versus time is displayed.
The core exhibits the highest brightness temperature untilepoch 2005.097, when component
J10 occurs showing the smallest FWHM, but being the brightest component after J0. In the
subsequent two epochs, J10 increases in size and decreases in intensity while travelling down the
jet until in epoch 2005.719 component J11 becomes apparent with an even higher flux density
than J0 and a smaller component size.

In the bottom panel of Figure 5.14, the IDV modulation indices m and variability ampli-
tudes Y are plotted which were derived from single dish measurents with the Effelsberg (see also
Chapter 4) and Urumqi 25m radio telescope at 5 GHz (Marchili 2009). The related parameters
are listed in Table B.4. The arrows indicate the ejection dates of components J9, J10, and
J11, respectively. A visual inspection of the complete plotdoes not indicate any connection
between the IDV behaviour of 0917+624 and the VLBI source structure. According to our
previous assumption, the source was expected to return to its former IDV activity after the
ejection of a new component. This seems, however, not to be the case. Especially the time
between the ejection of J9 (2000.4) and J11 (2003.2) is a quiescent period of obviously strongly
quenched scintillation. Taking into account an average annual core separationµ = 0.16 mas yr−1,
a potentially new component should meanwhile have separated from the core and passed the
estimated distance above the presumed scattering size of∼ 0.07 mas (according to Rickett et al.
1995). Therefore, the quenched scintillation should stop and the former prominent variability
pattern is expected to reappear. Although modulation indexm and variability amplitude Y show
a slight increase around the end of 2005, 0917+624 is still far from its former activity (cf. left
bar in the bottom panel of Figure 5.14).
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Figure 5.14: Graphical analysis of the four innermost components J0, J11, J10, and J9 at 15 GHz; up-
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Figure 5.15: 5 GHz modelfits of 0917+624 convolved with a circular beam of (0.9×0.9) mas; numbers

refer to epoch listed in Table 5.1; lowest contour starts at 0.7 mJy/beam except for epoch 1 (2.1 mJy/beam)

and increases in steps of 2; lowest level skipped for maps of epochs 2, 3, and 5.

5.2.2 Source Kinematics at 5 GHz

Seven epochs of 5 GHz VLBI data were available, including data from the core campaign from
December 2001 to April 2003 (see Table 5.1). Following similar methods as applied for the
15 GHz data, Gaussian components were also fitted to the calibrated 5 GHz data. The maps are
displayed in Figure 5.15. The resulting parameters of the modelfits are listed in Table B.2.

Figure 5.16 presents our graphical analysis of the component motion in 0917+624 at 5 GHz.
The identification scheme consists of seven - mostly superluminal - components. The results
of the linear fits to the trajectory of each component are presented in Table 5.5 which gives for
each component (column 1) the separation rateµ in milliarc-seconds per year in column 2, the
apparent velocity in column 3, and the time of zero core separation in column 4.



5.2. Results and Discussion 69

1998 1999 2000 2001 2002 2003
epoch [years]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

re
la

tiv
e 

co
re

 s
ep

ar
at

io
n 

[m
as

]

C6
C5a
C5
C4
C3
C2

Figure 5.16: Relative core separation of the modelfit components at 5 GHz;different colors denote for

different components; dashed lines give the results of a linear regression analysis.

The fastest component is C4 with an apparent speed ofβapp = (19.65± 1.41) c. This is in the
same range as the outer jet component J2 of the 15 GHz identification scheme and results in
a maximum value for the angle to the line of sightθmax = 2.9◦. However, C4 corresponds to
component J4 at 15 GHz which has an apparent speed of (12.33± 1.10) c. This is rather in the

Table 5.5: Results for the fit on the core separation of the modelfit components at 5 GHz; given are the

annual separation rateµ, apparent velocityβapp and time of zero core separation t0 for each component.

Id1 µ [mas/year] βapp [c] t0

C6 0.04±0.004 2.22±0.26 1989.7±1.4
C5 0.10±0.02 6.28±1.17 1991.1±2.3
C4 0.31±0.02 19.65±1.41 1994.7±1.0
C3 -0.05±0.02 -2.81±1.02 -
C2 0.23±0.05 14.53±2.99 1970.5±4.7
C1 0.13±0.07 7.93±4.66 1816.4±102.3
1Identification of the individual components
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range of the second fastest component C2 (βapp = 14.53± 2.99 c). The reversion of the velocity
distribution for the two frequencies on the one hand could beexplained by the undersampling
of the 5 GHz data (7 epochs) compared to 15 GHz (15 epochs). Theeffect of the undersampling
will be further discussed in section 5.2.4. On the other hand, the three times worse resolution
at 5 GHz4 produces a larger beam pattern which rather resolves large-scale structures distant
from the VLBI core. The latter is already obvious in the comparison of the 5 and 15 GHz maps
(Figures 5.2 and 5.1) where at 5 GHz the coherent jet structure ranges up to 10 mas compared to
approx. 3 mas at 15 GHz. Besides the flux density of the outer jet components is several times
higher in the lower frequency band (cf. column 1 of Tables B.2and B.1).

4Angular resolution R∝ λ
D with frequencyλ and telescope diameterD
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Figure 5.17: Relative Right Ascension (rel. R.A.) plotted vs. Relative Declination (rel. Decl.) at 5 GHz.
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Figure 5.18: Position angle (P.A.) of the modelfit components at 5 GHz.

The apparent speed of the first jet component C6 of∼2.2c is three times slower compared
to the apparent speed of the inner jet components (J7, J8, J9)at 15 GHz. This can be ex-
plained by blending effects due to the worse resolution at 5 GHz. In this regime, onlyone
component is visible whereas at the higher frequency we are able to resolve 2 different compo-
nents: J7 and J8 from epoch 1999.888 to epoch 2000.915, and J8and J9 from epoch 2001.988 on.

The rel. R.A. - rel. Decl. pathes of the jet components at 5 GHzare presented in Figure 5.17.
The jet structure appears not as strongly bent as in the 15 GHzplots. At first sight, there are
merely two kinks visible. This can also be credited to the lower resolution that is achieved when
observing at 5 GHz. The jet emerges into northwestern direction with P.A.∼ −50◦ (cf. compo-
nent C6 in Figure 5.18) and turns northward at a distance fromthe core of about 0.5 mas with
P.A.∼ −11◦ (C4). The second kink occurs somewhere between 3 and 5 mas where the jet turns
north-north-westward at P.A.∼ −20◦ (C2 and C3). The slightly bent structure becomes more
obvious when plotting rel. R.A. or rel. Decl. versus time separately as is shown in Figure 5.19
where the upper panels display rel. R.A. and the bottom panels display rel. Decl. plotted versus
time, respectively. For a clear arrangement, the left panels present the inner components (C4
to C6) and the right panels show the outer ones (C2, C3). However, if we compare the results
for the rel. R.A. - rel. Decl. pathes at 5 GHz to the results at 15 GHz (Figure 5.8), it is apparent
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that the trajectories can rather be fitted linearly than by a higher-order fit. And except for C6,
the P.A. of the components remains rather constant as is shown in Figure 5.18 in contrast to the
increasing trend at 15 GHz (cf. Fig. 5.7). This is due to the worse resolution at 5 GHz showing
only coarse jet structure in the inner region.

The flux density evolution at 5 GHz is presented in Figure 5.20. The decreasing trend of the single
dish flux (top panel) can be mainly attributed to the VLBI core(C0) and first jet component (C6)
as well as the outer jet components C4, C2 and C1. Component C3, which corresponds to J3 at
15 GHz, appears to be constant since it barely shows changes in its flux density, size and position
(annual core separationµ = −0.05± 0.02mas yr−1). This confirms the findings at 15 GHz and
supports our component identification. In epoch 1999.888, the flux density of the VLBI core
(component C0) and the first jet component C6 display large errors. The main contribution
to these errors results from the model fitting process. Especially the flux density significantly
altered between the repeated model fittings, most likely because of some kind of blending effect
between the two components. The second jet component C5a is apparently separating into C5
and C4 in the successive epoch (2000.183) which is already suggested in Figure 5.19, but also in
Figure 5.18 and Figure 5.21 where P.A. and FWHM are plotted versus time, respectively.
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Figure 5.20: Flux density of 0917+624 at 5 GHz plotted vs. time: the upper panel shows the total VLBI
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Figure 5.21: Full width half maximum (FWHM) of the modelfit components at 5GHz plotted versus

time.
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Figure 5.22: FWHM of the modelfit components at 5 GHz plotted versus core separation.
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Figure 5.23: Visibility amplitudes plotted versus the (u, v)-radius at 5 GHz; the distribution of the visibil-

ity points according to (u, v)-distance show that the source is very compact.

The components do barely alter their FWHM except for C2 whichincreases in size the further
it moves down the jet. This is displayed in Figures 5.21 and 5.22 where the FWHM is plotted
versus time and core separation, respectively.

At 5 GHz the source reveals to be rather compact and core dominated which is also dis-
played in Figure 5.23 where the visibility amplitudes are plotted versus (u, v) distance. On
average, 85 % of the total flux are concentrated in the inner 1.2 mas regarding the three times
worse resolution compared to the 15 GHz data. Considering the inner 0.4 mas, it still remains a
portion of more than 70 %.

5.2.3 Source Kinematics at 22 GHz

The 22 GHz VLBI data consist of the four epochs from the core campaign observed between
December 2001 and April 2003 (see Table 5.1). Two additionalepochs from the RRFID (Radio
Reference Frame Image Database) observed at 24 GHz in February and December 2004 were
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Figure 5.24: 22 GHz modelfits of all epochs of 0917+624 convolved with a circular beam of

(0.3×0.3) mas; numbers refer to epoch listed in Table 5.1; lowest contour is 1 mJy/beam for maps of

epochs 4, 5 and 7; 2 mJy/beam for epochs 5 and 10; 7 mJy/beam for epoch 11; contour levels increase in

steps of 2.

taken to complement the data (all epochs will in the following be referred to as 22 GHz data).
Following the method that was applied for the 15 and 5 GHz data, Gaussian components were
also fitted to the calibrated data. The resulting maps are displayed in Figure 5.24 and the
associated parameters are listed in Table B.3.

The graphical analysis of the component motion in 0917+624 at 22 GHz is presented in
Figure 5.25. The identification scheme consists of nine components. The identification of the
innermost four jet components revealed to be straightforward compared to the components
beyond a relative core separation of 1 mas. Several components split up into two subcomponents
(K3, K2) and in some cases only one of these subcomponents wasvisible (e.g. K3b in the last
epoch 2004.955). Apart from the innermost and the outermostcomponents (K0 and K1), all
other reveal superluminal motion. For the calculation onlythe main components (K6, K3, K2)
were taken into consideration. The results of the linear fit to the trajectory of each component
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Figure 5.25: Relative core separation of the innermost modelfit components at 22 GHz; different colors

denote for different components; dashed lines give the results of a linear regression analysis.

are presented in Table 5.6 which gives for each component (column 1) the separation rateµ in
milliarc-seconds per year in column 2, the apparent velocity in column 3, and the time of zero
core separation in column 4.

The fastest component is K3 with an apparent velocityβapp ∼ 14.6 c. This is on the one

Table 5.6: Results for the fit on the core separation of the modelfit components at 22 GHz; given are the

annual separation rateµ, apparent velocityβapp and time of zero core separation t0 for each component.

Id1 µ [mas/year] βapp [c] t0

K7 0.09±0.02 5.47±0.95 2000.2±2.9
K6 0.15±0.01 9.58±0.54 1999.2±1.3
K5 0.16±0.01 10.05±0.79 1998.1±1.2
K4 0.16±0.03 10.01±2.04 1997.4±3.0
K3 0.23±0.01 14.63±0.05 1997.3±1.0
K2 0.19±0.01 11.75±0.37 1989.5±0.5
K1 0.03±0.11 2.42±7.33 -
1Identification of the individual components
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Figure 5.26: Relative Right Ascencion plotted versus Relative Declination of 0917+624 at 22 GHz.

hand slower than the fastest components of the other frequencies, and hence would result in a
larger angle to the line of sightθmax of the order of 4◦. On the other hand, this is remarkably
faster than the values of the corresponding components at 5 and 15 GHz. However, this result
was only achieved by means of three data points which makes itless reliable. This will be
further discussed in the context of sections 5.2.4 and 5.2.5where the effect of the obvious
undersampling compared to the other frequencies will be addressed in more detail.

The rel. R.A. - rel. Decl. pathes of the jet components at 22 GHz are plotted in Figure 5.26. The
jet structure reveals an almost quasi-sinusoidal pattern in direction of rel. Decl.. Between 1.2
and 1.6 mas the jet seems to widen owing to the split-up into two components instead of one.
Taking a closer look at the jet ridge line (the rel. R.A. - rel.Decl. pathes per epoch), that is
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Figure 5.27: Jet ridgeline of 0917+624 at 22 GHz; the dashed lines indicate the movement of the compo-

nent trajectories in time.

plotted in Figure 5.27, it becomes obvious that the jet does not expand but rather rotate. Here,
the trajectories appear to move counterclockwise at a relative core separation around 0.9 mas,
whereas around 1.5 mas the movement appears contrariwise asindicated by the dashed arrows
in Figure 5.27.

Figure 5.28 shows the components’ rel. R.A. and rel. Decl. plotted versus time where the
upper panels display rel. R.A. and the bottom panels displayrel. Decl. plotted versus time,
respectively. The trajectories of the inner jet components(K7, K6, K5 – left panel) indicate a
bent structure whereas the outer components are mainly moving in direction of rel. Decl. and
stay rather constant in direction of rel. R.A.. The trajectories of component K1 remain constant
in both directions which makes it an equivalent to J3 at 15 GHzand C3 at 5 GHz. In principle
a linear fit could well represent the trajectories of all components in both directions except for
the movement in rel. R.A. of the inner components K5, K6, and K7 (see bottom left panel
of Figure 5.28). It seems that the components experience a slight acceleration in this direction
similar to what could be concluded from the 15 GHz data (cf. Figure 5.8).
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Figure 5.28: Relative Right Ascencion (upper panels) and Relative Declination (lower panels) of

0917+624 at 22 GHz plotted vs. time.
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Figure 5.29: Position angle of the modelfit components at 22 GHz.
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Figure 5.30: Flux density of 0917+624 at 22 GHz plotted vs. time.

Figure 5.31: Visibility amplitudes plotted versus the (u, v)-radius at 22 GHz; the distribution of the vis-

ibility points according to (u, v)-distance gives a hint to the compactness of the source: thestructure of

0917+624 is resolved in the first four epochs and becomes core dominated in the last two.
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The P.A. of the modelfit components at 22 GHz is displayed in Figure 5.29 showing a clearly
increasing trend except for the more or less constant P.A. ofK7 and K1. The annual change of
the P.A. is in the range of∼ 4.2◦ on average. This is an indication for a rotation of the jet base
and confirms our findings of the 15 GHz analysis (cf. Figure 5.7).
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Figure 5.32: FWHM of 0917+624 at 22 GHz plotted vs. time; top panel displays the inner, bottom panel

the outer jet components.

The flux density of the 22 GHz components is plotted in Figure 5.30. The jet components show
a decreasing trend in flux density from the first to the last observing epoch except for K1, whose
flux density remains constant. This implies that K1 is equivalent to J3 and C3 of the 15 and
5 GHz component identification schemes. In contrast to the jet components at 22 GHz, the flux
density of the VLBI core (K0) constantly increases startingwith a smaller value than the inner
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jet components K7 and K6 in the first two epochs. This is also inaccordance with the 15 GHz
results (cf. Figure 5.11). The source structure is resolvedin the first four epochs and becomes
core dominated in the last two epochs (2004.124 and 2004.955) when the flux density of K0
reaches its maximum and a newly ejected component (K8) turnsup. The compactness of the
source is displayed in Figure 5.31 where the distribution ofthe visibility points according to (u,
v)-distance is plotted. This plot bridges the observationalgap in the 15 GHz data and shows the
period (2004) when 0917+624 becomes core dominated due to the ejection of a new component.

The development of the component size (FWHM) during the observations is shown in Fig-
ure 5.32. In contrast to the 15 GHz data, only K7, K5 and K1 appear to expand whereas K6 and
K2 even seem to reconfine during the observations. This is also demonstrated in Figure 5.33
where the FWHM is plotted versus core separation. It seems that the jet starts expanding to
a width of∼0.3 mas until a relative distance to the core of approx. 0.4 mas. Then it contracts
to a width of 0.2 mas at a distance of 0.7 mas. Afterwards it widens to around 1.1 mas at a
core separation of approx. 2.4 mas before it strongly constricts around 3 mas. This lateral
displacement is in contrast to the 15 GHz result and can be attributed to the slightly better
resolution at 22 GHz that enables to reveal more details on the small scale structure closer to
the VLBI core. It becomes clearer in a direct comparison in Figure 5.34 where larger-scale
plots of FWHM versus relative core separation at both 15 and 22 GHz are shown. Obviously,
the contraction of the 22 GHz jet structure (bottom panel) around 2 mas is more pronounced
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Figure 5.33: FWHM of the modelfit components at 22 GHz plotted versus core separation.
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Figure 5.34: FWHM of the modelfit components at 15 GHz (top panel) and 22 GHz(bottom panel) plotted

versus core separation.

compared to 15 GHz (top panel).

The repeated expansion and restriction of the jet within theinner 3 mas results in two dif-
ferent opening angles (φ1 = 36.9◦ andφ2 = 24.6◦). Calculating the according Mach numbers
results in M1=1.7 and M2=2.4. The latter number is in the range of the one deduced from the
15 GHz analysis.

The lateral displacement of the 22 GHz components from the jet ridge line at lower fre-
quencies (5 and 15 GHz) has previously been observed in the case of 0836+710 (Otterbein et al.
1998). It could be explained either by applying the theory ofKelvin-Helmholtz instabilites or
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by geometrical changes due to variations in the viewing angle of the jet (Lobanov et al. 1998).
The latter case can in principle be supported by the change ofthe viewing angle we found in the
analysis of the 15 GHz data (see p. 61).

5.2.4 Combining All Frequencies - Spectral Evolution

The combination of all epochs also served to cross-identifythe components at the three different
frequencies. It turns out that the model fitting and identification has been quite accurate within
the individual epochs. For a better comparison, the core separation of the inner modelfit
components is plotted versus time in Figure 5.35. The left panel shows all components of
all epochs and frequencies except for the outermost component C1. The right panel displays
only epochs between 1999 and 2005 within a relative core separation of 1.8 mas. Additionally,
Table 5.7 contains the cross-identification between the components of different frequencies and
the respective results for the deduced apparent velocities.

Table 5.7: Cross-identification for all frequencies from model-fitting.
Id1 β5GHz

app [c] β15GHz
app [c] β22GHz

app [c]
C0= J0= K0 - - -

J9= K7 - 7.28±0.35 5.47±0.95
C6= J8= K6 2.22±0.26 7.97±0.29 9.58±0.54

J7= K5 - 8.12±0.64 10.05±0.79
J6= K4 - 7.68±0.86 10.01±2.04

C5= J5= K3 6.28±1.17 9.00±0.51 14.63±0.05
C4= J4= K2 19.65±1.41 12.33±1.10 11.75±0.37
C3= J3= K1 -2.81±1.02 0.38±0.54 2.42±7.33

C2= J2 14.53±2.99 19.20±1.66 -
C1 7.93±4.66 - -

1Identification of the individual components

Regarding the significant differences in the apparent velocity and the parameters derivedfrom it,
not only the resolution but especially the time sampling at the individual frequencies obviously
plays the most important role in a combined analysis of several different frequencies. We will
see in the following section that important kinematic features might occur during the long-term
observation of individual sources, such as a temporal slowdown or acceleration of the jet, which
could simply not be detected with an insufficient amount of observing data. This seems also to
be the case for the 5 GHz and 22 GHz data of 0917+624. Hence, the results of the well-sampled
15 GHz observations are considered the most reliable with regard to the calculation of apparent
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velocities, Doppler factor, opening angles, and the like.

In order to point out the significance of the time sampling, the relative core separation of
the inner jet components is plotted in Figure 5.36 with separate panels for each cross-identified
component. The top panel already shows an example of the afore mentioned features which can
only occur when a satisfactory amount of data is available. Component J9 seems to experience a
slowdown reaching an almost constant distance to the VLBI core in 2007. J7 on the other hand
(third panel) and also J6 (bottom panel) obviously start on amore constant level and run through
a phase of acceleration towards the end of the observations.This has already been accounted
for in the 15 GHz analysis where the rel. R.A. and Decl. of J9, J8 and J7 have been fitted by a
third-order fit (cf. Figure 5.8). The 5 and 22 GHz data, however, only span a shorter timerange
where the component movement can only be fitted by a linear trend.

Another instance of the importance of the time sampling are the times of zero core separation
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Figure 5.35: Relative core separation of the modelfit components at all frequencies plotted vs. time;

cross-identified components are denoted with the same colorbut different symbols; left panel shows all

components of all frequencies except for C1; right panel displays only epochs including at least two
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Figure 5.36: Relative core separation of the modelfit components at all frequencies plotted vs. time for

single components (inner jet region).

of the components at the three frequencies. The results are again summarized in Table 5.8. As
already pointed out, the 15 GHz results are considered the most reliable because of the higher
amount of observing epochs. The time of zero core separation- or in other words the time a new
component has been ejected from the VLBI core - can be confirmed for the following 15 GHz
components within their error ranges: J9 and K7, J8 and K6, J6and K4, C5 and J5, J4 and K2.
Consequently, a new component has been ejected on average every 2 years between 1990 and
2000.4.
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Table 5.8: Time of zero core separation of cross-identified modelfit components.
Id1 t0/5GHz t0/15GHz t0/22GHz

J9/K7 - 2000.4±1.5 2000.2±2.9
C6/J8/K6 1989.7±1.4 1998.2±1.2 1999.2±1.3

J7/K5 - 1996.7±1.2 1998.1±1.2
J6/K4 - 1995.1±1.5 1997.4±3.0

C5/J5/K3 1991.1±2.3 1992.6±0.8 1997.3±1.0
C4/J4/K2 1994.7±1.0 1990.0±1.8 1989.5±0.5
C3/J3/K1 - - -

C2/J2 1970.5±4.7 1983.2±1.9 -
1Identification of the individual components

The development of the flux density across the three frequencies is displayed in Figure 5.37
using the example of four cross-identified components, namely the VLBI core, the first, second
and third correlated jet components (see Table 5.7). Here, only epochs between 1999 and 2003
are considered where 0917+624 was observed at least at two frequencies per epoch. Not all
components could be equally identified in all epochs and frequencies.

As we have already seen previously from the three different frequencies’ flux plots (cf.
Figures 5.11, 5.20 and 5.30), Figure 5.37 shows that the flux density decreases with increasing
core distance. If the components now expand they become optically thin turning from a flat into
a steep spectrum. This is, however, only applicable for the 15 GHz data except for component
J4 that increases in size but also keeps an almost constant flux density as is the case for all of the
examined 5 GHz components (cf. Fig. 5.21). The 22 GHz components K6 and K2 even show a
decrease in FWHM (cf. Fig. 5.32). This is reflected in the development of the spectral indices
α5/15GHz andα15/22GHz that have been derived for each component separately. They are listed in
Tables 5.9 and 5.10, respectively, and plotted in Figure 5.38. The dotted lines are linear fits to
the spectral indices and indicate their overall trend during the observations.

The spectral indexα5/15GHz of the VLBI core is flat as expected from the unresolved opti-
cally thick core region, varying between slightly steeper and flatter values (∼ −0.8 to −0.2),
except for the first epoch (1999.888). Here the VLBI core at 5 GHz shows a higher flux density
than the first jet component (C6) whereas at 15 GHz it is reversed. The further the 5 and
15 GHz components move away from the core they expand and hence become optically thinner
(C6/J8 and C5/J5). The third correlated jet component (C4/J4) initially follows this behaviour.
However, its spectrum flattens in 2002 when the C4 flux densityhas decreased while the one of
J4 has increased and its FWHM exceeds that of the 5 GHz component.
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Figure 5.37: Flux density of the modelfit components at 5, 15 and 22 GHz.
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Table 5.9: Spectral Indexα5/15GHz of four different components.

epoch α(C0=J0) α(C6=J8) α(C5=J5) α(C4=J4)

1999.888 -0.67±0.68 -0.35±0.46 - -
2000.183 -0.15±0.10 -0.56±0.14 -0.79±0.09 -1.80±0.22
2000.915 -0.22±0.10 -0.59±0.11 -0.76±0.27 -1.46±0.29
2001.988 -0.76±0.32 -1.01±0.43 -1.19±0.55 -0.74±0.73
2002.241 -0.77±0.36 -0.97±0.18 -1.02±0.56 -0.46±0.20
2002.536 -0.62±0.17 -0.96±0.11 -0.92±0.34 -0.76±0.29
2003.277 -0.28±0.09 -0.99±0.13 -1.15±0.19 -1.03±0.26

Table 5.10: Spectral Indexα15/22GHz of four different components.

epoch α(J0=K0) α(J8=K6) α(J5=K3) α(J4=K2)

2001.988 -1.24±1.01 -0.22±1.32 -0.13±1.55 -
2002.241 -1.73±0.96 -0.57±0.46 - -1.12±0.56
2002.536 -0.97±0.79 -1.22±0.36 - -1.81±0.88
2003.277 -0.14±0.31 - -0.23±0.48 -0.83±0.78
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Figure 5.38: Spectral Indicesα5/15GHz (top panel) andα15/22GHz (bottom panel) plotted for four different

components; dotted lines are linear fits representing the overall trend for each component.
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Figure 5.39: Spectral index mapsα5/15GHz between 1999 and 2003 with a circular beam of (0.9×0.9) mas;

spectral index is shown by color; contours represent the 5 GHz maps.
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Figure 5.40: Spectral index mapsα15/22GHz between 2001 and 2003 with a circular beam of

(0.4×0.4) mas; spectral index is shown by color, contours represent the 15 GHz maps.

The VLBI core (J0/K0) shows a steeper spectral indexα15/22GHz in the first epoch (2001.984)
when its flux density is lower than the first jet component’s (J8/K6) which has now become
the most compact part of the source. The flat spectrum of J8/K6 steepens gradually as the flux
density decreases below the VLBI core flux density. The reverse holds for the spectrum and
flux density developement of J0/K0 that flattens towards the last epoch (2003.277) while its
flux density is increasing. The spectrum of the second jet component (J5/K3) is slightly flatter
compared toα5/15GHz as the flux densities of J5 and K3 are of almost the same value. The
flattening trend of the spectral indexα15/22GHz of the third jet component is comparable to the
behaviour between 5 and 15 GHz.

To complete the picture, coloured contour maps of the spectral indices are displayed in
Figures 5.39 (α5/15GHz) and 5.40 (α15/22GHz) where the spectral index is shown by color; contours
represent the 5 and 15 GHz maps, respectively.

Figure 5.39 clearly depicts the results forα5/15GHz. The color gradient changes from a flat
spectrum close to the VLBI core to a steep spectrum in the jet region. Also the flattening of the
spectral index of the third correlated jet component (C4/J4) is clearly visible in the jet in last
four epochs (see middle and bottom panels). In Figure 5.40 especially the flattening ofα15/22GHz

of the VLBI core accompanied by the steepening of the first jetcomponent’s spectral index is
brought out by the colour change in the innermost 1 mas region.

In conclusion, the spectrum of the VLBI core varies between steep and flat bcoming flat-
test in 2000 and 2003 (∼ 0.2, cf. Tables 5.9 and 5.10). These dates coincide with the ejection of
new components (J9 and J11) around 2000.4 and 2003.2.
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5.2.5 The binary black hole scenario for 0917+624

The kinematic analysis of the VLBI data revealed that 0917+624 shows a strong jet curvature.
This makes it a good candidate for the binary black hole scenario as explained in Chapter 2.4.
Prof. Jacques Roland from the Institut dAstrophysique of the University of Paris developed a
method to fit the variations of both coordinates (R.A. and Decl.) of a VLBI component as a
function of time, assuming that the nucleus of the radio source contains a binary black hole
system (BBH system). The presence of such a BBH system produces two perturbations of the
ejected VLBI components’ trajectories, namely the precession of the accretion disk and the
motion of the two black holes around their common center of gravity. By using only the VLBI
coordinates, the problem reduces to an astrometric one. Hence, given the kinematic information
of a trajectory, one is able to deduce the inclination angle of the source and the bulk Lorentz
factor of the ejected component. Based on these assumptions, Prof. Roland developed a software
program that is able to calculate the afore mentioned parameters from a set of observational
data.

So far the method has been applied only to the trajectory of the 15 GHz component J8.
The starting parameters that are required in order to run theprogram are the coordinates of the
VLBI component (rel. R.A. and Decl. - in the following referred to as X and Y coordinate)
listed in Table B.1 in Appendix B, as well as the components’ time of zero core separation t0 =

1998.2.
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Figure 5.41: Fits to the X (left) and Y (right panel) trajectories of component J8 indicated by solid red

lines.

The modelling process is started with the assumption that the two black holes have equal mass.
Then it is searched for an inclination angleio that provides the bestχ2 fit (see C.33), i.e.,χ2
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should present a minimum.

Figure 5.41 shows the results of separate fits to the X and Y trajectories of component J8
indicated by a red line. The right panel displays one interesting feature that results from the
fitting process: the time of zero core separation t0 ∼ 1999, which is the intersection of the red
curve with the abscissa, differs by one year from the one derived in the kinematic analysis. In
fact, a smoothχ2 fit could only be achieved if the origin of the ejection of the VLBI component
was shifted from 1998.2 to 1999 since otherwise no minimum could be found.

The shift of the time of zero core separation supports the hypothesis of the 15 GHz kine-
matic analysis that a higher-order fit to the VLBI trajectories is probably more suitable than a
linear one (cf. page 60). The shape of the trajectory of component J8 suggests a slow-down after
its ejection followed by an accelerated phase between 2002 and 2006. Afterwards it seems to
reach again a plateau of decelerated motion. This structureis even better visible for component
J9 (cf. Figures 5.4 and 5.8). The acceleration and deceleration phases can be explained by a
geometrical effect. When the component is moving on a kink towards the observer, its radiation
is boosted in this direction causing the effect of an accelerated motion. If it is moving across the
jet cone the component seems to slow down in speed (see also Figure 5.9, left panel).

The case of a non-linear fit to a component trajectory only becomes apparent if a suffi-
cient amount of observational data is available that coversa suitable timerange - as is the case for
the 15 GHz data. Since the 5 and 22 GHz observations do not meetthese requirements, we can
only try to embed the results of the component identificationbetween the different frequencies
in order to further test the modelling process.

The resulting parameters of the modelling process are as follows:

• the masses of the two black holes were assumed to be equal,M1 = M2 = 4.58 · 107M⊙;

• the inclination angleio could not be derived;

• φo, the phase of the precession att = 0 was found to be -125;

• the rotation angle in the plane perpendicular to the line of sight (see C.1 and C.2)∆Ξ =
44.6◦,

• the opening angle of the precession cone (see C.8)Ω = 1.12◦,

• the maximum amplitude of the perturbation (see C.7)Ro = 445≫ 1,

• the precession period of the accretion diskTp resulted in 14000 years;

• Td, the characteristic time for the damping of the beam perturbation, was found to be 1900
years;
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• the bulk Lorentz factor of the VLBI componentγc is in the range of 8≪ γc ≪ 20, which
overlaps with our kinematic results from the 15 GHz analysiswhere a minimum Lorentz
factor of 19.23 was derived.

• ψo, the phase of the BBH system att = 0, was calculated to be 151;

• the period of the BBH systemTb = 5800 years;

• the origin of the ejection of the VLBI component or time of zero core separationto = 1999;

• the Alfvén speedVa, which is the propagation speed of the perturbations, was derived as
Va ≃ 0.02c;

• nrad, the number of steps to describe the extension of the VLBI component along the beam,
was chosen to be 110.

Figure 5.42: Fit to the X-Y trajectory of component J8 indicated by a solidred line; squares 1 and 2

denote the two black holes; the plot is mirror-inverted on the X axis.

The temporal shift for the origin of the ejection of the VLBI component from 1998.2 to 1999
entails a spatial differenceσ = 0.098 mas which is larger than the error range of the VLBI
components in the core region. Hence, we interprete the shift as the distance between the two
black holes (see also Figure5.42). If this result can be verified, it would be the first time that the
distance between two black holes of a binary black hole system could be ’measured’ by means
of a plain astrometric analysis.

As already depicted in Chapter 5.2.1, components J7, J8, andJ9 could best be represented by
a higher-order fit (cf. Figure 5.8) which fits well to the theory of a helically twisted jet due to
the interaction of two black holes in the central region of the AGN. However, the trajectory of
component J10 does not meet this criterion since it is directed rather straight (according to the
number of data points available so far) moving with a slightly higher apparent velocity compared
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to the afore mentioned components. A tentative interpretation could be that this component was
ejected by the second black hole since it could also be separated observationally from the VLBI
core at a point much closer than the other components (cf. Figure 5.4).

In order to examine the reliability of our preliminary results, the program is currently ap-
plied to all suitable trajectories that have resulted from the data analysis. However, this is still
work in progress and beyond the scope of the thesis.
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VLBI Polarimetry of 0917+624

6.1 Observations and Data Analysis

The underlying data were obtained from the VLBI polarimetryobservations of 0917+624 at
5, 15 and 22 GHz during the ’core campaign’ (see Chapter 5.1) from December 2001 until
April 2003, hereafter called epoch 2001.984 (26 December 2001), epoch 2002.235 (27 March
2002), epoch 2002.531 (13 July 2002) and epoch 2003.273 (10 April 2003). The data were
complemented by the three previous epochs observed betweenNovember 1999 and November
2000 at 5 and 15 GHz (epochs 1999.888, 2000.183, and 2000.915).

In the analysis of the polarisation data several difficulties had to be coped with. The ex-
periment was not optimised for polarisation observations because the total bandwidth was
16 MHz, hence, the bandwidth per IF reduced to 8 MHz. Besides no adequate polarisation
calibrator was observed simultaneously. Thus, the calibration of the polarisation vector had to
be done by means of the target source itself (see below). The third, and most crucial point is,
that nothing is known about the rotation measure (RM) of 0917+624. Taylor (1998, 2000) found
that VLBI measurements reveal absolute Faraday RMs in excess of 1000 rad m−2 in the central
regions of seven out of eight strong quasars. But beyond a projected distance of∼20 pc the jets
are found to have|RM|<100 rad m−2. For 0917+624 this implies that there could possibly be a
sharp rotation gradient between the inner 2.4 mas region andthe jet further out. A determination
of the RM of 0917+624 would have been desireable, yet not possible. The reasons for this will
be explicated thereinafter.

Nevertheless, a polarisation analysis was worked out sinceonly little is known about the
recent polarisation behaviour of the source apart from whatwas summarised in Chapter 3. For
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epoch 2002.235, the data calibration turned out to be insufficient yielding only in a map of
left circular polarisation. Thus, it was excluded from further polarisation analysis. Finally,
it can be added that no circular polarisation was found in theMOJAVE 15 GHz polarisation
measurements (Homan & Lister 2006).

After the processing of the data in Difmap for the kinematic analysis, the self-calibrated
data were reimported into AIPS for the calibration of the so-called antenna D-terms and the
polarization imaging. The D-terms represent the leakage ofcircular polarisation from right into
left antenna feed and vice versa. In order to distinguished between the source intrinsic and the
feed induced antenna polarisation, a total intensity imageof the source has to be divided into
several components with similar polarisation properties.This can be done by means of task
CCEDT. Task LPCAL then determines the effective parameters for each antenna feed and writes
them to a table.

In polarisation imaging these antenna tables are now applied when first producing separate maps
of the Stokes parametersI, Q andU (see Chapter 2.3.2) by means of task IMAGR. Subsequently
theQ andU maps are joined to a linear polarisation intensity map (viaI =

√

Q2 + U2) by means
of task COMB which also produces a map containing information on the EVPA. The maps of
total intensity, total polarised intensity and EVPA are finally combined in one plot using task
KNTR (or PCNTR or the like) which enables to produce contour plots including line vectors
that represent the position of the electric field vector. Thedetected polarizations were required
to be above the 5σ-level whereσ is described by the rms noise in the polarisation maps.

In the analysis by means of AIPS, the same parameters were used for all epochs in the production
of the polarisation maps. Since the first three epochs were simply snapshot observations, the
(u,v)-coverage was poor compared to the other epochs (cf. Figure6.1). But in order not to
loose the good resolution of the four core VLBI epochs, the maps were produced by means of
uniform weighting which increased the noise level for the maps of the first epochs. In order
to compensate for this, I decided not to use a robustness parameter (robustness 0) because a
weighting towards a uniform weighting increases the noise in the maps of the first three epochs
even more whereas a use of the robustness parameter towards natural weighting would have
degraded the map resolution of the four main epochs.

6.2 Results and Discussion

The final step in the imaging process is the calibration of theorientation of the EVPA. For 5
and 15 GHz this could be done by means of single dish observations of 0917+624 performed
with the Effelsberg and Urumqi radio telescopes simultaneously with orclose to the epochs of



6.2. Results and Discussion 99

d e

f g

a b c

Figure 6.1: (u,v)-coverage at 15 GHz; letters denote epochs: a) 1999.888, b)2000.178, c) 2000.913, d)

2001.984, e) 2002.233, f) 2002.529, g) 2003.252; a, b and c were snapshot observations with only poor

(u,v)-coverage.

the available data. When no simultaneous data were at hand the values of the missing epochs
could be derived through a linear extrapolation. This can bejustified by the fact that the source
has shown to be rather invariant in the observations with single telescopes showing only small
gradual changes in polarisation angle (cf. Chapter 4) during the relevant period.

Since no 22 GHz single dish measurements were available, theEVPA had to be extrapo-
lated from the 5 and 15 GHz data according to equation 2.27 assuming that the RM did not
change during the respective period. The result is displayed in Figure 6.2; parameters are
listed in Table 6.1. The polarization angle, or apparent orientation of the projectedE vectors
on the sky, is measured from north towards east. Finally, thevalue of the EVPA from the
VLBI measurements is subtracted from the one of the single dish observations resulting in the
correction value for the VLBI data (column 5 in Table 6.1). Itcan be applied as parameter
ROTATE in the imaging task IMAGR to produce the final polarisation maps.
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Table 6.1: EVPAs derived from single dish and VLBI measurements and resulting correction values.
epoch ν [GHz] EVPA1

sd [◦] EVPAVLBI [◦] δEVPA [◦]
1999.888 5 53 81 -28
2000.178 5 33 113 -80
2000.913 5 48 107 -59
2001.984 5 41.5 111 -69.5
2002.233 5 45 108 -63
2002.529 5 43 111.5 -68.5
2003.252 5 46 114 -68
1999.888 15 45 87 -42
2000.178 15 42 134 -92
2000.913 15 40 95.5 -55.5
2001.984 15 37 127 -90
2002.233 15 36 115 -79
2002.529 15 35 137 -102
2003.252 15 33 135 -102
2001.984 22 33 112 -82
2002.531 22 29 163 -139
2003.273 22 24 47 -31
1single dish EVPA
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Figure 6.2: Extrapolation plot for EVPA corrections at 22 GHz.
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Figure 6.3: Polarisation maps at 5 GHz; the first and third row (a) diplay the contour maps of total

intensity while the rows beneath (b) show the polarisation maps with corresponding electric field vectors;

epochs 1 to 7 according to order of Table 6.2 which contains the map parameters; the length of the electric

vector is proportional to the strength of the polarisation (1 mas= 25 mJy/beam).
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6.2.1 Polarisation at 5 GHz
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Figure 6.4: Example of a large scale polarisation map at 5 GHz of epoch 2002.233; left panel: total inten-

sity map, right panel: polarisation map with correspondingelectric field vectors (1 mas= 25 mJy/beam);

parameters are listed in Table 6.2.

The images of the 5 GHz polarisation analysis are presented in Figure 6.3. First and third row
display the total intesnity maps and second and fourth row the according polarisation maps with
electric field vectors. The map parameters are listed in Table 6.2. Total and polarised intensity
and polarisation angle were measured for the position of theVLBI core and four points along
the VLBI jet at a rel. Decl. of approximately 2, 6, 7, and 23 mas, respectively. These points
correspond to the positions of the modelfit components resulting from the kinematic analysis
and are in the following also referred to as components.

Since the polarisation structure is poorly visible at 23 mas, only the inner 10 mas of 0917+624
are diplayed in Figure 6.3. As an example for the outer jet structure, epoch 2002.233 is
presented in Figure 6.4 which shows the most distinc polarisation structure beyond 10 mas.
However, the measurement errors of the corresponding EVPAsat 23 mas distance are relatively
large in all epochs due to the diffuse jet structure and should thus be considered to be less reliable.

The measurements were done by means of AIPS tasks TVWIN and IMSTAT. The latter inte-
grates over a rectangular region that has been set by the firsttask. This is certainly suboptimal
to represent the true component structure and hence the measurements were performed serveral
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Table 6.2: Parameters ofA maps for total and polarised intensity at 5 GHz; displayed are total inten-

sities of five identified components, the lowest map contour levels, beam and beam position angle (top

panel); polarised intensity and lowest map contours (middle panel); according polarisation vectorsχ, and

the difference between the EVPAs of the jet and core components (bottom panel).

epoch ICore I2mas I6mas I7mas I23mas lowest contours beam bpa
[mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam] [mas] [◦]

1999.888 864.7±86.5 57.8±10.2 44.0±5.8 16.6±3.4 22.3±3.4 0.40 1.99 x 1.27 -40.01
2000.183 965.6±73.2 34.2±5.8 47.1±4.8 13.4±2.5 15.0±2.8 0.40 1.39 x 1.11 -52.65
2000.915 965.9±63.4 38.9±6.1 45.3±4.6 16.1±2.9 29.2±2.7 0.50 1.22 x 1.13 -10.99
2001.988 771.0±125.8 48.0±13.0 37.3±16.4 11.0±1.6 27.7±9.0 0.60 1.45 x 1.36 13.65
2002.241 745.4±97.2 43.9±11.0 31.3±6.9 10.8±1.4 24.8±8.0 0.35 1.33 x 1.22 -25.67
2002.536 702.9±87.8 44.1±11.1 30.1±6.6 10.1±1.4 24.4±7.6 0.55 1.29 x 1.12 -11.95
2003.277 529.1±74.7 41.0±9.1 26.0±5.7 9.2±1.2 24.7±8.2 0.35 1.39 x 1.32 -23.24
Average 792.1 44.0 37.3 12.4 24.0
σI 155.6 7.5 8.4 3.0 4.6

σI /Average [%] 19.7 17.0 22.4 23.9 19.1

epoch PCore P2mas P6mas P7mas P23mas lowest contour
[mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam]

1999.888 20.0±2.0 2.9±0.4 1.1±0.1 0.5±0.1 3.2±0.5 0.30
2000.183 41.2±2.9 2.9±0.3 2.1±0.1 0.7±0.1 5.3±0.7 0.30
2000.915 35.9±2.3 3.1±0.5 2.3±0.5 1.2±0.1 8.2±0.9 0.40
2001.988 38.0±6.1 3.4±0.5 2.3±0.2 1.1±0.1 5.8±2.6 0.30
2002.241 37.9±4.7 3.9±0.4 2.6±0.3 1.3±0.1 6.6±2.7 0.18
2002.536 31.8±3.9 3.5±0.5 2.8±0.3 1.2±0.1 7.1±3.2 0.25
2003.277 25.8±3.8 3.5±0.5 2.3±0.2 1.0±0.1 5.5±2.6 0.30
Average 32.9 3.3 2.2 1.0 5.9
σP 7.6 0.4 0.5 0.3 1.6

σP/Average [%] 23.1 11.0 23.7 31.7 26.6

epoch χCore χ2mas χ6mas χ7mas χ23mas ∆χ2mas−Core ∆χ6mas−Core ∆χ7mas−Core ∆χ23mas−Core

[◦] [◦] [◦] [◦] [◦] [◦] [◦] [◦] [◦]
1999.89 -129.5±6 -120±2 -17±17 -141±40 -44±52 9.5 112.5 -11.5 85.5
2000.18 -150±5 -141±6 -42±12 -120±21 -94±46 9 108 30 56
2000.92 -130±5 -120±28 -33±30 -109±33 -77±41 10 97 21 53
2001.99 -138±1 -141±4 -37±9 -119±8 -75±41 -3 101 19 63
2002.24 -130±2 -133±5 -35±13 -113±10 -75±37 -3 95 17 55
2002.54 -140±2 -139±5 -43±12 -118±7 -77±41 1 97 22 63
2003.28 -134±2 -138±6 -47±9 -113±7 -73±46 -4 87 21 61
Average -135.9 -133.1 -36.3 -119.0 -73.6
σχ 7.5 9.4 9.8 10.5 14.8

σχ/Average [%] 5.5 7.0 27.4 8.8 20.2

times to receive an adequate error from the scattering of theindividual measurements.

Figure 6.5 summarises the measurement results for total andpolarised intensity and EVPA of
the inner four components. The flux density in total intensity of the VLBI core region again
follows the same decreasing trend that has already been found previously from single dish
measurements (cf. Chapter 4). Besides, the result is in accordance with the kinematic analysis if
we consider the VLBI core component as a partial superposition of components C0 and C6. The
jet component at 2 mas can at least in the last four epochs clearly be identified with C4, while
the jet components at 6 and 7 mas correspond to C3 and C2, respectively. The total intensity
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variations during the observing period are in the range of∼20 % (see Table 6.2,σI/Average).
Any deviations of the flux density values from the results of the kinematic analysis can clearly
be attributed to blending effects due to the use of TVWIN.

The polarisation analysis shows a similar behaviour for thedevelopment of the polarised
intensity except for the first epoch (1999.888) when the polarised intensity of the VLBI core
component shows only half the value of the second epoch (2000.178). The variations in
polarised intensity are least pronounced at a 2 mas distancefrom the VLBI core (11 %) and
strongest around 7 mas (∼32 %). The latter could, however, be due to blending effects with the
component located around 6 mas.

In the core region of 0917+624, the EVPA is oriented almost perpendicular to the jet ridge
line which implies a magnetic field nearly perpendicular to the jet axis. This result is in
good agreement with previous findings (e.g., Pollack et al. 2003). In the outer jet between
4 and 10 mas, however, the orientation of the EVPA changes from parallel to the jet axis to
perpendicular and back to parallel. This indicates a toroidal structure of the jet axis which is not
directly visible at 5 GHz resolution.

The EVPA remains rather constant for all components at 5 GHz in the second half of the
observations. But changes from the first to the second epoch of the electric vector of the VLBI
core and two inner jet components are of the order of 20◦ and are already visible in the innermost
jet region in an inspection by eye of the maps in Figure 6.3. Atleast the slight change in the
orientation of the EVPA could be caused by an incorrect calibration of the overall orientation of
this vector in either the first or the second epoch.

In order to avoid a misinterpretation of the changes in the electric vector position angle if the
calibration of the EVPA should be unreliable (or in cases when a calibration is simply not
possible due to the lack of appropriate single dish data), one can still make a statement about the
relative changes between the different epochs by regarding the differences of the EVPA between
the VLBI core and a certain jet component. If these differences change significantly, obviously
one of the two components (if not both) underwent a change in its polarisation characteristics.
This has also been considered in our analysis and the resulting differences∆χ are listed in the
bottom panel of Table 6.2.

There seems to be a significant variation in the EVPA of the jetcomponents at 6 and
7 mas from the first to the third epoch (2000.913). However, since these two components are
located relatively close to each other it is more likely thatwe are simply dealing with a blending
effect between the EVPAs of those two components and that withinthe errors the electric vector
of the jet components remains constant throughout the observations.
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The variation in∆χ2mas−Core of about 13◦ from the third to the fourth epoch (2001.984)
can certainly be considered as real, even though minor, since this can be explained by a
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Figure 6.5: Analysis plot of 5 GHz polarisation maps; top panel: total flux density of VLBI core and

jet components at 2, 6 and 7 mas, middle: polarised flux density, bottom: EVPAs of jet and VLBI core

components.
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Figure 6.6: Total intensity maps with electric field vector at 5 GHz (1 mas= 25 mJy/beam) convoluted

with a ’pencil’-shaped beam of (2×1) mas with the major beam axis perpendicular to the jet ridgeline of

the inner 2 mas; epochs 1 to 7 according to order of Table 6.2.

broadening of the VLBI core due to the upcoming ejection of a new jet component. It would as
well imply the increase in polarised flux density from the first to the second epoch. The results
of the kinematic analysis of the previous chapter do supportthese findings: the time of zero core
separation for the next ejected component was found to be around 2000.4. After the ejection of
the new component, i.e. from epoch 2001.984 on, the polarised intensity gradually decreases
and∆χ2mas−Core remains almost constant.

For a better comparison of the results of the individual epochs, all maps were convolved
with the same ellipcitc ’pencil-shaped’ beam of (2×1) mas with the major beam axis approxi-
mately perpendicular to the jet axis of the inner 2 mas. Then slices were cut through the source
structure following the jet axis by means of the AIPS task SLICE. The results are intensity
profiles of all epochs always taken at the same position. Thisof course implies that in some
epochs the profiles might not show the real intensity maxima but rather slopes of the intensity
peaks. Nevertheless, one can clearly see the allocation of different maxima within jet structure.
The profile plots are displayed in Figure 6.2.1 where different colors denote different epochs.
Top and middle panels show total (I) and polarised (P) flux density, respectively, bottom panels
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present the fractional polarisationp1 throughout the jet.

Due to the comparably poor resolution at 5 GHz, there is only one peak in the core re-
gion visible in the total and polarised intensity profiles. In the jet one can barely distinguish
a second peak around -6 mas distance form the core, which is slightly more pronounced in
polarisation than in total intensity. The fractional polarisation profiles, however, disclose that
there are more components present in the jet than is revealedby the simple intensity profiles.
One can distinguish four to five maxima which, however, do notcorrespond to the components
that have been found in the kinematic analysis of the previous chapter - apart from a maximum
at approx. 2 mas. The fractional polarisation is higher in the jet than in the core region which
is well in accordance with previous findings (e.g., Cawthorne et al. 1993). It increases from
moderate maximum values of 6 % to approximately 17 % at a core distance of about 3.5 mas in
the last epoch (cf. bottom right panel in Figure 6.2.1).

The general decreasing trend in total flux density is again present in the profile plots.
Also the increase in polarised intensity from the first to thesecond epoch and the subsequent
gradual decline after 2002 is visible similar to the middle panel in Figure 6.5. The fractional
polarisation plots in the bottom panels of Figure 6.2.1 reveal that the polarisation in the jet
reduces to a lesser extent than the total intensity. This is best displayed in the bottom panel of
the last epoch (2003-04-10).

In summary, the 5 GHz polarisation analysis of the 0917+624 data shows an overall de-
creasing trend in total flux density and also, from 2002 on, inpolarised intensity. Besides
the value of the polarised intensity doubles from the first tothe second epoch. The EVPA
remains rather constant except for a minor change in∆χ2mas−Core of about 13◦ from the third
to the fourth epoch which can be interpreted in the context ofan upcoming ejection of a new
component from the VLBI core. The orientation of the EVPA is almost perpendicular to
the jet ridge line in the core region, which implies a magnetic field nearly perpendicular to
the jet axis. On the other hand, in the outer jet between 4 and 10 mas the EVPA orientation
changes between parallel to the jet axis and perpendicular indicating a toroidal structure of the jet.

1p = P/I [%]
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Figure 6.7: Profile plots at 5 GHz derived from cuts along the jet; different colors denote different epochs;

panels display profiles as follows: top: total flux density I,middle: polarised flux density P, bottom:

percentage of polarisation; maps were convoluted with pencil shape beam of (2×1) mas with the major

beam axis perpendicular to the jet ridge line.
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6.2.2 Polarisation at 15 GHz

The resulting maps of the 15 GHz polarisation analysis are presented in Figure 6.8. First and
third row again display the total intensity maps and second and fourth row the according
polarisation maps with electric field vectors. The map parameters are listed in Table 6.3. At
15 GHz resolution it was possible to display diffuse polarised intensity structure in the jet up
to approximately 7 mas distance in rel. Decl. from the VLBI core. Nevertheless, at higher
frequencies the structure of the inner jet region is more significant and thus Figure 6.9 shows a
close-up of the inner 3-mas jet.

Table 6.3: Parameters ofA maps for total and polarised intensity at 15 GHz; displayed are total inten-

sities of four identified components, the lowest map contourlevels, beam and beam position angle (top

panel); polarised intensity and lowest map contours (middle panel); according polarisation vectorsχ, and

the difference between the EVPAs of the jet and core components (bottom panel).

epoch ICore I0.5mas I1mas I2mas lowest contours beam bpa
[mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam] [mas] [◦]

1999.888 367.6±68.1 281.6±71.0 42.3±11.4 12.6±1.5 0.40 0.78 x 0.61 41.21
2000.183 531.9±72.8 300.3±87.8 19.9±4.2 5.4±0.2 2.00 0.57 x 0.38 -49.41
2000.915 486.4±68.7 279.2±85.4 20.4±5.9 11.5±0.9 4.00 0.40 x 0.37 -52.14
2001.988 369.4±33.3 339.7±37.5 49.4±14.2 16.5±3.3 2.00 0.50 x 0.48 35.33
2002.241 401.3±47.8 241.3±43.3 40.9±13.6 14.3±2.2 1.50 0.44 x 0.40 -55.65
2002.536 279.1±26.5 315.4±30.8 56.4±16.6 16.1±4.9 2.30 0.43 x 0.36 -36.73
2003.277 233.1±24.6 203.7±19.3 45.8±12.7 14.1±3.4 0.60 0.44 x 0.42 -1.04
Average 381.3 280.2 39.3 12.9
σI 105.6 45.7 14.0 3.8

σI /Average [%] 27.7 16.3 35.7 29.1

epoch PCore P0.5mas P1mas P2mas lowest contour
[mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam]

1999.888 5.3±0.7 3.6±1.2 1.1±0.2 1.2±0.1 0.35
2000.183 16.7±2.0 11.6±4.0 0.9±0.2 1.3±0.3 0.40
2000.915 10.1±1.7 10.2±2.7 1.3±0.2 2.0±0.4 0.60
2001.988 19.3±2.0 20.5±2.0 1.9±0.7 1.6±0.6 0.45
2002.241 25.4±3.0 11.8±2.7 2.1±0.6 1.5±0.2 0.45
2002.536 10.1±0.9 14.4±1.3 3.3±1.1 1.8±0.5 0.40
2003.277 9.0±1.0 10.7±1.1 3.5±1.4 1.7±0.6 0.40
Average 13.7 11.8 2.0 1.6
σP 7.0 5.1 1.0 0.3

σP/Average [%] 51.1 42.9 50.0 18.4

epoch χCore χ0.5mas χ1mas χ2mas ∆χ0.5mas−Core ∆χ1mas−Core ∆χ2mas−Core

[◦] [◦] [◦] [◦] [◦] [◦] [◦]
1999.888 -149±30 -174±64 -65±79 -81±36 -25 84 68
2000.183 -138±7 -130±32 -109±52 -108±46 8 29 30
2000.915 -44±78 -96±64 -45±69 -54±55 -52 -1 -10
2001.988 -148±4 -137±4 -145±46 -141±27 11 3 7
2002.241 -146±4 -141±11 -63±75 -105±61 5 83 41
2002.536 -162±8 -136±10 -142±28 -135±37 26 20 27
2003.277 -152±4 -143±7 -145±12 -151±17 9 7 1
Average -134.1 -136.7 -102 -110.7
σχ 40.4 54.0 43.8 34.8

σχ/Average [%] 30.1 16.8 42.9 31.4
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Figure 6.8: Polarisation maps at 15 GHz; the first and third row (a) diplaythe contour maps of total inten-

sity while the rows beneath (b) show the polarisation maps with corresponding electric field vectors (1 mas

= 62.5 mJy/beam); epochs 1 to 7 according to order of Table 6.3 which contains the map parameters.
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Figure 6.9: Polarisation maps at 15 GHz, inner region; order of plots andmap parameters according to

Figure 6.8.
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Total and polarised intensity and polarisation angle were measured for the position of the VLBI
core and three points along the VLBI jet around a rel. Decl. of0.5, 1 and 2 mas, respectively,
corresponding to the positions of the modelfit components found in the kinematic analysis. The
results are summarised in Figure 6.10.

The top panel shows that the total flux density of the VLBI corecomponent increases
from the first to the second epoch and then gradually decreases until the last epoch (2003.277).
This is in accordance with the results from the kinematic analysis displayed in the second panel
of Figure 5.11. However, the amount of flux density was much less in the kinematic analysis,
rather comparable with the flux density of the first jet component in Figure 6.10. This is most
likely caused by previously mentioned blending effects in the use of TVWIN. The VLBI core
component possibly is a combination of components J0, J8 andJ9 from the kinematic analysis
which reasonably explains the high flux density values.

The total flux density of the first jet component at a distance of 0.5 mas from the VLBI
core remains almost constant showing only a slight decreasein the last epoch. This component
probably corresponds to a superposition of components J7 and J8 from the kinematic analysis.
The components at 1 and 2 mas core distance appear to be almostconstant in their flux
density, the 1 mas component showing just a slight increase in the last four epochs. The 1
and 2 mas component could be consistent with J5 and J4, repectively, although the flux densi-
ties do only correspond approximately if they are added up. This can as well be attributed to
blending effects in the determination of the single component flux densities by means of TVWIN.

In the middle panel, the polarised flux density is displayed.The variability of the VLBI
core, first and second jet components are much stronger (σP/Average∼ 40 – 50 %) compared
to total intensity (σI/Average≤ 36 %, cf. Table 6.3), while for the outermost jet component at
2 mas this is reversed (29 % vs. 18 %). Interestingly, the variations in total and polarised flux
density of the VLBI core and first jet component are correlated from epoch 2001.988 to epoch
2002.536, although somewhat more pronounced in polarisation, whereas the EVPA changes of
these components are only marginal during the same period (cf. bottom panel of Figure 6.10).

Provided the calibration of the absolute postion of the EVPAhas been performed cor-
rectly, the EVPA is oriented perpendicular to the jet axis inthe innermost 1 mas jet, in the first
epoch (1999.888) even up to a distance of 2 mas. This is consistent with the findings at 5 GHz.
But starting at around 1 mas distance from the core, the orientation already changes to parallel
which can best be seen in the plots of epochs 4, 5, 6 and 7 in Figure 6.9. This is owing to the
improved resolution compared to the 5 GHz data.
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Figure 6.10: Analysis plot of 15 GHz polarisation maps; top panel: total flux density of VLBI core and

jet components at 0.5, 1 and 2 mas, middle: polarised flux density, bottom: EVPAs of jet and VLBI core

components.
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Figure 6.11: Total intensity maps with EVPA at 15 GHz (1 mas= 62.5 mJy/beam) convoluted with a

’pencil’-shaped beam of (0.8×0.3) mas with the major beam axis perpendicular to the jet ridge line of the

inner 1 mas; epochs 1 to 7 according to order of Table 6.3.

The changes of the EVPA are much more pronounced at 15 GHz thanat 5 GHz which can
already be seen in the values of∆χ (Table 6.3, bottom right panel). Due to the higher resolution
the inner jet region reveals a number of subcomponents, eachhaving individual polarisation
characteristics, which sum up as only one component with rather constant polarisation charac-
teristics at the lower frequency. The component at 0.5 mas distance from the VLBI core appears
to vary only moderately (σχ/Average= 16.8 %) comparable to its variations in total intensity
(16.3 %). The variability pattern of the 1 mas jet component turns out to be strongest in all three
cases (cf.σ/Average in Table 6.3).

As was done for the 5 GHz data, the 15 GHz maps were convolved with the same ellipcitc
’pencil-shaped’ beam of (0.8×0.3) mas with the major beam axis approximately perpendicular
to the jet ridge line of the inner 1 mas (see Figure 6.11). Out of these maps profile plots were
produced for total and polarised intensity and for the electric vector. The results are presented in
Figure 6.12.

From the total and polarised intensity profiles one can clearly distinguish two separate
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components in the innermost 0.5 to 0.8 mas, especially for the last four epochs (bottom panels).
The upper panels represent the first three epochs with a worseu,v-coverage leading to a larger
beam size in the original maps and hence a worse resolution: the first jet component that is
moving away from the VLBI core, is not separated as clearly asin the last four epochs; in
polarisation only one component is visible; the first jet component, that appears in the second
epoch (2000-03-06), does not seem to correspond to the one intotal intensity since it is shifted
outwards for approximately 0.2 mas; only in the third epoch (2000-11-30), the central peak in
polarised intensity has broadened, obviously because the component is disconnecting from the
VLBI core. It is possibly consistent with component J8 from the kinematic analysis whose date
of zero core separation has been determined to be approximately 1998.2. The worse resolution
also manifests in the fractional polarisation which is higher in the jet than in the core region as
was the case for the 5 GHz data because the VLBI core is not resolved.

On the other hand, the fractional polarisation is almost equal in the innermost region dur-
ing the epochs between 2001 and 2002. This can be explained bythe better resolution which
leads to a resolved core region showing the VLBI core and a component moving from 0.4 mas
(epoch 2001-12-26) to 0.6 mas distance (epoch 2003-04-10).Only in the last epoch the fractional
polarisation is again higher in the jet when the emitted component has finally disconnected from
the VLBI core. Since there is more than one year time difference between the third and the
fourth epoch, this jet component most likely corresponds toJ9 of the kinematic analysis which
has been ejected from the core around 2000.4.

Summing up, the four epochs evaluated in the 15 GHz polarisation analysis reveal to be
much more variable in polarisation compared to the 5 GHz data. Owing to the better reso-
lution, the inner jet region separates into several subcomponents with individual polarisation
characteristics, which are represented by only one component with rather constant polarisation
characteristics at the lower frequency. The jet component at 1 mas shows the strongest variability
in total and polarised intensity as well as for the EVPA values. The predominance of the 1 mas
component might also explain the change of the EVPA orientation from perpendicular to the jet
axis to parallel at this distance. The 0.5 mas component reveals the least variations in total flux
density and for the electric vector, but is still highly variable in total polarisation.
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Figure 6.12: Profile plots at 15 GHz derived from cuts along the jet; different colors denote different

epochs; panels display profiles as follows: top: total flux density, middle: polarised flux density, bottom:

percentage of polarisation; epochs from 2001 to 2003; maps were convoluted with pencil shape beam of

(0.8×0.3) mas with the major beam axis perpendicular to the jet ridge line.
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6.2.3 Polarisation at 22 GHz

The resulting maps of the three epochs, which were availablefor the 22 GHz polarisation
analysis, are presented in Figure 6.13 showing the total intensity contour maps in the top panel
and the corresponding polarised intensity maps and electric vectors in the bottom panel. The
map parameters are listed in Table 6.4.

Table 6.4: Parameters ofA maps for total and polarised intensity at 22 GHz; displayed are total inten-

sities of three identified components, the lowest map contour levels, beam and beam position angle (top

panel); polarised intensity and lowest map contours (middle panel); according polarisation vectorsχ, and

the difference between the EVPAs of the jet and core components (bottom panel).

epoch ICore I0.5mas I1mas lowest contours beam bpa
[mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam] [mas] [◦]

2001.988 419.3±52.2 224.3±49.8 42.7±11.2 0.80 0.34 x 0.31 -13.01
2002.536 233.0±32.3 178.5±26.1 43.4±11.8 2.00 0.35 x 0.24 -27.64
2003.277 242.7±27.7 178.9±23.5 55.8±10.7 1.20 0.33 x 0.27 -10.06

Average 298.3 193.9 47.3
σI 104.9 26.3 7.4

σI/Average [%] 35.2 13.6 15.6

epoch PCore P0.5mas P1mas lowest contour
[mJy/beam] [mJy/beam] [mJy/beam] [mJy/beam]

2001.988 22.4±3.6 13.9±3.1 2.1±0.5 0.75
2002.536 6.5±1.4 8.3±0.8 2.3±0.4 0.80
2003.277 8.7±1.1 7.4±1.2 3.4±0.6 1.00

Average 12.5 9.9 2.6
σP 8.6 3.5 0.7

σP/Average [%] 68.5 35.4 26.1

epoch χCore χ0.5mas χ1mas ∆χ0.5mas−Core ∆χ1mas−Core

[◦] [◦] [◦] [◦] [◦]

2001.988 -157±5 -140±26 -88±67 17 69
2002.536 -164±16 -126±14 -136±30 38 28
2003.277 -166±13 -172±12 -177±26 -6 -11

Average -162.3 -146.0 -75.7
σχ 2.9 23.6 67.4

σχ/Average [%] 2.9 16.2 89.0

In the 22 GHz polarisation analysis it was possible to identify two jet components, aside from
the VLBI core, in the innermost 1 mas region, although some diffuse total intensity flux is also
visible up to a distance from the VLBI core in rel. Decl. of 2.5mas in the first and last epochs
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(2001.988 and 2003.277). One component is located approximately at 0.5 mas, the other at
1 mas distance (rel. Decl.) from the VLBI core. The resultingparameters of the map analysis
are presented in Figure 6.14. The VLBI core component seems to correspond to a blending of
components K0 and K7 from the kinematic analysis, while the 0.5 mas component probably is
related to components K5 and K6 and the 1 mas component likelyis consistent with K4.
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Figure 6.13: Polarisation maps at 22 GHz; the top row (a) diplays the contour maps of total intensity

while the bottom row (b) shows the polarisation maps with corresponding electric field vectors (1 mas=

100 mJy/beam); epochs 1 to 3 according to order of Table 6.4 which contains the map parameters.
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Figure 6.14: Analysis plot of 22 GHz polarisation maps; top panel: total flux density of VLBI core and

jet components at 0.5 and 1 mas, middle: polarised flux density, bottom: EVPAs of jet and VLBI core

components.
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With only three available epochs it is inadequate to make a clear statement about the quality of
the measurement variations. Nevertheless, the developement of both total and polarised intensity
(top and middle panel in Figure 6.14) exactly confirms the results of the 15 GHz analysis for all
three components: the clear decrease in flux density of the VLBI core component and the slight
increase for the 1 mas component while the total flux density of the 0.5 mas remains almost
constant and the polarised flux density shows a small decline.

Concerning the polarised intensity electric vectors, the orientation in the core region up
to approximately 0.8 mas is again perpendicular to the jet axis (bottom panel in Figure 6.13)
according to the findings at 5 and 15 GHz. Beyond this distanceno electric vectors could be
displayed due to the increased signal-to-noise level at this high frequency.

The bottom panel of Figure 6.14 displays that the core vectorseems to be almost constant
(〈χCore〉 = -162◦) whereas the vector of the 0.5 mas component shows slight changes (〈χ0.5〉 =
-146◦, σχ = 24◦). This is, however, in contrast to what was found in the 15 GHzpolarisation
analysis where the 0.5 mas component revealed the least variations. The obviously strong
gradient in the value of the 1 mas component electric vector,on the other hand, again coincides
with the findings at 15 GHz where the 1 mas component appeared to be the strongest variable one.

To complete the picture, the maps were also convolved with a ’pencil’-shaped beam
(0.5×0.2 mas, see Figure 6.15) and intensity profiles were taken along the inner 0.9 mas
of the jet axis. The total and polarised intensity profiles aswell as the fractional polarisation are
presented in Figure 6.16.

Now the higher resolution of the 22 GHz observations as compared to 15 GHz is disclosed. In
the intensity profile plots one can distinguish three components in the inner 0.8 mas jet instead of
two as was the case for the 15 GHz data. The development of the fractional polarisation (bottom
panels in Figure 6.16) is comparable to the 15 GHz results in that it is almost the same in the
core and innermost displayed jet region in the first and second epoch (2001.988 and 2002.536)
whereas in the last epoch (2003.277) the core fractional polarisation is somewhat lower than in
the jet.

Interestingly, the fractional polarisation plot of the last epoch reveals a fourth component
at a distance of 0.2 mas from the core region which is only slightly indicated by the elongated
core component of the above polarised intensity profile but not visible in total intensity at
all. This component could be consistent with K7 from the kinematic analysis that is about to
separate from the VLBI core. The fractional polarisation plots are evidently a helpful tool for
the component identification without the necessity of performing model fits.
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Figure 6.15: Total intensity maps with EVPA at 22 GHz (1 mas= 100 mJy/beam) convoluted with a

’pencil’-shaped beam of (0.5×0.2) mas with the major beam axis perpendicular to the jet ridge line of the

inner 0.8 mas; epochs 1 to 3 according to order of Table 6.4.
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Figure 6.16: Profile plots at 22 GHz derived from cuts along the jet; different colors denote different

epochs; panels display profiles as follows: top: total flux density, middle: polarised flux density, bot-

tom: EVPA; maps were convoluted with pencil shape beam of (0.5×0.2) mas with the major beam axis

perpendicular to the jet ridge line.



122 6. VLBI Polarimetry of 0917+624

Table 6.5: EVPAs of the convoluted maps at all frequencies; values are already corrected for the absolute

orientation of the EVPA according to Table 6.1.

epoch ν [GHz] EVPACore [◦]
2001.984 5 -140±3
2002.529 5 -142±3
2003.252 5 -134±4
2001.984 15 -142±13
2002.529 15 -149±11
2003.252 15 -148±10
2001.984 22 -149±26
2002.531 22 -137±21
2003.273 22 -169±7

0 10 20 30 40
lambda^2 [cm^2]

-180

-170

-160

-150

-140

-130

-120

-110

E
V

P
A

 [d
eg

re
e]

2001.988
2002.536
2003.277

Figure 6.17: EVPA plotted versusλ2 for the core region; dotted lines denote linear fits to the data points

of each epoch.
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6.2.4 Rotation Measure

A final step would now be to deduce the rotation measure (further denoted as RM) from the
EVPAs of the three available frequencies. However, we already had to derive the 22 GHz
polarisation vector, that was used for the calibration of the EVPA in the VLBI measure-
ments, from 5 and 15 GHz single dish measurements. Hence, a deduction of the RM would be a
circular argument. Nevertheless, I will give a short demonstration on how to derive it in principle.

Provided that for each frequency we got an independently calibrated value for the EVPA,
one can plot these values versusλ2 and fit a straight line to the graph. We can derive the RM
from the slope of this fit according toχ(λ) = χ0 + RMλ2. As we have three different epochs, it
is also possible to calculate the change of the RM with time. In order to do so, it is necessary
to convolve the maps of the different frequencies with the same beam pattern, preferably close
to the synthesized beam pattern of the lowest frequency to avoid undesirable features due to
hyper-resolution. In the present case I chose a beam size of (1.2×1.2) mas. The mapping
procedure and determination of the EVPAs was done as described previously for the general
polarisation analysis.

If resolution permits, one could also plot the EVPA of one or more jet components at dif-
ferent frequencies. In such way one gets a gradient of the RM along the jet axis. In our case, we
only obtained components which are equivalent in two frequencies: two components at a relative
core separation of 0.5 and 1 mas, respectively, resolved at 15 and 22 GHz, and a further jet
component at 6 mas distance visible at 5 and 15 GHz. The convolution of the higher frequency
maps still revealed components at 2 and 6 mas distance from the VLBI core. Nevertheless,
the determination of the EVPA yielded in errors of order of several tens of degrees making a
derivation of the RM highly unreliable. Thus, we merely derived the RM of the core component
of 0917+624 as an estimate of the real RM. The detected EVPAs of the convoluted maps at
all frequencies are listed in Table 6.5 and graphically displayed in Figure 6.17. The values are
already corrected for the absolute orientation of the EVPA according to the last column of
Table 6.1.

Table 6.6: Estimate of the RM for the VLBI core component.
epoch RM [rad/m2]

2001.984 1800
2002.529 150
2003.252 7700
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From Figure 6.17 the RM of the three epochs could be derived and the results are presented in
Table 6.6. The strong change of the EVPA in epoch 2003.273 at 22 GHz from previously -137◦

to now -169◦ and the associated increase in RM can be explained due to blending effects. In
epochs 2001.984 and 2002.529 the core component of the maps with larger beam consists of
the previously determined VLBI core and the 0.5 mas component. In the last epoch (2003.252)
another component reveals which is located around 0.2 mas. It cannot be separated in the
mapping procedure but becomes visible in the profile plots (cf. Figure 6.16, bottom right panel).
Its polarisation characteristics likely contribute to those of the 0.5 mas component which would
in principle explain the change of the EVPA from -126◦ in epoch 2002.529 to -176◦ in epoch
2003.252 (cf. bottom panel of Table 6.4).

Even though the RM deduction is only a rough estimate, it already indicates that 0917+624
might also belong to the group of quasars which (at least sometimes) show RMs in excess of
1000 rad m−2 in their central region. Nevertheless, a proper EVPA calibration for 0917+624 is
inevitable for a clear statement about the changes in the electric field vector!
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Discussion and Conclusions

In this section I will combine the results of the analyses from single dish and VLBI observations
to give an interpretation in view of Intraday Variability and complement the picture of 0917+624
in terms of jet characteristics of quasar sources.

The results of the analysis of the Effelsberg 5 GHz data do not yet offer a clear solution
for the cause of the reduced IDV behavior. 0917+624 still reveals only moderate IDV in total
intensity which has increased only slightly towards the endof the present observations (mI ∼
1 %) but was still far from the strength it used to reveal before September 2000 (mI ∼ 3 – 5 %).
The same holds for the variability in polarised intensity: although the increase of the modulation
index mP is much stronger compared tomI, it is as well far below the formerly observed
modulation indices of more than 15 %. Two different scenarios could be possible explanations
for it.

Changes in the size of the scattering medium:

This solution has already been explained in more detail by Fuhrmann (2004). He sug-
gests that in the weak ISS or RISS regime, a decrease in the strength of the turbulence in
the scattering medium or an increase in the distance towardsit could lead to such extremely
quenched variability, the latter case leading to unrealistic high Doppler factors, though. The
most probable cause of the decline in IDV could either be a gapin the scintillation screen or the
sudden disappearance of a moving foreground layer or clump after 1999. This may have led to
an abrupt decrease in the strength of the turbulence in the scattering medium. Hence, a lower
limit of 1.2 m s−1 can be assigned to the velocity in the scattering screen at a distance of 150 pc.
Indeed, the angular scales of such inhomogeneities should be less than the angular separation of
0917+624 from other sources (≤ 5-10◦) because other sources outside this region still exhibit
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prominent IDV.

Source-intrinsic structural changes:

This second approach is based upon variations in the internal source structure scaled in
the range of the scattering size. Fuhrmann (2004) in his above mentioned model assumed the
size of the source component, that is responsible for the scintillation, to be of the order of∼0.1
mas. Corncerning the strongly quenched scintillation, this component could now either have
disappeared or it has increased in size such that it will exceed the Fresnel angular scale. If he
assumes a screen distance between 100 and 200 pc, the component size should have enlarged to
approximately 0.7-0.8 mas in order to diminishmI from former values of 5-6 % down to 0.5 %.
This growth in component size should be unveiled in the analysis of the VLBI observations of
Chapter 5.

However, the assumption of only one scintillating component might not hold for the faster
and more pronounced variations that are usually observed inpolarized intensity, even in the
present case of 0917+624. Rickett et al. (2002a) suggested in the case of the rapidvariations
in polarisation of the quasar PKS 0405-385 a multi-component model (see also Rickett et al.
1995, Rickett et al. 2002b) where one or more components withquasi independent flux density
variations, but each retaining fixed values ofP andχ, have to be summed up. This, though, also
implies a scattering screen located much closer to the earthas previously expected (3-30 pc),
which meanwhile indeed could be confirmed by recent studies of Marchili (2009). He found that
an annual modulation model can be applied in the case of 0917+624 provided that the scattering
screen is much closer to the earth (≤ 50pc) than previoulsy concluded by Rickett et al. (1995);
Rickett (2001) of the order of 170 - 200 pc.

Source kinematics:

Within the kinematic analysis I was able to identify a maximum number of 12 compo-
nents at 15 GHz (resulting from 15 observing epochs), seven components at 5 GHz (7 epochs),
and nine components at 22 GHz (6 epochs) including the VLBI core. All components could
be cross-identified for two frequencies at least. One of these components at a relative core
separation of∼6 mas turned out to be constant in position and size and showedonly a marginal
decreas in flux density at all three observing frequencies.

We in fact determined in the kinematic analysis of the 15 GHz VLBI data, that during the
time of the underlying Effelsberg observations 2 new components were emitted around 2003.2
(J11) and 2004.5 (J10). The ejection dates are marked by arrows in the bottom panel of
Figure 7.1. One earlier component was ejected around 2000.4(J9). Yet, one immediately
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notices, that the time between the emission of the componentof 2000 and that of 2003 is far
longer than would be expected for a component to travel down the jet and separate from the
core. Therefore, the IDV activity should meanwhile have resumed which is, though, not the case.

The general kinematic analysis of all frequencies shows that a new component has been ejected
on average every two years between 1990 and 2000. One of thesecomponents is J8 (resulting
from the 15 GHz analysis) with a determined time of zero core separation around 1998.2, which
is in the range of earlier results found by Krichbaum et al. (2002) and Fuhrmann (2004). This
event corresponds to a high level of variability. The modulation index lies at∼5% and decreases
in the aftermath to∼1.5% (see bottom panel of Figure 5.14) which was about the time when the
size of the core and the emitted component exceed the typicalscattering size of the medium,
presumably resulting in strongly quenched scintillation.Afterwards the modulation index
increased again in early 1999 to a value of∼5%. Hence, the behaviour of J8 could in principle
confirm our working hypothesis that the earlier variabilitydecline was caused by the ejection of
a new component.

Component J9 was emitted around 2000.4, which overlaps witha period when the vari-
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Figure 7.1: Modulation Indices of 0917+624 total and polarised intensity and EVPA combined with the

time of zero core separation for wo components derived in the15 GHz kinematic analysis.
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ability was already low according to the modulation indicesaround that time (mI ≤0.65 %,
cf. Table B.4). In fact, a further slight decrease has been observed afterwards (mI ∼0.3 % in
2000.710), followed by a moderate increase up to 0.9 % (2001.225) which could be regarded
as an additional confirmation of our assumption. Nevertheless, these modulation indices are
still much lower than previously and the ejection of new components alone can not explain the
overall damping of the modulation index in both total and polarised intensity.

The multi-component model could at least explain the detection of the stronger variability
that we see in the polarisation pattern of 0917+624, especially considering the ejection dates of
new components in 2003 and 2004. Since there is unfortunately an observational gap between
the middle of 2002 and the end of 2003, we do not know whether the modulation indicesmI

and mP decreased before the new components had been ejected, but wesee a clear increase
especially inmP after this gap. So in principle this increase could be attributed to the ejection of
component J11, which would imply that the expected increasein variability after the ejection of
a new component is detectable in polarisation prior to totalintensity.

The polarimetric analysis also supports the multi-component model. While at 5 GHz only
one polarised component is visible in the core region within1 mas, at 15 GHz one can already
distinguish between two separate components, each showingindividual polarisation character-
istics. The 22 GHz data even reveal 3 different components in the inner 0.8 mas jet, and the
fractional polarisation profile of the last epoch (2003.277) yet indicates a fourth component
located around 0.2 mas distance from the VLBI core which could be related to K7 from the
22 GHz kinematic analysis.

Further results from the analysis of the VLBI data:

The kinematic anlysis revealed several superluminal components for all frequencies. The
inner 15 GHz jet components J10, J9, J8, J7, J6, J5 move with anapparent speed of
βapp = (7 − 10) c which is in good agreement with previous findings (Krichbaum et al. 2002).
The same components at 22 GHz (K3, K4, K5, K6) travel with a somewhat higher velocity of
βapp = (10− 14) c except for K7 (βapp ∼ 5.5) c) which corresponds to J9. Owing to the three
times worse resolution at 5 GHz, the innermost jet componentC6 is a composite of two or more
higher frequency components and therefore exhibits a threetimes lower apparent velocity than
the 15 GHz components. The superluminal motion at 5 GHz reveals to increase further down the
jet reaching its maximum at a distance from the core of around6 mas (βapp ∼ 20) c) and then
decreases again towards 23 mas (βapp ∼ 8) c). This behaviour has also been observed previously,
e.g., in the case of 0836+710 (Lobanov 1998).

Since the 5 GHz and 22 GHz data are undersampled compared to the 15 epochs available
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at 15 GHz, the analysis of the latter is regarded best for the determination of apparent velocities
or changes in the position angle (P.A.) and parameters deduced out of it. Besides, since we
are interested in the innermost jet region close to the VLBI core, i.e., the footpoint of the jet,
the results of the higher frequency analysis reveal deeper insight into this region due to their
better resolution. The plots of rel. R.A. versus rel. Decl. at both 15 GHz and 22 GHz (cf.
pp. 58 and 78) display a twisted jet structure with several bends on the inner 3.5 mas whereas at
5 GHz only one kink is visible on the same range. In order to investigate the bent jet structure,
components J7, J8 and J9 were fitted by a third-order fit which could better represent their
trajectories than a linear fit. However, this could not be confirmed in the 5 GHz and 22 GHz
analyses due to the insufficient amount of available observations. The shape of the trajectory
of component J8 suggests a slow-down after its ejection followed by an accelerated phase
between 2002 and 2006. Afterwards it seems to reach again a plateau of decelerated motion.
Component J9 even better represents this behaviour (cf. Figures 5.4 and 5.8). The acceleration
and deceleration phases can be explained by geometrical effects due to the twisted jet structure.
When the component is moving on a kink towards the observer, its radiation is boosted towards
him causing the effect of an accelerated motion. A movement across the jet cone pretends a
slow-down.

J2 turned out to be the fastest component showing an apparentspeed ofβapp = 19.2 c.
This leads to a minimum value for the Lorentz factorγmin = 19.23, Doppler factors in the
range of 19 to 38 at inclination angles between 0◦ and 3◦. Furthermore the P.A. of the inner jet
components appears to rotate approximately 4◦ on average per year. This could be indicative for
a swing of the jet base of 0917+624 which has already been observed previously in a number
of sources such as 3C345, OJ287 or PKS 0420-014 (Klare 2003; Klare et al. 2005; Lobanov
& Roland 2005; Valtonen et al. 2008; Britzen et al. 2001) and seems to be associated with
jet-curvature or helical structures that have been observed in the jets of AGN also on larger
scales as well as in the present case of 0917+624.

One possibility to explain the cause of helical or twisted jet structures is the presence of
a binary black hole system in the center of the AGN. Since 0917+624 also exhibits a bent jet
structure, it proves to be an applicable candidate for such abinary black hole scenario. The
precession of the accretion disk and the motion of the two black holes around their common
center of gravity cause perturbations in the trajectories of the VLBI components. As the
coordinates of the VLBI components are known from VLBI observations, we merely need
to handle a pure astrometrical problem. Thus, by means of thesoftware he developed, Prof.
Roland was able to calculate several parameters of the binary black hole system based on the
coordinates of component J8 from the 15 GHz analysis. The bulk Lorentz factor that resulted
from the modelling process,γc, is in the range of 8≪ γc ≪ 20, which supports our kinematic
results from the 15 GHz analysis where a minimum Lorentz factor of 19.23 was derived for J8.
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Certainly the most important result from the binary black hole model calculations is,
however, that the time of zero core separation, which was deduced to lie around 1998.2, has
to be shifted to 1999, because otherwise no minimum could be found for the necessaryχ2 fit.
The shift of the time of zero core separation supports the hypothesis of the 15 GHz kinematic
analysis that a higher-order fit to the VLBI trajectories is probably more suitable than a linear
one as it describes in a more appropriate way states of accelerated or constant component motion
during certain periods. The temporal shift for the ejectiondate of component J9 is equivalent to
a spatial differenceσ = 0.098 and we dare to interprete it as the distance between the two black
holes.

Component J11 seems to travel at a significantly lower apparent velocity (βapp = 2.76± 0.17 c).
It is possible, though, that this could be attributed to blending effects in the component
identification due to strong activity and hence an expansionof the VLBI core, but insufficient
observational resolution. Nevertheless, in view of the results from the binary black hole
modelling, we tentatively interprete J11 to be ejected by the second black hole which might be a
possible explanation for the different shape of its trajectory as compared to J5 – J10.

In addition, the size of the inner VLBI components (FWHM) wasfound to increase sys-
tematically as they travel along the jet. The correlation ofFWHM with P.A. suggests a
geometrical origin. If the components are not spherical butform an intrinsically oblique
structure (e.g., a thin shock), relativistic aberration effects would lead to apparent rotation in the
observer’s frame causing the observed component expansion(cf. left panel of Figure 5.9, p. 61).
Furthermore, the relation between FWHM and core separationof the components displays that
the jet is collimated within the inner 0.7 mas and starts expanding beyond. This is in accordance
with the theory of an adiabatically expanding jet (e.g., Blandford & Königl 1979). The opening
angle of the jet was determined to beφ = 20.9◦ which results in a Mach number M of the jet
plasma at the point of the jet opening of M= 2.8. This number could be confirmed in the 22 GHz
analysis. However, the jet at 22 GHz shows an additional reconfinement around a distance from
the core of 0.7 mas. This lateral displacement of the 22 GHz components from the jet axis at the
lower frequencies in principle can be explained by the aforementioned geometrical changes in
the viewing angle of the jet and has previously also been investigated in the case of 0836+710
(Lobanov 1998).

The analysis of the flux density development is in accordancewith results from single
dish observations with the Effelsberg and UMRAO telescopes for all three frequencies. They
find a decrease in flux density from 1999 to the middle of 2004 followed by a moderate increase
towards the end of the present VLBI observations in 2007. Besides the VLBI analysis revealed
that approx. 75 % of the total flux is concentrated in the core region which is in agreement with
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previous findings from Standke et al. (1996). Moreover, thisso-called ’core fraction’, which
tends to be higher in quasar and BL Lac objects, is expected from AGN unification schemes
because the core fraction is a strong function of orientation.

As is known for compact sources, the analysis of the spectralindex evolution reveals that
it is flat in the compact core region and gradually turns steeper in the resolved jet region. The
development of the spectral index between the higher frequenciesα15/22GHz even reflects the fact
that the VLBI core component is not necessarily the brightest one. This is best demonstrated in
the spectral index change of component J8/K6 from epoch 2001.988 (α15/22GHz ∼ −0.2), when
its flux density was brighter than the core flux, to epoch 2002.536 (α15/22GHz ∼ −1.2), when the
VLBI core had become brighter again.

In the polarimetric analysis we found that the fractional polarisation of the jet is much
higher than of the core region which is well in accordance with previous findings (e.g.,
Helmboldt et al. 2007; Lister & Homan 2005; Pollack et al. 2003). Besides - always provided
that the absolute position calibration of the electric fieldvector is reliable - the EVPA is oriented
perpendicular to the jet axis in the core region (.4 mas at 5 GHz,. 1 mas at 15 GHz and
22 GHz). This result also agrees with previous findings (e.g., Pollack et al. 2003). Further down
the jet the orientation changes between parallel and transverse to the jet axis. These changes are,
however, only detectable at 5 GHz where the polarisation properties of the jet could be resolved
to a distance from the core of∼ 8 mas. Where the polarisation electric vectors in the parsecscale
jets are aligned with the local jet direction, it is implied that the corresponding magnetic field is
transverse to the jet as the jet emission is optically thin. This has commonly been interpreted
as evidence for relativistic shocks that enhance the magnetic field component in the plane of
compression perpendicular to the propagation direction ofthe shock (e.g., Hughes et al. 1989)
and also explains the increase of fractional polarisation towards the edge of the jet (Laing 1980).

The fact that the EVPA of the VLBI core is oriented perpendicular to the jet axis, and
thus apparently does not correlate with the source structure, could be owing to a magnetic field
that changes from transverse to longitudinal from the core to the jets because of strong shocks
in the jet perpendicular to the plane. This was, e.g., postulated in the case of 3C 345 and 3C 279
(Leppänen et al. 1995).

A further result from the polarimetric analysis is the remarkable increase in polarised in-
tensity of the VLBI core from 1999 to 2000 where the polarisedintensity (more than) doubles
at both 5 GHz and 15 GHz. The single dish analysis suggests that the increase in polarised
intensity overlaps with the strong decline of the modulation index in 2000.

Regarding the polarisation characteristics, a Faraday RM gradient across the jet is also
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considered a good indicator for helical magnetic fields in the jet. These gradients should appear
due to the systematic change in the net line-of-sight component of the magnetic field across
the jet, with increasing values toward the jet boundaries (e.g., Blandford 1993). Taylor (1998)
suggests that the high RMs, which he found in his observations, possibly are generated in the
same region that produces the narrow optical emission lines. The high RM gradients between
the core region and the extended jet cannot be produced by cluster or galactic scale magnetic
fields but are rather caused by organised magnetic fields and ionised gas close to the center of
activity. This is also likely the case for the change of the core RM with time that we found for
0917+624.

Even if the RM, that could be derived for the core component of0917+624, can only be
a rough estimate of the true RM, the high values in the first epoch (2001.984) of 1800 rad m2

and last epoch (2003.252) of 7700 rad m2 already indicate that internal structural changes can
influence the determination of a proper RM. The assuption that the RM follows a straightλ2 law,
which I used in order to derive the integrated EVPA for the correction of the absolute position,
can only be applied if the Faraday rotation is negligible which is obviously not the case for
0917+624. Thus, the calibration of the absolute position of the electric field vector should be
determined in a proper measurement at the required frequency. Otherwise a clear statement
about the changes of the EVPA with time between multiple observing epochs likely turns out to
be unreliable.
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Summary and Outlook

Within the scope of this thesis, 10(+3) epochs of 4.85 GHz observations of the prominent
IDV quasar 0917+624, performed between 2001 and the end of 2004 with the Effelsberg
100-meter radio telescope, were analysed in total and polarised intensity regarding the short-
time variability behaviour of the source. Furthermore, 28 epochs of VLBI observations at
15 GHz (15 epochs), 5 GHz (7 epochs) and 22 (+24) GHz (4+2 epochs) between 1999 and
2007 have been analysed. Finally, a polarisation analysis of the VLBI epochs observed
between 1999 and 2003 was carried out. The primary aim of these observations was to find
out whether structural changes of the variable part of 0917+624 have caused the variability
decline that was detected after September 2000 by Fuhrmann et al. (2002). The ejection of a
new VLBI component could temporarily lead to a core size exceeding the Fresnel scale, which
is determined by the scattering medium. Consequently, onlystrongly quenched scintillation
would be observed. After the component has separated from the VLBI core at some point, the
size of the scintillating component decreases again and stronger variability is expected to resume.

We found from the single dish measurements that the IDV activity of 0917+624 has de-
creased significantly during the time of our single dish observations between 2001 and 2005
in both total and polarised intensity compared to former measurements between 1985 and
1999 - from previous modulation indices forI of 3-5% to 0.4-1.1 % maximum. This is in
agreement with previous findings from Fuhrmann et al. (2002)who analysed observations
between September 2000 and April 2002. The kinematic analysis of the VLBI data revealed
that three new components have been ejected from the VLBI core at 2000.4, 2003.4 and 2004.2.
Accordingly, the slight increase in the modulation index ofthe polarised intensity of the single
dish measurements,mP, from 2003 to the end of 2004 might be explained in terms of the
multi-component model of Rickett et al. (1995). However, wehave to be careful in interpreting
the measured polarisation modulation indices as real because of possible elevation-dependent
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effects that were possibly found in the analysis of the single dish polarisation data. The potential
elevation-dependency of the results from single dish polarisation analyses still requires further
investigation.

Besides, the gap between the ejection dates of the two components in 2000 and 2003 is
too long compared to the time needed for a component to move down the jet and separate from
the core. Hence, the IDV activity should meanwhile have resumed. Since this is not the case,
the hypothesis of a quenched scintillation scenario is not conclusive.

The suggestion by Rickett (2001), that the observed change in the variability time scale
could be explained by a so-called annual modulation scenario could be confirmed recently
by Marchili (2009) provided that the scattering screen is much closer to the earth (∼ 50
pc) than previously assumed. Nevertheless, the source showed a radical change in its IDV
behaviour by reducing its variability. This does not necessarily mean, that the seasonal cycle
is not the right option. It may at present simply not be visible due to the structural changes in
the central region, which were found in the kinematic and polarimetric analysis of the VLBI data.

Since the annual modulation scenario for 0917+624 has only been tested in terms of total
intensity, it might be an interesting project to study the polarised variability pattern in this
regard. Further polarisation analysis of already obtainedsingle dish data and continuing
observations should be performed in order to achieve a thorough investigation of the polarisation
behavior. It may be worthwhile to study the question whetherit is in principle possible to observe
annual modulation in polarised rather than in total intensity also for other sources than 0917+624.

The kinematic analysis of the VLBI data furthermore revealed apparent superluminal mo-
tion in the jet ranging from 2 c to almost 20 c. From the apparent jet speed we derive a Lorentz
factor> 19.23 and an inclination angle< 3◦. Hence, for the fastest jet component we obtain
Doppler factors in the range of 19 to 38 which can help to reduce brightness temperature values
in excess of 1016 K, as have been derived from IDV observations of 0917+624 (Quirrenbach
et al. 1989b; Kraus et al. 1999), below the inverse Compton limit of 1012 K. The higher jet speeds
of ∼ 20 c differ from the maximum jet speed of 15.57c found by Lister et al. (2009) within the
scope of the MOJAVE project. The difference is certainly owing to the even better sampling of
the MOJAVE data. We found that an undersampling of observations can in fact cause higher jet
speeds, as was the case for the 5 GHz and 22 GHz data, since a temporal slowdown, a period
of constant motion or acceleration of the jet could simply not be detected with an insufficient
amount of observing data.

The 15 GHz kinematic analysis revealed a quasi-helical jet structure for 0917+624 with
several bends in the trajectories of the jet components. Theobserved change in the position
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angle (P.A.) of the inner components of approximately 4◦ per year on average is indicative
for a swing of the jet base, also yielding a helical jet structure, and clearly indicates motion
on bent-non-ballistic trajectories. The mechanism, whichcould cause such ’jet wobbling’ (cf.
Agudo et al. 2007), is still not understood but precession ofthe accretion disk is a popular
explanatory model usually based on the assumption of a binary system in the galactic center. We
further found a correlation of component size with orientation (P.A.) suggestive of a projection
effect due to the jet geometry.

The spectral index evolution of the VLBI core shows that it varies from steep to flat
whereas the spectral index of the outer components is clearly steeper (between -0.7 and -1.5).
The flatness of the core’s spectral index coincides with times when new components are ejected
(around 2000.4 and 2003.2), which is also displayed in the middle panel of Figure 5.14 (p. 67)
where the spectral indexα5/15GHz of single dish measurements with the Effelsberg and UMRAO
telescope is shown. It gradually steepens after 2003 when component J11 has separated from
the VLBI core. This supports the assumption that the components are shocks which expand
adiabatically as they travel down the jet. After the component separation, the VLBI core
becomes the most compact part of the source again and thus reveals the flattest spectral index.
In the analysis of the VLBI data we found that the VLBI core contains approximately 75 %
of the total source flux which makes it the dominant unresolved part in single dish measurements.

The helical jet structure of 0917+624 makes the source a good candidate for an AGN
consisting of a binary black hole system. In our model calculations we found that a temporal
shift for the origin of the ejection of the VLBI component from 1998.2 to 1999 was necessary
since otherwise no minimum in theχ2 fit, which has to be performed within the analysis, could
be achieved. The shift of the time of zero core separation supports the hypothesis of the 15 GHz
kinematic analysis that a higher-order fit to the VLBI trajectories is probably more suitable than
a linear one. The temporal shift entails a spatial differenceσ = 0.098 mas or 0.83 pc which
we interpret as the distance between the two black holes. In order to test the reliability of our
preliminary results, the model is currently applied to all suitable trajectories that have resulted
from the data analysis of all three frequencies. If the result can be verified, it would be the
first time that the distance between two black holes of a binary black hole system could be
’measured’ by means of a ’plain’ astrometric analysis.

The polarimetric analysis of the high frequency VLBI data at15 GHz and 22 GHz dis-
closed that the VLBI core region consists of three to four subcomponents. In this context the
fractional polarisation turns out to be a helpful tool to display the source components without
performing model fits of the polarised intensity data. Particularly when the total or polarised
intensity profiles only show one broadened peak, the fractional polarisation plot can already
reveal two different peaks within. The results of the 15 GHz and 22 GHz polarimetric analysis
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indeed support the theory of a multi-component model, such as the 4-component model which
was applied by Qian et al. (2007), not only to explain the previously observed polarisation angle
swing in 0917+624, but also the variations in total and polarised intensity.

The estimate of the VLBI core RM reveals that it is variable. It reaches high values in
excess of 1000 rad m−2, which are likely caused by intrinsic changes in organised magnetic
fields and ionised gas close to the center of activity. This could be the reason for the observed
variability of polarised intensity and EVPA. For future VLBI polarimetric observations it is in
general of utmost importance to obtain simultaneous data ofpolarisation calibrators in order to
achieve a proper calibration of the EVPA. With regard to thiscrucial point, the results concerning
the orientation of the EVPA in the core region of 0917+624 are still uncertain. Nevertheless, an
orientation of the EVPA parallel to the jet axis as was found from the 5 GHz analysis, which
implies a magnetic field perpendicular to the jet, is in accordance with the expectations for
optically thin synchrotron emission. On the other hand, a magnetic field aligned with the jet
axis in the core region - provided the result is indeed correct - can either be explained by strong
shocks in the jet perpendicular to the plane, as was done in case of 3C345 and 3C 279 (Leppänen
et al. 1995), or it indicates further bent jet structure in the inner core region which can not be
resolved at the observed frequencies.

The determined RM changes might not be real but caused by blending effects. Hence,
future RM-tomography according to, e.g., the Faraday rotation measure synthesis as suggested
by Brentjens & de Bruyn (2005), is necessary to disentangle the underlying effects.

It will be a future goal to do phase referencing observationsof 0917+624 at, e.g., 22/15 GHz
in order to determine whether the jet base is moving. A further important test, for which this
source turned out to be ideally suited, is to figure out how thechanges in polarised intensity and
polarisation angle do relate to intraday variability. Thiscould be done by means of simultaneous
multi-epoch/multi-frequency VLBI and single dish observations at preferably high frequencies
(43/22 GHz).

Furthermore, it would be desirable to study 0917+624 with the GMVA at 86 GHz which
features a resolution of∼ 50µas. But the flux density of the source is a bit weak for present
day VLBI recording techniques. Therefore, the implementation of the already existing Mark5C
VLBI data system at the observing facilities would be of great value. It will be able to record
data at a sustained rate of 4Gbit/s with a bandwidth of 1 GHz which would enormously increase
the recording sensitivity. With these observations we willnot only be able to discover internal jet
structure close to the VLBI core on even smaller scales. Moreover, concerning the binary black
hole scenario, the observational resolution will be half ofthe distance between the two black
holes that have been found from our calculations. Hence, provided that we are dealing with two
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black holes, each of them showing jet structure, we should beable to disentangle between the
footpoints of two different jets.
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Appendix A

The following figures show plots of the Effelsberg single dish observations of 0917+624. The
upper panel contains the total intensity measurements, themiddle panel shows results for the
polarised intensity and the bottom panel displays the polarisation angle as a function of J.D. for
each epoch.

Figure A.1: Plots of Effelsberg single dish data at 5 GHz for 0917+624 and one example plot of the

calibrator source 0836+710 observed on Mar. 24, 2001
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Figure A.2: 0917+624 plots of Effelsberg single dish data at 5 GHz observed on May 4, 2001 (leftpanel),

Aug. 3, 2001 (right panel).

Figure A.3: 0917+624 plots of Effelsberg single dish data at 5 GHz observed on Oct. 20, 2001 (left

panel), Dec. 26, 2001 (right panel).



141

Figure A.4: 0917+624 plots of Effelsberg single dish data at 5 GHz observed on Apr. 12, 2002 (left

panel) and around Nov. 14, 2003 (right panel - during the INTEGRAL observing campain of 0716+714,

Fuhrmann et al. 2008, source name according to J2000 coordinates).

Figure A.5: 0917+624 plots of Effelsberg single dish data at 5 GHz observed on Jul. 16, 2004 (left panel)

and Aug. 12, 2004 (right panel).
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Figure A.6: 0917+624 plots of Effelsberg single dish data at 5 GHz observed on Dec. 19, 2004.
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Appendix B

The following tables contain the results of the model fittingfor all epochs, giving the component
flux density (column 1), rel. R.A. (column 2) and rel. Decl. (column 3) with respect to
the core, distance r to the core (column 4) and position angleθ (column 5), Full Width Half
Maximum (FWHM, column 6), and brightness temperatureTB (column 7). Column 8 denotes
the component identification.

Table B.1: Results of the Gaussian model fitting for all
epochs at 15 GHz.

s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

1999.888
0.227±0.050 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.09±0.04 1.52E+11 Core
0.446±0.060 -0.22±0.04 0.12±0.04 0.25±0.04 -62.1±2.9 0.24±0.02 4.20E+10 J8
0.243±0.022 -0.42±0.04 0.28±0.04 0.50±0.04 -55.9±0.9 0.09±0.02 1.62E+11 J7
0.176±0.048 -0.41±0.06 0.49±0.07 0.64±0.04 -40.3±5.2 0.36±0.05 7.36E+09 J6
0.035±0.006 -0.68±0.09 1.15±0.15 1.33±0.05 -30.4±3.9 0.38±0.11 1.32E+09 J5a
0.015±0.006 -0.34±0.08 1.83±0.41 1.86±0.20 -10.6±2.1 0.70±0.40 1.64E+08 J4
0.008±0.000 -2.23±0.11 5.75±0.28 6.17±0.14 -21.2±0.9 0.29±0.08 5.29E+08 J3
0.047±0.005 -2.11±0.04 5.71±0.11 6.09±0.04 -20.3±0.4 2.62±0.53 3.72E+07 J2
0.007±0.003 -8.20±1.68 25.99±5.33 27.25±5.31 -17.5±1.1 4.47±2.11 1.93E+06 J1
2000.183

0.313±0.011 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.06±0.01 4.72E+11 Core
0.347±0.042 -0.26±0.03 0.14±0.03 0.29±0.03 -62.4±1.1 0.17±0.01 6.52E+10 J8
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s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

0.193±0.046 -0.44±0.03 0.29±0.03 0.53±0.03 -56.8±1.4 0.11±0.03 8.63E+10 J7
0.121±0.062 -0.48±0.03 0.43±0.03 0.64±0.03 -48.7±1.1 0.20±0.05 1.64E+10 J6
0.061±0.002 -0.52±0.03 1.02±0.04 1.14±0.05 -26.9±0.4 0.51±0.03 1.26E+09 J5
0.008±0.001 -0.48±0.15 1.97±0.64 2.03±0.21 -13.6±4.1 0.50±0.24 1.78E+08 J4
0.020±0.002 -2.20±0.06 5.50±0.14 5.93±0.05 -21.8±0.5 0.88±0.23 1.37E+08 J3
0.039±0.003 -2.19±0.14 6.58±0.41 6.94±0.13 -18.4±1.1 4.20±0.39 1.20E+07 J2
0.016±0.002 -11.00±0.71 20.88±1.34 23.60±0.18 -27.8±1.8 7.84±0.79 1.37E+06 J1
2000.915

0.331±0.009 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.07±0.03 3.67E+11 Core
0.299±0.018 -0.30±0.02 0.12±0.02 0.32±0.02 -68.6±0.7 0.11±0.03 1.34E+11 J8
0.219±0.047 -0.45±0.02 0.29±0.02 0.53±0.02 -57.3±1.6 0.17±0.03 4.10E+10 J7
0.083±0.028 -0.51±0.04 0.53±0.04 0.74±0.06 -43.9±0.7 0.24±0.03 7.81E+09 J6
0.067±0.015 -0.57±0.07 1.01±0.13 1.16±0.09 -29.5±2.9 0.62±0.04 9.39E+08 J5
0.010±0.003 -0.79±0.16 1.58±0.33 1.77±0.17 -26.7±4.8 0.27±0.13 7.07E+08 J4
0.020±0.008 -2.10±0.11 5.56±0.30 5.94±0.24 -20.7±0.7 1.22±0.59 7.25E+07 J3
0.036±0.005 -2.55±0.15 6.50±0.38 6.98±0.38 -21.4±0.4 3.71±0.40 1.41E+07 J2
2001.988

0.196±0.063 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.09±0.02 1.31E+11 Core
0.318±0.048 -0.19±0.04 0.11±0.03 0.22±0.04 -60.9±2.2 0.16±0.02 6.74E+10 J9
0.186±0.083 -0.44±0.05 0.20±0.03 0.48±0.06 -66.1±1.5 0.17±0.07 3.50E+10 J8
0.143±0.053 -0.53±0.05 0.37±0.03 0.65±0.03 -55.4±4.4 0.13±0.04 4.60E+10 J7
0.090±0.021 -0.50±0.05 0.60±0.06 0.78±0.05 -39.5±2.9 0.39±0.11 3.21E+09 J6
0.041±0.024 -0.63±0.10 1.13±0.19 1.29±0.15 -29.1±3.5 0.58±0.13 6.66E+08 J5
0.015±0.012 -0.60±0.16 2.25±0.59 2.33±0.34 -15.1±3.3 0.96±0.38 9.00E+07 J4
0.016±0.002 -2.27±0.06 5.60±0.14 6.04±0.07 -22.0±0.5 1.10±0.12 7.17E+07 J3
0.027±0.002 -2.30±0.19 6.65±0.56 7.04±0.21 -19.0±1.5 3.44±0.10 1.23E+07 J2
2002.241

0.188±0.067 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.11±0.04 8.43E+10 Core
0.255±0.022 -0.17±0.05 0.11±0.05 0.21±0.05 -56.6±3.8 0.15±0.03 6.15E+10 J9
0.162±0.024 -0.45±0.05 0.22±0.05 0.50±0.05 -64.3±4.3 0.13±0.02 5.19E+10 J8
0.140±0.080 -0.54±0.09 0.41±0.07 0.68±0.05 -52.7±8.0 0.17±0.05 2.63E+10 J7
0.051±0.023 -0.45±0.07 0.65±0.10 0.79±0.09 -34.6±3.9 0.28±0.15 3.49E+09 J6
0.045±0.027 -0.62±0.16 1.04±0.28 1.21±0.18 -31.0±6.9 0.53±0.18 8.72E+08 J5
0.020±0.004 -0.70±0.18 2.11±0.53 2.22±0.50 -18.3±2.0 1.03±0.10 1.01E+08 J4
0.034±0.015 -2.29±0.14 5.82±0.37 6.25±0.22 -21.4±1.1 1.86±0.83 5.27E+07 J3a
2002.458
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s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

0.233±0.057 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.12±0.05 8.78E+10 Core
0.317±0.087 -0.28±0.09 0.15±0.05 0.32±0.09 -61.9±6.7 0.19±0.06 4.77E+10 J9
0.128±0.023 -0.57±0.05 0.35±0.03 0.67±0.03 -58.1±4.3 0.08±0.05 1.09E+11 J7
0.090±0.011 -0.47±0.04 0.66±0.06 0.81±0.04 -35.3±2.6 0.32±0.04 4.74E+09 J6
0.033±0.005 -0.66±0.04 1.14±0.07 1.32±0.06 -30.3±1.3 0.53±0.06 6.37E+08 J5
0.021±0.005 -0.51±0.08 2.13±0.33 2.19±0.21 -13.4±1.6 1.23±0.09 7.60E+07 J4
0.020±0.004 -2.16±0.04 5.53±0.10 5.94±0.09 -21.3±0.2 1.40±0.19 5.45E+07 J3
0.024±0.001 -2.84±0.09 7.29±0.24 7.82±0.15 -21.3±0.6 3.82±0.08 9.03E+06 J2
2002.536

0.196±0.030 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.08±0.02 1.66E+11 Core
0.200±0.013 -0.20±0.02 0.12±0.02 0.24±0.03 -59.4±2.0 0.13±0.03 6.43E+10 J9
0.155±0.014 -0.48±0.02 0.24±0.02 0.54±0.03 -63.6±0.6 0.11±0.02 6.95E+10 J8
0.140±0.014 -0.55±0.03 0.46±0.02 0.72±0.03 -50.1±2.0 0.23±0.04 1.44E+10 J7
0.035±0.005 -0.40±0.06 0.80±0.12 0.89±0.04 -26.8±3.8 0.29±0.09 2.22E+09 J6
0.044±0.016 -0.62±0.10 1.14±0.19 1.30±0.15 -28.7±3.6 0.63±0.02 5.98E+08 J5
0.016±0.005 -0.59±0.15 2.29±0.58 2.36±0.43 -14.4±2.6 1.04±0.37 7.87E+07 J4
0.009±0.004 -2.21±0.12 5.43±0.29 5.86±0.27 -22.1±0.6 0.53±0.31 1.80E+08 J3
0.030±0.003 -2.60±0.12 6.43±0.29 6.94±0.15 -22.0±0.9 3.11±0.10 1.68E+07 J2
2003.277

0.192±0.012 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.09±0.02 1.28E+11 Core
0.152±0.008 -0.26±0.03 0.17±0.03 0.31±0.03 -57.1±0.7 0.14±0.02 4.21E+10 J9
0.140±0.014 -0.55±0.03 0.30±0.03 0.63±0.03 -60.9±0.4 0.13±0.01 4.50E+10 J8
0.067±0.011 -0.60±0.03 0.54±0.03 0.81±0.03 -48.0±2.1 0.21±0.02 8.25E+09 J7
0.030±0.005 -0.46±0.03 0.89±0.04 1.00±0.03 -27.3±1.1 0.25±0.03 2.62E+09 J6
0.035±0.006 -0.60±0.04 1.27±0.09 1.40±0.08 -25.4±1.3 0.80±0.05 2.93E+08 J5
0.011±0.003 -0.48±0.07 2.66±0.41 2.70±0.15 -10.2±1.5 1.12±0.18 4.67E+07 J4
0.033±0.017 -2.32±0.11 5.84±0.26 6.28±0.25 -21.7±0.5 2.25±1.23 3.48E+07 J3a
2003.458

0.275±0.029 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.13±0.03 8.82E+10 Core
0.129±0.026 -0.33±0.10 0.19±0.06 0.38±0.12 -59.8±0.9 0.13±0.04 4.14E+10 J9
0.120±0.049 -0.58±0.04 0.36±0.04 0.68±0.05 -58.0±2.2 0.15±0.06 2.88E+10 J8
0.037±0.010 -0.53±0.08 0.70±0.10 0.88±0.07 -37.0±4.4 0.13±0.08 1.18E+10 J7
0.036±0.007 -0.38±0.06 0.98±0.16 1.05±0.12 -21.0±2.6 0.43±0.17 1.06E+09 J6
0.018±0.005 -0.69±0.06 1.42±0.13 1.58±0.06 -26.0±2.1 0.53±0.17 3.47E+08 J5
0.015±0.002 -0.59±0.05 2.63±0.24 2.70±0.15 -12.6±0.9 1.11±0.17 6.47E+07 J4
0.035±0.019 -2.29±0.12 5.92±0.30 6.35±0.26 -21.2±0.6 2.43±1.71 3.22E+07 J3a
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s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

2005.097
0.383±0.107 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.06±0.02 5.76E+11 Core
0.259±0.072 -0.08±0.06 0.08±0.06 0.11±0.06 -45.6±2.0 0.04±0.01 8.76E+11 J10
0.048±0.003 -0.44±0.06 0.32±0.06 0.55±0.08 -54.6±2.5 0.22±0.03 5.39E+09 J9
0.036±0.012 -0.67±0.23 0.62±0.21 0.91±0.16 -46.9±13.7 0.32±0.10 1.91E+09 J8
0.022±0.005 -0.49±0.06 1.11±0.12 1.22±0.06 -23.8±2.3 0.35±0.05 9.65E+08 J7a
0.019±0.001 -0.74±0.06 1.70±0.15 1.86±0.08 -23.5±1.7 0.83±0.05 1.50E+08 J5
0.011±0.002 -0.74±0.06 3.04±0.08 3.13±0.06 -13.6±0.2 0.99±0.04 6.31E+07 J4
0.015±0.001 -2.27±0.06 5.47±0.08 5.92±0.06 -22.6±0.2 0.85±0.09 1.11E+08 J3
0.015±0.002 -2.82±0.08 8.35±0.24 8.81±0.22 -18.7±0.3 2.80±0.23 1.04E+07 J2
2005.458

0.634±0.087 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.08±0.02 5.37E+11 Core
0.153±0.030 -0.12±0.05 0.09±0.05 0.15±0.05 -53.6±0.6 0.05±0.01 3.32E+11 J10
0.029±0.007 -0.48±0.05 0.37±0.05 0.61±0.05 -52.6±0.5 0.09±0.04 1.95E+10 J9
0.022±0.008 -0.67±0.12 0.61±0.11 0.91±0.16 -47.7±1.8 0.25±0.04 1.91E+09 J8
0.018±0.004 -0.49±0.05 1.07±0.11 1.18±0.05 -24.4±2.3 0.36±0.06 7.57E+08 J7
0.021±0.002 -0.68±0.05 1.62±0.09 1.76±0.08 -22.8±0.7 0.90±0.01 1.40E+08 J5
0.014±0.002 -0.67±0.05 2.98±0.18 3.05±0.13 -12.7±0.6 0.85±0.12 1.03E+08 J4
0.012±0.006 -2.16±0.05 5.53±0.05 5.94±0.05 -21.4±0.1 0.69±0.07 1.33E+08 J3
0.022±0.002 -2.56±0.18 7.39±0.53 7.82±0.53 -19.1±0.4 3.76±0.51 8.55E+06 J2
2005.719

0.276±0.083 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.06±0.02 4.15E+11 Core
0.529±0.151 -0.09±0.04 0.05±0.04 0.11±0.04 -59.8±2.7 0.06±0.01 7.97E+11 J11
0.093±0.070 -0.17±0.04 0.12±0.04 0.21±0.04 -55.6±1.2 0.15±0.03 2.25E+10 J10
0.028±0.001 -0.55±0.04 0.40±0.04 0.68±0.04 -53.8±0.4 0.15±0.02 6.70E+09 J9
0.014±0.001 -0.74±0.04 0.71±0.04 1.02±0.04 -46.0±1.8 0.28±0.05 9.54E+08 J8
0.017±0.003 -0.54±0.04 1.12±0.06 1.25±0.05 -25.6±1.0 0.45±0.07 4.63E+08 J7
0.017±0.000 -0.71±0.04 1.78±0.08 1.92±0.05 -21.8±0.9 0.88±0.06 1.16E+08 J5
0.014±0.002 -0.70±0.04 2.94±0.10 3.03±0.06 -13.4±0.3 0.93±0.08 8.96E+07 J4
0.012±0.001 -2.29±0.04 5.53±0.04 5.99±0.04 -22.5±0.1 0.72±0.08 1.27E+08 J3
0.024±0.001 -2.63±0.08 7.71±0.22 8.14±0.10 -18.8±0.5 4.04±0.06 8.01E+06 J2
2006.608

0.222±0.052 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.06±0.01 3.35E+11 Core
0.561±0.031 -0.13±0.04 0.08±0.04 0.15±0.05 -56.6±1.8 0.11±0.01 2.51E+11 J11
0.186±0.042 -0.27±0.04 0.23±0.04 0.36±0.05 -50.2±0.7 0.08±0.01 1.57E+11 J10
0.015±0.003 -0.55±0.04 0.50±0.04 0.74±0.05 -47.4±0.6 0.15±0.06 3.69E+09 J9
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s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

0.017±0.001 -0.67±0.04 1.19±0.04 1.37±0.05 -29.5±0.6 0.54±0.05 3.18E+08 J7
0.009±0.002 -0.48±0.05 2.17±0.24 2.23±0.05 -12.4±1.4 0.37±0.09 3.37E+08 J5a
0.014±0.001 -0.94±0.04 3.23±0.08 3.36±0.07 -16.3±0.2 0.87±0.06 9.67E+07 J4
0.008±0.001 -2.50±0.07 5.57±0.16 6.11±0.05 -24.2±0.7 0.49±0.09 1.83E+08 J3
0.022±0.001 -3.24±0.09 8.23±0.24 8.85±0.17 -21.5±0.5 4.36±0.10 6.19E+06 J2
2007.425

0.314±0.116 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.11±0.05 1.41E+11 Core
0.302±0.036 -0.14±0.04 0.11±0.05 0.18±0.05 -51.1±0.7 0.15±0.03 7.28E+10 J11
0.348±0.025 -0.36±0.04 0.29±0.05 0.46±0.05 -51.3±0.2 0.17±0.02 6.53E+10 J10
0.014±0.009 -0.58±0.04 0.50±0.05 0.77±0.06 -48.9±1.2 0.11±0.06 6.23E+09 J9
0.009±0.003 -0.90±0.14 0.75±0.12 1.17±0.09 -50.4±6.9 0.68±0.33 1.09E+08 J8
0.009±0.003 -0.60±0.05 1.71±0.15 1.81±0.11 -19.2±1.3 0.41±0.23 2.87E+08 J6
0.017±0.003 -0.78±0.04 3.12±0.15 3.21±0.11 -14.0±0.5 1.17±0.19 6.69E+07 J4
0.010±0.001 -2.29±0.04 5.48±0.06 5.93±0.05 -22.7±0.2 0.56±0.07 1.71E+08 J3
0.021±0.002 -2.89±0.15 8.02±0.42 8.52±0.35 -19.8±0.7 3.63±0.18 8.48E+06 J2
2007.683

0.096±0.063 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.04±0.01 3.24E+11 Core
0.404±0.044 -0.14±0.05 0.14±0.05 0.20±0.05 -43.7±3.0 0.10±0.01 2.19E+11 J11
0.373±0.036 -0.42±0.05 0.37±0.05 0.56±0.05 -48.6±0.7 0.14±0.01 1.03E+11 J10
0.050±0.048 -0.58±0.07 0.52±0.06 0.78±0.08 -48.1±2.3 0.06±0.03 7.53E+10 J9
0.003±0.000 -0.69±0.07 0.96±0.10 1.19±0.09 -35.8±2.5 0.35±0.23 1.20E+08 J8
0.012±0.000 -0.79±0.05 2.03±0.09 2.17±0.05 -21.3±0.8 0.75±0.07 1.11E+08 J5
0.012±0.000 -0.92±0.05 3.31±0.08 3.43±0.05 -15.5±0.3 0.94±0.05 7.18E+07 J4
0.011±0.001 -2.22±0.05 5.61±0.08 6.03±0.05 -21.6±0.2 1.05±0.11 5.41E+07 J3
0.022±0.001 -3.30±0.05 8.36±0.11 8.99±0.08 -21.5±0.2 4.26±0.08 6.69E+06 J2

1Identification of the individual components

Table B.2: Results of the Gaussian model fitting for all
epochs at 5 GHz.

s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

1999.888
0.474±0.336 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.33±0.20 2.12E+11 Core
0.657±0.322 -0.19±0.15 0.33±0.06 0.38±0.15 -29.3±1.5 0.27±0.20 4.40E+11 C6
0.163±0.018 -0.32±0.15 1.18±0.26 1.23±0.15 -15.3±2.9 0.79±0.20 1.28E+10 C5a
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s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

0.033±0.005 -1.97±0.15 5.72±0.19 6.05±0.18 -19.0±0.3 0.86±0.20 2.15E+09 C3
0.097±0.010 -2.21±0.15 6.14±0.16 6.52±0.15 -19.8±0.2 3.08±0.20 4.99E+08 C2
0.058±0.006 -9.76±0.30 21.75±0.68 23.84±0.38 -24.2±0.6 18.24±0.74 8.45E+06 C1
2000.183

0.368±0.037 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.28±0.20 2.29E+11 Core
0.639±0.064 -0.29±0.10 0.23±0.06 0.38±0.10 -51.5±0.6 0.21±0.20 7.07E+11 C6
0.145±0.014 -0.41±0.10 0.89±0.09 0.98±0.10 -24.5±0.7 0.53±0.20 2.51E+10 C5
0.058±0.012 -0.37±0.10 1.66±0.15 1.70±0.12 -12.5±0.6 0.99±0.20 2.91E+09 C4
0.039±0.004 -2.03±0.10 5.52±0.10 5.88±0.10 -20.2±0.1 1.05±0.20 1.74E+09 C3
0.084±0.008 -2.28±0.10 6.43±0.11 6.83±0.10 -19.5±0.2 3.32±0.20 3.74E+08 C2
0.055±0.006 -8.86±0.12 21.03±0.29 22.82±0.20 -22.8±0.2 18.51±0.20 7.85E+06 C1
2000.915

0.422±0.047 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.23±0.20 3.89E+11 Core
0.569±0.057 -0.30±0.08 0.23±0.08 0.38±0.08 -53.1±4.3 0.18±0.20 8.57E+11 C6
0.155±0.030 -0.40±0.08 0.82±0.12 0.92±0.08 -26.0±3.1 0.47±0.20 3.42E+10 C5
0.050±0.005 -0.44±0.08 1.86±0.14 1.91±0.08 -13.2±0.8 0.91±0.20 2.93E+09 C4
0.040±0.004 -2.04±0.08 5.51±0.08 5.87±0.08 -20.3±0.2 0.88±0.20 2.50E+09 C3
0.077±0.008 -2.46±0.08 6.76±0.08 7.19±0.08 -20.0±0.2 3.46±0.20 3.15E+08 C2
0.043±0.004 -9.67±0.16 21.11±0.36 23.22±0.12 -24.6±0.4 14.36±0.20 1.02E+07 C1
2001.988

0.451±0.068 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.22±0.20 4.55E+11 Core
0.566±0.079 -0.35±0.09 0.25±0.07 0.43±0.09 -53.9±2.0 0.19±0.20 7.66E+11 C6
0.151±0.020 -0.46±0.09 0.98±0.13 1.09±0.09 -25.0±2.6 0.49±0.20 3.06E+10 C5
0.034±0.003 -0.49±0.09 2.28±0.15 2.34±0.09 -12.1±0.7 0.80±0.20 2.60E+09 C4
0.037±0.003 -2.09±0.09 5.52±0.12 5.90±0.09 -20.8±0.3 0.99±0.20 1.83E+09 C3
0.070±0.006 -2.46±0.09 6.83±0.09 7.26±0.09 -19.8±0.1 3.45±0.20 2.88E+08 C2
0.047±0.004 -9.32±0.09 21.65±0.17 23.57±0.09 -23.3±0.2 14.03±0.20 1.17E+07 C1
2002.241

0.437±0.078 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.26±0.20 3.15E+11 Core
0.471±0.061 -0.36±0.08 0.28±0.07 0.45±0.08 -52.2±2.4 0.23±0.20 4.35E+11 C6
0.138±0.021 -0.45±0.08 1.02±0.13 1.11±0.08 -23.7±2.6 0.53±0.20 2.39E+10 C5
0.033±0.003 -0.46±0.08 2.36±0.20 2.41±0.08 -11.1±0.9 0.81±0.20 2.42E+09 C4
0.040±0.003 -2.08±0.08 5.45±0.12 5.83±0.08 -20.9±0.3 1.08±0.20 1.69E+09 C3
0.066±0.005 -2.50±0.08 7.06±0.09 7.49±0.08 -19.5±0.1 3.47±0.20 2.67E+08 C2
0.043±0.003 -9.35±0.15 21.56±0.35 23.50±0.08 -23.4±0.4 13.43±0.20 1.16E+07 C1
2002.536
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s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

0.385±0.043 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.27±0.20 2.58E+11 Core
0.447±0.036 -0.34±0.09 0.31±0.07 0.46±0.09 -48.0±1.4 0.26±0.20 3.23E+11 C6
0.121±0.010 -0.45±0.09 1.06±0.07 1.15±0.09 -23.1±1.3 0.54±0.20 2.02E+10 C5
0.037±0.003 -0.47±0.09 2.37±0.12 2.41±0.09 -11.3±0.4 0.95±0.20 2.01E+09 C4
0.034±0.003 -2.07±0.09 5.40±0.07 5.78±0.09 -21.0±0.2 1.02±0.20 1.59E+09 C3
0.069±0.006 -2.49±0.09 6.95±0.07 7.38±0.09 -19.7±0.2 3.48±0.20 2.78E+08 C2
0.043±0.003 -9.33±0.09 21.69±0.16 23.61±0.09 -23.3±0.2 13.56±0.20 1.14E+07 C1
2003.277

0.261±0.021 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.20±0.20 3.19E+11 Core
0.417±0.042 -0.37±0.08 0.31±0.07 0.48±0.08 -49.6±3.6 0.19±0.20 5.64E+11 C6
0.124±0.015 -0.48±0.08 1.13±0.11 1.23±0.08 -23.1±1.7 0.58±0.20 1.80E+10 C5
0.034±0.003 -0.53±0.08 2.59±0.23 2.65±0.08 -11.6±1.0 0.95±0.20 1.83E+09 C4
0.031±0.003 -2.09±0.08 5.39±0.07 5.78±0.08 -21.2±0.2 0.99±0.20 1.56E+09 C3
0.067±0.005 -2.54±0.08 7.08±0.07 7.52±0.08 -19.7±0.1 3.75±0.20 2.33E+08 C2
0.043±0.003 -9.34±0.08 21.56±0.07 23.50±0.08 -23.4±0.1 13.64±0.20 1.14E+07 C1

1Identification of the individual components

Table B.3: Results of the Gaussian model fitting for all
epochs at 22 GHz.

s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

2001.988
0.122±0.026 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.04±0.04 1.93E+11 Core
0.241±0.025 -0.13±0.05 0.10±0.04 0.16±0.05 -54.0±4.3 0.11±0.04 5.01E+10 K7
0.171±0.040 -0.38±0.05 0.19±0.04 0.43±0.06 -63.5±2.6 0.11±0.04 3.56E+10 K6
0.109±0.022 -0.55±0.10 0.32±0.06 0.63±0.12 -60.1±1.8 0.12±0.04 1.91E+10 K5
0.101±0.016 -0.53±0.05 0.50±0.04 0.73±0.05 -47.0±1.2 0.24±0.05 4.43E+09 K4
0.039±0.004 -0.59±0.05 0.93±0.04 1.10±0.05 -32.2±0.7 0.53±0.11 3.50E+08 K3
0.017±0.002 -0.66±0.06 1.84±0.18 1.95±0.06 -19.7±1.8 1.03±0.21 4.04E+07 K2b
0.020±0.002 -2.32±0.07 5.79±0.19 6.24±0.12 -21.8±0.7 1.40±0.28 2.51E+07 K1
2002.241

0.097±0.009 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.11±0.04 2.02E+10 Core
0.223±0.048 -0.14±0.05 0.12±0.04 0.19±0.05 -51.1±2.3 0.14±0.04 2.87E+10 K7
0.130±0.012 -0.41±0.08 0.23±0.04 0.47±0.09 -60.6±2.6 0.19±0.04 9.06E+09 K6
0.064±0.008 -0.57±0.05 0.36±0.04 0.68±0.05 -58.2±1.0 0.13±0.04 9.49E+09 K5
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s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

0.072±0.011 -0.60±0.05 0.54±0.04 0.81±0.05 -47.8±2.5 0.26±0.05 2.67E+09 K4
0.026±0.007 -0.44±0.06 0.87±0.11 0.98±0.05 -27.0±3.4 0.26±0.05 9.51E+08 K3b
0.012±0.001 -0.82±0.05 1.28±0.06 1.52±0.05 -32.5±1.2 0.32±0.06 2.93E+08 K3a
0.013±0.001 -0.75±0.09 2.26±0.26 2.38±0.09 -18.4±2.0 1.12±0.22 2.63E+07 K2
0.015±0.002 -2.36±0.11 5.60±0.26 6.08±0.13 -22.9±0.9 1.14±0.23 2.83E+07 K1
2002.536

0.135±0.030 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.05±0.04 1.36E+11 Core
0.129±0.012 -0.16±0.06 0.12±0.03 0.20±0.06 -54.2±1.5 0.10±0.04 3.25E+10 K7
0.097±0.010 -0.43±0.06 0.21±0.03 0.48±0.06 -63.5±1.6 0.12±0.04 1.70E+10 K6
0.066±0.007 -0.58±0.06 0.36±0.03 0.68±0.06 -57.9±1.7 0.12±0.04 1.15E+10 K5
0.053±0.007 -0.56±0.06 0.55±0.04 0.79±0.06 -45.7±3.0 0.24±0.05 2.31E+09 K4
0.034±0.003 -0.45±0.07 0.85±0.13 0.96±0.06 -27.8±4.1 0.49±0.13 3.56E+08 K3b
0.011±0.004 -0.82±0.09 1.27±0.15 1.51±0.17 -32.9±1.3 0.36±0.08 2.06E+08 K3a
0.008±0.001 -0.58±0.08 2.39±0.34 2.46±0.08 -13.7±1.9 0.65±0.13 4.83E+07 K2
0.019±0.006 -2.39±0.15 6.16±0.39 6.61±0.25 -21.2±1.3 2.80±1.28 6.17E+06 K1
2003.277

0.182±0.018 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.06±0.04 1.28E+11 Core
0.072±0.007 -0.18±0.05 0.13±0.04 0.22±0.05 -54.0±0.3 0.11±0.04 1.51E+10 K7
0.086±0.009 -0.39±0.05 0.23±0.04 0.45±0.05 -59.0±0.4 0.12±0.04 1.51E+10 K6b
0.073±0.007 -0.60±0.05 0.32±0.04 0.68±0.05 -61.5±0.1 0.09±0.04 2.28E+10 K6a
0.042±0.004 -0.62±0.05 0.51±0.04 0.80±0.05 -50.6±0.7 0.15±0.04 4.65E+09 K5
0.041±0.004 -0.51±0.05 0.80±0.04 0.95±0.05 -32.3±0.5 0.32±0.06 1.00E+09 K4
0.032±0.002 -0.58±0.05 1.27±0.06 1.40±0.05 -24.4±1.1 0.83±0.17 1.16E+08 K3
0.008±0.001 -0.50±0.10 2.54±0.50 2.58±0.10 -11.1±2.2 0.73±0.15 3.55E+07 K2
0.021±0.002 -2.38±0.10 5.77±0.23 6.24±0.09 -22.4±0.8 1.89±0.38 1.45E+07 K1
2004.124

0.370±0.037 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.08±0.04 1.22E+11 Core
0.072±0.010 -0.32±0.12 0.22±0.05 0.39±0.12 -55.3±2.4 0.29±0.06 1.81E+09 K7
0.048±0.006 -0.65±0.12 0.40±0.05 0.77±0.12 -58.2±0.9 0.04±0.04 6.41E+10 K6
0.032±0.010 -0.59±0.12 0.78±0.06 0.98±0.12 -37.3±2.1 0.26±0.05 1.02E+09 K5
0.011±0.004 -0.57±0.12 1.50±0.19 1.60±0.15 -21.0±2.3 0.70±0.14 4.71E+07 K3
0.005±0.001 -0.59±0.16 4.38±1.16 4.42±0.16 -7.7±2.0 0.72±0.65 1.88E+07 K2a
0.026±0.008 -2.85±1.26 6.75±2.98 7.33±3.10 -22.9±2.9 5.36±2.63 1.95E+06 K1
2004.955

0.455±0.161 0.00±0.00 0.00±0.00 0.00±0.00 0.0±0.0 0.07±0.04 1.97E+11 Core
0.063±0.028 -0.09±0.08 0.06±0.06 0.11±0.08 -55.2±1.9 0.14±0.04 6.79E+09 K8
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s x y r θ FWHM TB Id.1

[Jy] [mas] [mas] [mas] [◦] [mas] [K]

0.029±0.005 -0.35±0.08 0.27±0.06 0.44±0.08 -52.1±2.5 0.23±0.16 1.15E+09 K7
0.025±0.004 -0.67±0.08 0.56±0.06 0.87±0.08 -49.7±1.3 0.09±0.05 6.62E+09 K6
0.017±0.004 -0.55±0.08 0.97±0.06 1.11±0.08 -29.8±0.8 0.26±0.13 5.17E+08 K5
0.005±0.001 -0.13±0.08 1.40±0.14 1.40±0.08 -5.3±2.6 0.30±0.15 1.11E+08 K3b
0.007±0.001 -0.29±0.08 2.88±0.21 2.90±0.08 -5.7±0.4 0.14±0.07 7.46E+08 K2

1Identification of the individual components
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Table B.4: Modulation index m and variability amplitude Y of Effelsberg and Urumqi measurements at

5 GHz.

epoch m[%] Y[%]
1999.100 5.02 14.94
2000.200 0.65 1.52
2000.710 0.26 0.71
2000.900 0.65 1.81
2001.225 0.87 2.53
2001.337 0.47 1.29
2001.586 0.51 1.41
2001.800 0.43 1.14
2001.983 0.38 1.04
2002.277 0.79 2.23
2003.871 1.14 3.37
2004.538 0.90 2.64
2004.612 0.68 1.93
2004.967 0.53 1.52
2005.603 1.50 4.26
2005.989 2.09 5.12
2006.364 1.13 3.06
2006.321 0.88 2.16
2006.438 1.08 2.88
2006.534 1.58 4.25
2006.633 1.17 2.81
2006.729 0.92 1.35
2006.881 1.00 2.41
2007.068 0.84 1.41
2007.118 1.15 2.73
2007.227 0.85 0.00
2007.301 0.89 0.00
2007.457 1.30 3.46
2007.548 1.23 3.03
2007.784 0.87 2.44
2007.971 0.77 1.74
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Appendix C

Here, the binary black hole model and its application to the data analysis of Chapter 5.2.5 are
described according to Roland et al. (2008) by courtesy of Prof. Roland.

C.1 The model

Introduction: The two-fluid model

At first, the ejection of a VLBI component in the framework of the two-fluid model (Sol et al.
1989; Pelletier & Roland 1989, 1990; Pelletier & Sol 1992) isdescribed. The two-fluid descrip-
tion of the outflow is adopted with the following assumptions:

1. The outflow consists of ane− − p plasma (hereafterthe jet) moving at mildly relativistic
speedv j ≤ 0.4 × c and ane± plasma (hereafterthe beam) moving at highly relativistic
speed (with corresponding Lorentz factorγb ≤ 30).

2. The magnetic field lines are parallel to the flow in the beam and the mixing layer, and are
toroidal in the jet (see Figure 1 of Lobanov & Roland 2005).

The e− − p jet carries most of the mass and the kinetic energy ejected bythe nucleus. It is
responsible for the formation of kpc-jets, hot spots and extended lobes (Muxlow et al. 1988;
Roland et al. 1988; Roland & Hetem 1996). The relativistice± beam moves in a channel through
the mildly relativistic jet and is responsible for the formation of superluminal sources and their
γ-ray emission (Roland et al. 1994). The relativistic beam can propagate if the magnetic fieldB
is parallel to the flow in the beam and in the mixing layer between the beam and the jet and if it
is greater than a critical value (Pelletier et al. 1988; Achatz & Schlickeiser 1993). The magnetic
field in the jet becomes rapidly toroidal (Pelletier & Roland1990).
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The observational evidence for the two-fluid model has been discussed by, e.g., Roland &
Hetem (1996). Recent observational evidence for relativistic ejection of ane± beam come from
theγ-ray observations of MeV sources (Roland & Hermsen 1995; Skibo et al. 1997) and from
VLBI polarization observations (Attridge et al. 1999).

The formation of X-ray andγ-ray spectra, assuming relativistic ejection ofe± beams, has
been investigated by Marcowith et al. (1995, 1998) in the case of Centaurus A.

The possible existence of VLBI components with two different speeds has been recently
pointed out in the case of the radio galaxies Centaurus A (Tingay et al. 1998), Virgo A (Biretta
et al. 1999) and 3C 120 (Gómez et al. 2001). If the relativistic beam transfers some energy
and/or relativistic particles to the jet, the relativistic particles in the jet will radiate and a new
VLBI component with a mildly relativistic speed will be observed (3C 120 is a good example of
a source showing this effect).

Figure C.1: The two-fluid model

The geometry of the model

Let Ω be the angle between the accretion disk and the orbital plane(XOY) of the BBH system.
The ejection of the component will be on a cone with its axis intheZ′OZ direction and opening
angleΩ. We will assume that the line of sight is in the plane (YOZ) and forms an angleio with
the axisZ′OZ (see Figure C.2). The plane perpendicular to the line of sight is the plane (ηOX).
We will call ∆Ξ the angle of the rotation in the plane perpendicular to the line of sight, in order to
transform the coordinatesη andX into coordinatesN (North) andW (West), which are directly
comparable with the VLBI observations. We have
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W = x cos(∆Ξ) − (z sin(io) + y cos(io)) sin(∆Ξ) , (C.1)

N = x sin(∆Ξ) + (z sin(io) + y cos(io)) cos(∆Ξ) . (C.2)

Figure C.2: The geometry of the problem

The precession model

This section describes the precession of the accretion disk. The coordinates of a component
moving in the perturbed beam are given by

xc = Ro(z)cos(ωpt − kpz(t) + φo) , (C.3)

yc = Ro(z)sin(ωpt − kpz(t) + φo) , (C.4)

zc = zc(t) , (C.5)

whereωp = 2π/Tp, Tp is the precession period, andkp is defined by

kp = 2π/TpVa , (C.6)

whereVa is the speed of the propagation of the perturbations and a free parameter of the problem.
We will assume that the amplitude of the perturbation first increases linearly, and we take the
form of the amplitudeR(zc(t)) to be
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R(zc(t)) =
Rozc(t)

(a + zc(t))
, (C.7)

wherea is
a = Ro/(2 tanΩ) . (C.8)

The binary system model

To explain the origin of the precession of the accretion disk, we propose that the nucleus hosts
a BBH system. As stated above, the two black holes orbit in theplane (XOY), and the origin of
our coordinate system is centered on the mass center of the system. The elliptical orbit is given
by

r =
p

1+ e cos(ϕ)
, (C.9)

wheree andp are respectively the eccentricity and the parameter or the semi-latus rectum of the
orbit. We will assume that the two black holes have circular orbits, i.e.e = 0 and we will define
the black hole that ejects the VLBI component with index 1. Its coordinates are:

X1(t) = −
M2

M1 + M2
p cos(ψ(t)) , (C.10)

Y1(t) = −
M2

M1 + M2
p sin(ψ(t)) . (C.11)

As the orbits are circular, we haveψ(t) = ωbt + ψo. Writing

x1 = y1 = −
pM2

M1 + M2
, (C.12)

we have

x1 = −
M2

M1 + M2
×

[

T 2
b

4π2
G(M1 + M2)

]1/3

, (C.13)

whereTb is the period of the BBH system. We defineRbbh the distance between the two black
holes as the size of the BBH system, it is:

Rbbh =

[

T 2
b

4π2
G(M1 + M2)

]1/3

. (C.14)

The coordinates of black hole 1 can be written

X1(t) = x1 cos(ωbt + ψo) , (C.15)
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Y1(t) = y1 sin(ωbt + ψo) . (C.16)

Finally, we suppose that the perturbation of the beam is damped with a characteristic timeTd.

For VLBI observations the origin of the coordinates is blackhole 1, i.e. the black hole
ejecting the VLBI components. Therefore, the coordinates of the moving components in the
frame of reference where black hole 1 is considered the origin are

xc = [Ro(z) cos(ωpt − kpz(t) + φo)

+ x1cos(ωbt − kbz(t) + ψo) − x1 cos(ψo)]

exp(−t/Td) , (C.17)

yc = [Ro(z) sin(ωpt − kpz(t) + φo)

+ y1 sin(ωbt − kbz(t) + ψo) − y1 sin(ψo)]

exp(−t/Td) , (C.18)

zc = zc(t) , (C.19)

whereωb = 2π/Tb, andkb is defined by

kb =
2π

TbVa
. (C.20)

The differential equation governing the evolution ofzc(t) can be obtained through the relation for
the speed of the component

v2
c =

(

dxc(t)
dt

)2

+

(

dyc(t)
dt

)2

+

(

dzc(t)
dt

)2

, (C.21)

wherevc is related to the bulk Lorentz factor byvc/c =
√

(1− 1/γ2
c).

Using C.3, C.4 and C.5, we find from C.21 thatdzc/dt is the solution of the equation

A

(

dzc

dt

)2

+ B

(

dzc

dt

)

+C = 0 . (C.22)

The coefficientsA, B andC can be calculated as follows: Let us call

φ(t) = ωpt − kpz(t) + φo , (C.23)
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and

ψ(t) = ωbt − kbz(t) + ψo . (C.24)

With

x1 = y1 = −
M2

M1 + M2

[

T 2
b

4π2
G(M1 + M2)

]1/3

, (C.25)

the coefficientsA, B andC of equation C.22 are given by

A = exp(−2t/Td)

[

ωbωpR(z)

V2
a

(y1 + x1) cos(ψ(t) − φ(t))+

ωb

Va

dR
dz

(x1 + y1) sin(ψ(t) − φ(t)) +
ω2

pR(z)2

V2
a

+

(

dR
dz

)2

+
ω2

b

2V2
a

(x2
1 + y2

1)













+ 1 . (C.26)

B = exp(−2t/Td)

[

2x1ωbx1 cos(ψo)
TdVa

sin(ψ(t))−

2y1ωby1 sin(ψo)
TdVa

cos(ψ(t)) +

2

(

dR(z)
dz

x1 cos(ψo) −
y1 sin(ψo)R(z)ωp

Va

)

cos(φ(t)) +

2

(

dR(z)
dz

y1 sin(ψo) +
x1 cos(ψo)R(z)ωp

Va

)

sin(φ(t)) +

sin(ψ(t) − φ(t))

{

−ωb
dR(z)

dz
(x1 + y1)+

(ωp − ωb)R(z)

Va
(x1 + y1) /Td

}

+

cos(ψ(t) − φ(t))

{

−
2ωpωbR(z)

Va
(x1 + y1)−

dR(z)
dz

(x1 + y1) /Td

}

−
ω2

b

Va

(

x2
1 + y2

1

)

−
2ω2

pR2(z)

Va
−

2dR(z)
dz

R(z)
Td













. (C.27)
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C = exp(−2t/Td)

[

(x1 cos(ψo))2 + (y1 sin(ψo))2

T 2
d

+

2

(

y1ωby1 sin(ψo)
Td

− x1x1 cos(ψo)

T 2
d

)

cos(ψ(t)) −

2

(

x1ωbx1 cos(ψo)
Td

− y1y1 sin(ψo)

T 2
d

)

sin(ψ(t)) +

2R(z)

(

y1 sin(ψo)ωp

Td
− x1 cos(ψo)

T 2
d

)

cos(φ(t)) −

2R(z)

(

x1 cos(ψo)ωp

Td
+

y1 sin(ψo)

T 2
d

)

sin(φ(t)) +

sin(ψ(t) − φ(t))
{

−(ωb − ωp)R(z) (x1 + y1) /Td

}

+

cos(ψ(t) − φ(t))
{

ωpωbR(z) (x1 + y1)−

R(z) (x1 + y1) /T
2
d

}

+
ω2

b

2

(

x2
1 + y2

1

)

+ R2(z)ω2
p +

(

R2(z) +
x2

1 + y2
1

2

)

/T 2
d

]

− v2 . (C.28)

Equation C.22 admits two solutions corresponding to the jetand the counter-jet.

We assumed that the line of sight is in the plane (YOZ) and forms an angleio with the z
axis (see Figure C.2). Thus following Camenzind & Krockenberger (1992), if we callθ the angle
between the velocity of the component and the line of sight wehave

cos(θ(t)) =

(

dyc

dt
sin io +

dzc

dt
cos io

)

/vc . (C.29)

The Doppler beaming factorδ, characterizing the anisotropic emission of the moving component,
is

δc(t) =
1

γc
[

1− βccos(θ(t))
] , (C.30)

whereβc = vc/c. The observed flux density is

S c =
1

D2
δc(t)

2+αr (1+ z)1−αr

∫

c
jcdV , (C.31)

whereD is the luminosity distance of the source,z its redshift, jc is the emissivity of the compo-
nent, andαr is the synchrotron spectral index (a negative definition of the spectral index,S ∝ ν−α

is used). As the component is moving relativistically towards the observer, the observed time is
shortened and is given by
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tobs =

∫ t

0

[

1− βccos(θ(t′))
]

(1+ z) dt′ . (C.32)

C.2 The global method

Introduction

In Lobanov & Roland (2005) we provide a method to determine the characteristic parameters
of the BBH system using radio and optical observations. The method consists of two steps, i.e.
in a first step we use VLBI observations to model the precession (without a BBH system) and
in a second step we use optical observations to obtain the characteristic parameters of the BBH
system.

The above described method has the following problems:

1. Using a simple precession model, we find for 3C 345 that a bulk Lorentz factor increasing
with time is necessary.

2. Using the parameters of the precession found in the first step, the BBH solution obtained in
the second step is not necessarily consistent with the precession solution found previously.
Indeed, in the limitM2 → 0 the BBH solution is not necessarily able to reproduce the
results of the precession model found in the first step. The limit M2 → 0 corresponds to a
single black hole and the precession of the accretion disk isdue to the Lens-Thirring effect
in that case.

The above problems can be solved if we directly model the VLBIobservations with a BBH
system instead of a simple precession model. In the BBH system model, the bulk Lorentz
factor is constant, and the model explains the apparent variations of the speed of the VLBI
component when it escapes from the nucleus (the apparent speed of the ejected component
changes by a factor of four with a constant bulk Lorentz factor and it is not necessary to involve
any acceleration or decceleration of the VLBI component). Since the BBH system and the
precession solution are obtained simultaneously, they areobviously self-consistent.

The presented method is called the global method. In the global method, we calculate
the projected trajectory on the plane of the sky of a component ejected by a BBH system and we
determine the parameters of the model to simultaneously produce the best fit for both the West
and North coordinates, i.e.Wc(t), Nc(t). So, the parameters found are such that minimize

χ2
t = χ

2(Wc(t)) + χ
2(Nc(t)) , (C.33)
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whereχ2(Wc(t)) andχ2(Nc(t)) are theχ2 calculated by comparing the VLBI observations with
the calculated coordinatesWc(t) andNc(t) of the component.

The coordinates of the VLBI component

Solving C.22, we determine the coordinatezc(t) of a point source component ejected relativis-
tically in the perturbed beam. Then, using C.17 and C.18, we can find the coordinatesxc(t)
andyc(t) of the component. In addition, for each point of the trajectory, we can calculate the
derivativesdxc/dt, dyc/dt, dzc/dt and then deduce cosθ from C.29,δc from C.30,S ν from C.31
andtobs from C.32.

When the coordinatesxc(t), yc(t) and zc(t) have been calculated, they can be transformed
to wc(t) (West) andnc(t) (North) coordinates using C.1 and C.2.

As explained in Britzen et al. (2001) and Lobanov & Roland (2005), the radio VLBI
component has to be described as an extended component alongthe beam. Let us callnrad

the number of points (or steps along the beam) for which we integrate, in order to model the
component. The coordinatesWc(t), Nc(t) of the VLBI component are then

Wc(t) =















nrad
∑

i=1

wci(t)















/nrad , (C.34)

Nc(t) =















nrad
∑

i=1

nci(t)















/nrad . (C.35)

and can be compared with the observed coordinates of the VLBIcomponent.

The parameters of the model

In this section, we list what a priori the free parameters of the model are:

• io the inclination angle,

• φo the phase of the precession att = 0,

• ∆Ξ the rotation angle in the plane perpendicular to the line of sight (see C.1 and C.2),

• Ω the opening angle of the precession cone (see C.8),

• Ro the maximum amplitude of the perturbation (see C.7),

• Tp the precession period of the accretion disk,

• Td the characteristic time for the damping of the beam perturbation,
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• M1 the mass of the black hole ejecting the radio jet,

• M2 the mass of the secondary black hole,

• γc the bulk Lorentz factor of the VLBI component,

• ψo the phase of the BBH system att = 0,

• Tb the period of the BBH system,

• to the origin of the ejection of the VLBI component,

• Va the propagation speed of the perturbations,

• nrad is the number of steps to describe the extension of the VLBI component along the
beam.

To begin with, we assume thatM1 = M2 and when the corresponding solution is obtained, we
calculate the familyM1(M2) which provides the same fit. So, the problem we have to solve is a
14 free parameters problem.

If, in addition to the radio, optical observations are available that peak in the light curve,
this optical emission can be modelled as the synchrotron emission of a point source ejected
in the perturbed beam (Britzen et al. 2001 and Lobanov & Roland 2005). This short burst of
very energetic relativistice± is followed immediately by a very long burst of less energetic
relativistic e±. This long burst is modelled as an extended structure along the beam and is
responsible for the VLBI radio emission. In that case the origin to of the VLBI component
is the beginning of the first peak of the optical light curve and is not a free parameter of the model.

We have to investigate the different possible scenarios with regard to the sense of the ro-
tation of the accretion disk and the sense of the orbital rotation of the BBH system. These
possibilities correspond to± ωp(t − z/Va) and± ωb(t − z/Va). As the sense of the precession is
always opposite to the sense of the orbital motion, we will study the two cases denoted by+−
and−+ where we haveωp(t − z/Va), −ωb(t − z/Va) and−ωp(t − z/Va), ωb(t − z/Va) respectively.

The method to solve the problem

To find a solution for the above described problem we use the following method. As mentioned
before, we start with the assumption thatM1 = M2, i.e., that the two masses of the BBH system
are equal.

First, we find the inclination angle that provides the best fit. To do that we minimize
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χ2
t (io) (see C.33) when the inclination angle varies gradually between two values. At each step

of io, we determine each free parameterλ such that∂χ2
t /∂λ = 0 andχ2

t presents a minimum.

Furthermore, using the inclination angle determined previously, we explore the space of
the solutions, for a varying mass of the BBH system (while still assumingM1 = M2). This
allows us to find whether the solution of the BBH system presents a degeneration or if there are
other solutions with different masses, that fit the observations. When exploring the solutions
space, we always vary one parameter in a step-wise manner, with each step minimizingχ2

t for
each of the free parameters.

The space of the solutions can be explored for each of the freeparameters if necessary.

Because the problem is a non-linear one, we calculate again the variations ofχ2
t (io) for

the best solution found previously, starting from the inclination angle obtained in the first step.
Whereχ2

t (io) reaches its minimum, we have

(

∂χ2

∂io

)

min

= A (io − io,min) , (C.36)

and the 1σ error bar, (∆io)1σ, corresponding to the parameterio is then given by

(∆io)1σ = 1/A . (C.37)

This assumes that around the minimum,χ2
t (io) is a parabola, however, for large variations ofio,

the parabola approximation is not valid and a better determination of the 1σ error bar can be
obtained using the definition

(∆io)1σ = |io(χ
2
min + 1)− io(χ

2
min)| , (C.38)

which provides two values (∆io)1σ+ and (∆io)1σ− (see Lampton et al. 1976 and Hébrard et al.
2002).

Because we calculatedχ2
t (io) by minimizing χ2

t (λ) at each step and for each free parame-
ter λ, we can deduce the range of values corresponding to 1σ for each parameter when the
inclination varies betweenio = io,min − (∆io)1σ− andio = io,min + (∆io)1σ+ .

Finally, when the best solution corresponding toM1 = M2 is obtained, we can determine
the family of BBH systems withM1 , M2 that provides the same fit.
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One important point is that using this phenomenological method, we do not have the
proof that the minimum found is unique, since for a completely different set of values for the
parameters of the problem, another minimum could exist. Nevertheless, as we will explore a
wide range of inclination angles, i.e. 1o ≤ io ≤ 25o and an equally wide range of BBH system
masses, i.e. 106 × M⊙ ≤ M ≤ 1011 × M⊙, we minimize the possibility of missing the best
solution. Another way to overcome this difficulty is to explore the space of possible values of
the parameters using, for instance, a Monte Carlo Markov chain algorithm (MCMC algorithm).
However this is out of the scope of this work.
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