197 research outputs found

    Flexible, low-cost silicon solar cell arrays

    Get PDF
    Silicon solar cell arrays are pressure-bonded to flexible backing and protected by fluorinated ethylene propylene cover in one mechanized operation. Arrays packaged by this method are flexible, lightweight, insulated, breakage resistant and less expensive

    Method of making silicon solar cell array

    Get PDF
    A heat sealable transparent plastic film, such as a flourinated ethylene propylene copolymer, is used both as a cover material and as an adhesive for mounting a solar cell array to a flexible substrate

    A large Hilbert space QRPA and RQRPA calculation of neutrinoless double beta decay

    Get PDF
    A large Hilbert space is used for the calculation of the nuclear matrix elements governing the light neutrino mass mediated mode of neutrinoless double beta decay of Ge76, Mo100, Cd116, Te128 and Xe136 within the proton-neutron quasiparticle random phase approximation (pn-QRPA) and the renormalized QRPA with proton-neutron pairing (full-RQRPA) methods. We have found that the nuclear matrix elements obtained with the standard pn-QRPA for several nuclear transitions are extremely sensitive to the renormalization of the particle-particle component of the residual interaction of the nuclear hamiltonian. Therefore the standard pn-QRPA does not guarantee the necessary accuracy to allow us to extract a reliable limit on the effective neutrino mass. This behaviour, already known from the calculation of the two-neutrino double beta decay matrix elements, manifests itself in the neutrinoless double-beta decay but only if a large model space is used. The full-RQRPA, which takes into account proton-neutron pairing and considers the Pauli principle in an approximate way, offers a stable solution in the physically acceptable region of the particle-particle strength. In this way more accurate values on the effective neutrino mass have been deduced from the experimental lower limits of the half-lifes of neutrinoless double beta decay.Comment: 19 pages, RevTex, 1 Postscript figur

    Generalized Bounds on Majoron-neutrino couplings

    Get PDF
    We discuss limits on neutrino-Majoron couplings both from laboratory experiments as well as from astrophysics. They apply to the simplest class of Majoron models which covers a variety of possibilities where neutrinos acquire mass either via a seesaw-type scheme or via radiative corrections. By adopting a general framework including CP phases we generalize bounds obtained previously. The combination of complementary bounds enables us to obtain a highly non-trivial exclusion region in the parameter space. We find that the future double beta project GENIUS, together with constraints based on supernova energy release arguments, could restrict neutrino-Majoron couplings down to the 10^{-7} level.Comment: 17 pages, LateX, 7 figures, version to be published in Phys. Rev.

    Neutrinoless Double Beta Decay within QRPA with Proton-Neutron Pairing

    Get PDF
    We have investigated the role of proton-neutron pairing in the context of the Quasiparticle Random Phase approximation formalism. This way the neutrinoless double beta decay matrix elements of the experimentally interesting A= 48, 76, 82, 96, 100, 116, 128, 130 and 136 systems have been calculated. We have found that the inclusion of proton-neutron pairing influences the neutrinoless double beta decay rates significantly, in all cases allowing for larger values of the expectation value of light neutrino masses. Using the best presently available experimental limits on the half life-time of neutrinoless double beta decay we have extracted the limits on lepton number violating parameters.Comment: 16 RevTex page

    Assessment of dosimetric errors induced by deformable image registration methods in 4D pencil beam scanned proton treatment planning for liver tumours

    Get PDF
    PURPOSE: Respiratory impacts in pencil beam scanned proton therapy (PBS-PT) are accounted by extensive 4D dose calculations, where deformable image registration (DIR) is necessary for estimating deformation vector fields (DVFs). We aim here to evaluate the dosimetric errors induced by different DIR algorithms in their resulting 4D dose calculations by using ground truth(GT)-DVFs from 4DMRI. MATERIALS AND METHODS: Six DIR methods: ANACONDA, Morfeus, B-splines, Demons, CT Deformable, and Total Variation, were respectively applied to nine 4DCT-MRI liver data sets. The derived DVFs were then used as input for 4D dose calculation. The DIR induced dosimetric error was assessed by individually comparing the resultant 4D dose distributions to those obtained with GT-DVFs. Both single-/three-field plans and single/rescanned strategies were investigated. RESULTS: Differences in 4D dose distributions among different DIR algorithms, and compared to the results using GT-DVFs, were pronounced. Up to 40 % of clinically relevant dose calculation points showed dose differences of 10 % or more between the GT. Differences in V95(CTV) reached up to 11.34 ± 12.57 %. The dosimetric errors became in general less substantial when applying multiple-field plans or using rescanning. CONCLUSION: Intrinsic geometric errors by DIR can influence the clinical evaluation of liver 4D PBS-PT plans. We recommend the use of an error bar for correctly interpreting individual 4D dose distributions

    Pions in Nuclei and Manifestations of Supersymmetry in Neutrinoless Double Beta Decay

    Get PDF
    We examine the pion realization of the short ranged supersymmetric (SUSY) mechanism of neutrinoless double beta decay. It originates from the R-parity violating quark-lepton interactions of the SUSY extensions of the standard model of the electroweak interactions. We argue that pions are dominant SUSY mediators in neutrinoless double beta decay. The corresponding nuclear matrix elements for various isotopes are calculated within the proton-neutron renormalized quasiparticle random phase approximation. We define those isotopes which are most sensitive to the SUSY signal and outlook the present experimental situation with the double beta decay searches for the SUSY. Upper limits on the R-parity violating 1st generation Yukawa coupling are derived from various double beta decay experiments.Comment: 15 pages, Latex, 3 Postscript figure

    Latest Results from the Heidelberg-Moscow Double Beta Decay Experiment

    Get PDF
    New results for the double beta decay of 76Ge are presented. They are extracted from Data obtained with the HEIDELBERG-MOSCOW, which operates five enriched 76Ge detectors in an extreme low-level environment in the GRAN SASSO. The two neutrino accompanied double beta decay is evaluated for the first time for all five detectors with a statistical significance of 47.7 kg y resulting in a half life of (T_(1/2))^(2nu) = [1.55 +- 0.01 (stat) (+0.19) (-0.15) (syst)] x 10^(21) years. The lower limit on the half-life of the 0nu beta-beta decay obtained with pulse shape analysis is (T_(1/2))^(0_nu) > 1.9 x 10^(25) [3.1 x 10^(25)] years with 90% C.L. (68% C.L.) (with 35.5 kg y). This results in an upper limit of the effective Majorana neutrino mass of 0.35 eV (0.27 eV). No evidence for a Majoron emitting decay mode or for the neutrinoless mode is observed.Comment: 14 pages, revtex, 6 figures, Talk was presented at third International Conference ' Dark Matter in Astro and Particle Physics' - DARK2000, to be publ. in Proc. of DARK2000, Springer (2000). Please look into our HEIDELBERG Non-Accelerator Particle Physics group home page: http://www.mpi-hd.mpg.de/non_acc

    The shape and composition of interstellar silicate grains

    Get PDF
    We investigate the composition and shape distribution of silicate dust grains in the interstellar medium. The effect of the amount of magnesium in the silicate lattice is studied. We fit the spectral shape of the interstellar 10 mu extinction feature as observed towards the galactic center. We use very irregularly shaped coated and non-coated porous Gaussian Random Field particles as well as a statistical approach to model shape effects. For the dust materials we use amorphous and crystalline silicates with various composition and SiC. The results of our analysis of the 10 mu feature are used to compute the shape of the 20 mu silicate feature and to compare this with observations. By using realistic particle shapes we are, for the first time, able to derive the magnesium fraction in interstellar silicates. We find that the interstellar silicates are highly magnesium rich (Mg/(Fe+Mg)>0.9) and that the stoichiometry lies between pyroxene and olivine type silicates. This composition is not consistent with that of the glassy material found in GEMS in interplanetary dust particles indicating that these are, in general, not unprocessed remnants from the interstellar medium. Also, we find a significant fraction of SiC (~3%). We discuss the implications of our results for the formation and evolutionary history of cometary and circumstellar dust. We argue that the fact that crystalline silicates in cometary and circumstellar grains are almost purely magnesium silicates is a natural consequence of our findings that the amorphous silicates from which they were formed were already magnesium rich.Comment: Accepted for publication in A&
    corecore