239 research outputs found

    The cross on rings performed by an Olympic champion

    Get PDF
    The cross is a key skill in Male Artistic Gymnastics rings routines. However, few researches were found about this skill. There is knowledge about the forces needed to perform the cross, or about muscles activation, separately. The aim of this paper was to accomplish a comprehensive research about the biomechanics of cross on rings, in order to obtain a descriptive model about this skill. Therefore, the currently Olympic champion on rings event volunteered in this research. He performed three crosses with the usual apparatus in his training gym. The measurement methods were combined: One digital video camera, one strain gauge in each cable and surface electromyography of nine right shoulder muscles were used. Statistical analyses were performed by parametric and non parametric tests and descriptive statistics. Symmetry values were calculated for shoulder angles and cables of right and left side. Coefficient of variation of muscle activation and co contraction were verified. Within gymnast variability was calculated using biological coefficient of variation (BCV), discretely for kinematic measures. Low variability values of shoulder angles and cable forces were verified and low values of asymmetry as well. Muscle activation varied according to muscle function, while co-contraction values were different among trials. These results pointed out the characteristics of the cross performed by an elite gymnast. Knowledge about the characteristics of cross can inform coaches, practitioners and clinicians how a successful skill should be presented

    A Comparison of Initial Antiretroviral Therapy in the Swiss HIV Cohort Study and the Recommendations of the International AIDS Society-USA

    Get PDF
    BACKGROUND: In order to facilitate and improve the use of antiretroviral therapy (ART), international recommendations are released and updated regularly. We aimed to study if adherence to the recommendations is associated with better treatment outcomes in the Swiss HIV Cohort Study (SHCS). METHODS: Initial ART regimens prescribed to participants between 1998 and 2007 were classified according to IAS-USA recommendations. Baseline characteristics of patients who received regimens in violation with these recommendations (violation ART) were compared to other patients. Multivariable logistic and linear regression analyses were performed to identify associations between violation ART and (i) virological suppression and (ii) CD4 cell count increase, after one year. RESULTS: Between 1998 and 2007, 4189 SHCS participants started 241 different ART regimens. A violation ART was started in 5% of patients. Female patients (adjusted odds ratio aOR 1.83, 95%CI 1.28-2.62), those with a high education level (aOR 1.49, 95%CI 1.07-2.06) or a high CD4 count (aOR 1.53, 95%CI 1.02-2.30) were more likely to receive violation ART. The proportion of patients with an undetectable viral load (<400 copies/mL) after one year was significantly lower with violation ART than with recommended regimens (aOR 0.54, 95% CI 0.37-0.80) whereas CD4 count increase after one year of treatment was similar in both groups. CONCLUSIONS: Although more than 240 different initial regimens were prescribed, violations of the IAS-USA recommendations were uncommon. Patients receiving these regimens were less likely to have an undetectable viral load after one year, which strengthens the validity of these recommendations

    Detection of Epileptogenic Cortical Malformations with Surface-Based MRI Morphometry

    Get PDF
    Magnetic resonance imaging has revolutionized the detection of structural abnormalities in patients with epilepsy. However, many focal abnormalities remain undetected in routine visual inspection. Here we use an automated, surface-based method for quantifying morphometric features related to epileptogenic cortical malformations to detect abnormal cortical thickness and blurred gray-white matter boundaries. Using MRI morphometry at 3T with surface-based spherical averaging techniques that precisely align anatomical structures between individual brains, we compared single patients with known lesions to a large normal control group to detect clusters of abnormal cortical thickness, gray-white matter contrast, local gyrification, sulcal depth, jacobian distance and curvature. To assess the effects of threshold and smoothing on detection sensitivity and specificity, we systematically varied these parameters with different thresholds and smoothing levels. To test the effectiveness of the technique to detect lesions of epileptogenic character, we compared the detected structural abnormalities to expert-tracings, intracranial EEG, pathology and surgical outcome in a homogeneous patient sample. With optimal parameters and by combining thickness and GWC, the surface-based detection method identified 92% of cortical lesions (sensitivity) with few false positives (96% specificity), successfully discriminating patients from controls 94% of the time. The detected structural abnormalities were related to the seizure onset zones, abnormal histology and positive outcome in all surgical patients. However, the method failed to adequately describe lesion extent in most cases. Automated surface-based MRI morphometry, if used with optimized parameters, may be a valuable additional clinical tool to improve the detection of subtle or previously occult malformations and therefore could improve identification of patients with intractable focal epilepsy who may benefit from surgery

    'MRI-negative PET-positive' temporal lobe epilepsy (TLE) and mesial TLE differ with quantitative MRI and PET: a case control study

    Get PDF
    Background: \u27MRI negative PET positive temporal lobe epilepsy\u27 represents a substantial minority of temporal lobe epilepsy (TLE). Clinicopathological and qualitative imaging differences from mesial temporal lobe epilepsy are reported. We aimed to compare TLE with hippocampal sclerosis (HS+ve) and non lesional TLE without HS (HS-ve) on MRI, with respect to quantitative FDG-PET and MRI measures.Methods: 30 consecutive HS-ve patients with well-lateralised EEG were compared with 30 age- and sex-matched HS+ve patients with well-lateralised EEG. Cerebral, cortical lobar and hippocampal volumetric and co-registered FDG-PET metabolic analyses were performed.Results: There was no difference in whole brain, cerebral or cerebral cortical volumes. Both groups showed marginally smaller cerebral volumes ipsilateral to epileptogenic side (HS-ve 0.99, p = 0.02, HS+ve 0.98, p &lt; 0.001). In HS+ve, the ratio of epileptogenic cerebrum to whole brain volume was less (p = 0.02); the ratio of epileptogenic cerebral cortex to whole brain in the HS+ve group approached significance (p = 0.06). Relative volume deficits were seen in HS+ve in insular and temporal lobes. Both groups showed marked ipsilateral hypometabolism (p &lt; 0.001), most marked in temporal cortex. Mean hypointensity was more marked in epileptogenic-to-contralateral hippocampus in HS+ve (ratio: 0.86 vs 0.95, p &lt; 0.001). The mean FDG-PET ratio of ipsilateral to contralateral cerebral cortex however was low in both groups (ratio: HS-ve 0.97, p &lt; 0.0001; HS+ve 0.98, p = 0.003), and more marked in HS-ve across all lobes except insula.Conclusion: Overall, HS+ve patients showed more hippocampal, but also marginally more ipsilateral cerebral and cerebrocortical atrophy, greater ipsilateral hippocampal hypometabolism but similar ipsilateral cerebral cortical hypometabolism, confirming structural and functional differences between these groups.<br /

    Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study

    Get PDF
    Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities in TLE remains inconclusive. We used support vector machine (SV) and deep learning (DL) models based on region of interest (ROI-based) structural (n = 336) and diffusion (n = 863) brain MRI data from patients with TLE with (“lesional”) and without (“non-lesional”) radiographic features suggestive of underlying hippocampal sclerosis from the multinational (multi-center) ENIGMA-Epilepsy consortium. Our data showed that models to identify TLE performed better or similar (68–75%) compared to models to lateralize the side of TLE (56–73%, except structural-based) based on diffusion data with the opposite pattern seen for structural data (67–75% to diagnose vs. 83% to lateralize). In other aspects, structural and diffusion-based models showed similar classification accuracies. Our classification models for patients with hippocampal sclerosis were more accurate (68–76%) than models that stratified non-lesional patients (53–62%). Overall, SV and DL models performed similarly with several instances in which SV mildly outperformed DL. We discuss the relative performance of these models with ROI-level data and the implications for future applications of machine learning and artificial intelligence in epilepsy care

    Classification and Lateralization of Temporal Lobe Epilepsies with and without Hippocampal Atrophy Based on Whole-Brain Automatic MRI Segmentation

    Get PDF
    Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study

    Functional Memory B Cells and Long-Lived Plasma Cells Are Generated after a Single Plasmodium chabaudi Infection in Mice

    Get PDF
    Antibodies have long been shown to play a critical role in naturally acquired immunity to malaria, but it has been suggested that Plasmodium-specific antibodies in humans may not be long lived. The cellular mechanisms underlying B cell and antibody responses are difficult to study in human infections; therefore, we have investigated the kinetics, duration and characteristics of the Plasmodium-specific memory B cell response in an infection of P. chabaudi in mice. Memory B cells and plasma cells specific for the C-terminal region of Merozoite Surface Protein 1 were detectable for more than eight months following primary infection. Furthermore, a classical memory response comprised predominantly of the T-cell dependent isotypes IgG2c, IgG2b and IgG1 was elicited upon rechallenge with the homologous parasite, confirming the generation of functional memory B cells. Using cyclophosphamide treatment to discriminate between long-lived and short-lived plasma cells, we demonstrated long-lived cells secreting Plasmodium-specific IgG in both bone marrow and in spleens of infected mice. The presence of these long-lived cells was independent of the presence of chronic infection, as removal of parasites with anti-malarial drugs had no impact on their numbers. Thus, in this model of malaria, both functional Plasmodium-specific memory B cells and long-lived plasma cells can be generated, suggesting that defects in generating these cell populations may not be the reason for generating short-lived antibody responses

    Direct Phenotypical and Functional Dysregulation of Primary Human B Cells by Human Immunodeficiency Virus (HIV) Type 1 In Vitro

    Get PDF
    BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) induces a general dysregulation of immune system. Dysregulation of B cell compartment is generally thought to be induced by HIV-related immune activation and lymphopenia. However, a direct influence of HIV-1 particles on B cells was recently proposed as the third pathway of B cells dysregulation. METHODS/PRINCIPAL FINDINGS: We evaluated the direct and specific consequences of HIV-1 contact on activation, survival, proliferation and phenotype of primary B cells in vitro. Moreover, we examined expression of activation-induced cytidine deaminase (AID) mRNA that is responsible for class switch recombination (CSR) and somatic hypermutation (SHM). Here, we report that changes observed in cellular proliferation, phenotypes and activation of B cells could be caused by direct contact between HIV-1 particles and primary B cells in vitro. Finally, direct HIV-1-derived B cells activation led to the increase of AID mRNA expression and its subsequent CSR function was detected in vitro. CONCLUSION/SIGNIFICANCE: We showed that HIV-1 could directly induce primary B cells dysregulation triggering phenotypical and functional abilities of B cells in vitro that could explain in some extent early B-cell abnormalities in HIV disease
    corecore