144 research outputs found
Ex vivo effect of vascular wall stromal cells secretome on enteric ganglia
BACKGROUND Mesenchymal stromal cell (MSC)-based therapy is currently under study to treat inflammatory bowel diseases. MSC bioactive products could represent a valid alternative to overcome issues associated with systemic whole-cell therapies. However, MSC anti-inflammatory mechanisms differ between rodents and humans, impairing the reliability of preclinical models. AIM To evaluate the effect of conditioned medium (CM) derived from porcine vascular wall MSCs (pVW-MSCs) on survival and differentiation of porcine and Guinea pig enteric ganglia exposed to lipopolysaccharide (LPS). METHODS Primary cultures of enteric ganglia were obtained by mechanic and enzymatic digestion of ileum resections from Guinea pigs (Cavia porcellus) (GPEG) and pigs (Suus scrofa) (PEG). pVW-MSCs were derived by enzymatic digestion from vascular wall resections of porcine aorta and tested by immunoflowcytometry for MSC immune profile. Enteric ganglia were treated with increasing concentrations of LPS, CM derived by pVW-MSCs or a combination of CM and LPS 1 \u3bcg/mL. Cell count and morphometric analysis of HuD positive neurons and glial fibrillary acidic protein positive glial cells were performed by immunofluorecent staining of cultured ganglia. RESULTS PEG showed a higher number of neurons compared to GPEG. Overall, CM exerted a protective role on LPS-treated enteric ganglia. CM in combination with LPS increased the number of glial cells per ganglion in both cultures evoking glial cells differentiation in porcine cultures. CONCLUSION These findings suggest an immunomodulating activity of pVW-MSCs mediators on the enteric nervous system in inflammatory conditions
Constitutive and LPS-stimulated secretome of porcine Vascular Wall-Mesenchymal Stem Cells exerts effects on in vitro endothelial angiogenesis
Background: MSCs secretome is under investigation as an alternative to whole-cell-based therapies, since it is enriched of bioactive molecules: growth factors, cytokines and chemokines. Taking into account the translational value of the pig model, the leading aim of the present paper was to characterize the secretome of porcine Vascular Wall-Mesenchymal Stem Cells (pVW-MSCs) and its change in presence of LPS stimulation. Moreover, considering the importance of angiogenesis in regenerative mechanisms, we analysed the effect of pVW-MSCs secretome on in vitro angiogenesis. Results: Our results demonstrated that conditioned medium from unstimulated pVW-MSCs contained high levels of IL-8, GM-CSF, IFN-\u3b3 and other immunomodulatory proteins: IL-6 IL-18 IL-4 IL-2 IL-10. LPS modulates pVW-MSCs gene expression and secretome composition, in particular a significant increase of IL-6 and IL-8 was observed; conversely, the amount of GM-CSF, IFN-\u3b3, IL-2, IL-4, IL-10 and IL-18 showed a significant transient decrease with the LPS stimulation. Conditioned medium from unstimulated pVW-MSCs induced in vitro endothelial angiogenesis, which is more evident when the conditioned medium was from LPS stimulated pVW-MSCs. Conclusions: The lines of evidence here presented shed a light on possible future application of secretome derived by pVW-MSCs on research studies in translational regenerative medicine
Curved Tails in Polymerization-Based Bacterial Motility
The curved actin ``comet-tail'' of the bacterium Listeria monocytogenes is a
visually striking signature of actin polymerization-based motility. Similar
actin tails are associated with Shigella flexneri, spotted-fever Rickettsiae,
the Vaccinia virus, and vesicles and microspheres in related in vitro systems.
We show that the torque required to produce the curvature in the tail can arise
from randomly placed actin filaments pushing the bacterium or particle. We find
that the curvature magnitude determines the number of actively pushing
filaments, independent of viscosity and of the molecular details of force
generation. The variation of the curvature with time can be used to infer the
dynamics of actin filaments at the bacterial surface.Comment: 8 pages, 2 figures, Latex2
Mechanism of polarization of Listeria monocytogenes surface protein ActA
The polar distribution of the ActA protein on the surface of the Gram-positive intracellular bacterial pathogen, Listeria monocytogenes, is required for bacterial actin-based motility and successful infection. ActA spans both the bacterial membrane and the peptidoglycan cell wall. We have directly examined the de novo ActA polarization process in vitro by using an ActAâRFP (red fluorescent protein) fusion. After induction of expression, ActA initially appeared at distinct sites along the sides of bacteria and was then redistributed over the entire cylindrical cell body through helical cell wall growth. The accumulation of ActA at the bacterial poles displayed slower kinetics, occurring over several bacterial generations. ActA accumulated more efficiently at younger, less inert poles, and proper polarization required an optimal balance between protein secretion and bacterial growth rates. Within infected host cells, younger generations of L. monocytogenes initiated motility more quickly than older ones, consistent with our in vitro observations of de novo ActA polarization. We propose a model in which the polarization of ActA, and possibly other Gram-positive cell wall-associated proteins, may be a direct consequence of the differential cell wall growth rates along the bacterium and dependent on the relative rates of protein secretion, protein degradation and bacterial growth
Time Evolution of Unstable Particle Decay Seen with Finite Resolution
Time evolution of the decay process of unstable particles is investigated in
field theory models. We first formulate how to renormalize the non-decay
amplitude beyond perturbation theory and then discuss short-time behavior of
very long-lived particles. Two different formalisms, one that does and one that
does not, assume existence of the asymptotic field of unstable particles are
considered. The non-decay amplitude is then calculated by introducing a finite
time resolution of measurement, which makes it possible to discuss both
renormalizable and non-renormalizable decay interaction including the nucleon
decay. In ordinary circumstances the onset of the exponential decay law starts
at times as early as at roughly the resolution time, but with an enhanced
amplitude which may be measurable. It is confirmed that the short-time formula
of the exponential decay law may be used to set limits on the
nucleon decay rate in underground experiments. On the other hand, an
exceptional example of S-wave decay of very small Q-value is found, which does
not have the exponential period at all.Comment: 26 pages, LATEX file with 8 PS figure
Detecting a stochastic gravitational wave background with the Laser Interferometer Space Antenna
The random superposition of many weak sources will produce a stochastic
background of gravitational waves that may dominate the response of the LISA
(Laser Interferometer Space Antenna) gravitational wave observatory. Unless
something can be done to distinguish between a stochastic background and
detector noise, the two will combine to form an effective noise floor for the
detector. Two methods have been proposed to solve this problem. The first is to
cross-correlate the output of two independent interferometers. The second is an
ingenious scheme for monitoring the instrument noise by operating LISA as a
Sagnac interferometer. Here we derive the optimal orbital alignment for
cross-correlating a pair of LISA detectors, and provide the first analytic
derivation of the Sagnac sensitivity curve.Comment: 9 pages, 11 figures. Significant changes to the noise estimate
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
We report on a measurement of the cosmic ray energy spectrum with the IceTop
air shower array, the surface component of the IceCube Neutrino Observatory at
the South Pole. The data used in this analysis were taken between June and
October, 2007, with 26 surface stations operational at that time, corresponding
to about one third of the final array. The fiducial area used in this analysis
was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV
measured for three different zenith angle ranges between 0{\deg} and 46{\deg}.
Because of the isotropy of cosmic rays in this energy range the spectra from
all zenith angle intervals have to agree. The cosmic-ray energy spectrum was
determined under different assumptions on the primary mass composition. Good
agreement of spectra in the three zenith angle ranges was found for the
assumption of pure proton and a simple two-component model. For zenith angles
{\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the
cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on
composition assumption. Spectral indices above the knee range from -3.08 to
-3.11 depending on primary mass composition assumption. Moreover, an indication
of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
- âŠ