4,018 research outputs found

    Isovector Giant Dipole Resonance of Stable Nuclei in a Consistent Relativistic Random Phase Approximation

    Full text link
    A fully consistent relativistic random phase approximation is applied to study the systematic behavior of the isovector giant dipole resonance of nuclei along the Ī²\beta-stability line in order to test the effective Lagrangians recently developed. The centroid energies of response functions of the isovector giant dipole resonance for stable nuclei are compared with the corresponding experimental data and the good agreement is obtained. It is found that the effective Lagrangian with an appropriate nuclear symmetry energy, which can well describe the ground state properties of nuclei, could also reproduce the isovector giant dipole resonance of nuclei along the Ī²\beta-stability line.Comment: 4 pages, 1 Postscript figure, to be submitted to Chin.Phys.Let

    Boundary Conditions for Interacting Membranes

    Get PDF
    We investigate supersymmetric boundary conditions in both the Bagger-Lambert and the ABJM theories of interacting membranes. We find boundary conditions associated to the fivebrane, the ninebrane and the M-theory wave. For the ABJM theory we are able to understand the enhancement of supersymmetry to produce the (4,4) supersymmetry of the self-dual string. We also include supersymmetric boundary conditions on the gauge fields that cancel the classical gauge anomaly of the Chern-Simons terms.Comment: 36 pages, latex, v2 minor typos correcte

    Collective multipole excitations in a microscopic relativistic approach

    Full text link
    A relativistic mean field description of collective excitations of atomic nuclei is studied in the framework of a fully self-consistent relativistic random phase approximation (RRPA). In particular, results of RRPA calculations of multipole giant resonances and of low-lying collective states in spherical nuclei are analyzed. By using effective Lagrangians which, in the mean-field approximation, provide an accurate description of ground-state properties, an excellent agreement with experimental data is also found for the excitation energies of low-lying collective states and of giant resonances. Two points are essential for the successful application of the RRPA in the description of dynamical properties of finite nuclei: (i) the use of effective Lagrangians with non-linear terms in the meson sector, and (ii) the fully consistent treatment of the Dirac sea of negative energy states.Comment: 10 figures, submitted to Nucl.Phys.

    Tumor taxonomy for the developmental lineage classification of neoplasms

    Get PDF
    BACKGROUND: The new "Developmental lineage classification of neoplasms" was described in a prior publication. The classification is simple (the entire hierarchy is described with just 39 classifiers), comprehensive (providing a place for every tumor of man), and consistent with recent attempts to characterize tumors by cytogenetic and molecular features. A taxonomy is a list of the instances that populate a classification. The taxonomy of neoplasia attempts to list every known term for every known tumor of man. METHODS: The taxonomy provides each concept with a unique code and groups synonymous terms under the same concept. A Perl script validated successive drafts of the taxonomy ensuring that: 1) each term occurs only once in the taxonomy; 2) each term occurs in only one tumor class; 3) each concept code occurs in one and only one hierarchical position in the classification; and 4) the file containing the classification and taxonomy is a well-formed XML (eXtensible Markup Language) document. RESULTS: The taxonomy currently contains 122,632 different terms encompassing 5,376 neoplasm concepts. Each concept has, on average, 23 synonyms. The taxonomy populates "The developmental lineage classification of neoplasms," and is available as an XML file, currently 9+ Megabytes in length. A representation of the classification/taxonomy listing each term followed by its code, followed by its full ancestry, is available as a flat-file, 19+ Megabytes in length. The taxonomy is the largest nomenclature of neoplasms, with more than twice the number of neoplasm names found in other medical nomenclatures, including the 2004 version of the Unified Medical Language System, the Systematized Nomenclature of Medicine Clinical Terminology, the National Cancer Institute's Thesaurus, and the International Classification of Diseases Oncolology version. CONCLUSIONS: This manuscript describes a comprehensive taxonomy of neoplasia that collects synonymous terms under a unique code number and assigns each tumor to a single class within the tumor hierarchy. The entire classification and taxonomy are available as open access files (in XML and flat-file formats) with this article

    Boundary conditions of the RGE flow in the noncommutative geometry approach to particle physics and cosmology

    Get PDF
    We investigate the effect of varying boundary conditions on the renormalization group flow in a recently developed noncommutative geometry model of particle physics and cosmology. We first show that there is a sensitive dependence on the initial conditions at unification, so that, varying a parameter even slightly can be shown to have drastic effects on the running of the model parameters. We compare the running in the case of the default and the maximal mixing conditions at unification. We then exhibit explicitly a particular choice of initial conditions at the unification scale, in the form of modified maximal mixing conditions, which have the property that they satisfy all the geometric constraints imposed by the noncommutative geometry of the model at unification, and at the same time, after running them down to lower energies with the renormalization group flow, they still agree in order of magnitude with the predictions at the electroweak scale.Comment: 18 pages LaTeX, 13 png figure

    Extinction and recurrence of multi-group SEIR epidemic

    Get PDF
    In this paper, we consider a class of multi-group SEIR epidemic models with stochastic perturbations. By the method of stochastic Lyapunov functions, we study their asymptotic behavior in terms of the intensity of the stochastic perturbations and the reproductive number R0R0. When the perturbations are sufficiently large, the exposed and infective components decay exponentially to zero whilst the susceptible components converge weakly to a class of explicit stationary distributions regardless of the magnitude of R0R0. An interesting result is that, if the perturbations are sufficiently small and R0ā‰¤1R0ā‰¤1, then the exposed, infective and susceptible components have similar behaviors, respectively, as in the case of large perturbations. When the perturbations are small and R0>1R0>1, we construct a new class of stochastic Lyapunov functions to show the ergodic property and the positive recurrence, and our results reveal some cycling phenomena of recurrent diseases. Computer simulations are carried out to illustrate our analytical results

    CELLmicrocosmos 2.2: advancements and applications in modeling of three-dimensional PDB membranes

    Get PDF
    Sommer B, Dingersen T, Schneider S, Rubert S, Gamroth C. CELLmicrocosmos 2.2: advancements and applications in modeling of three-dimensional PDB membranes (Conference Abstract). In: Journal of Cheminformatics. Journal of Cheminformatics. Vol 2(Suppl 1):O21. Springer Science and Business Media LLC; 2010

    Advanced magnetic resonance imaging of cartilage components in haemophilic joints reveals that cartilage hemosiderin correlates with joint deterioration.

    Get PDF
    IntroductionEvidence suggests that toxic iron is involved in haemophilic joint destruction.AimTo determine whether joint iron deposition is linked to clinical and imaging outcomes in order to optimize management of haemophilic joint disease.MethodsAdults with haemophilia A or haemophilia B (nĀ =Ā 23, ā‰„ age 21) of all severities were recruited prospectively to undergo assessment with Hemophilia Joint Health Scores (HJHS), pain scores (visual analogue scale [VAS]) and magnetic resonance imaging (MRI) at 3T using conventional MRI protocols and 4-echo 3D-UTE-Cones sequences for one affected arthropathic joint. MRI was scored blinded by two musculoskeletal radiologists using the International Prophylaxis Study Group (IPSG) MRI scale. Additionally, UTE-T2* values of cartilage were quantified. Correlations between parameters were performed using Spearman rank correlation. Two patients subsequently underwent knee arthroplasty, which permitted linking of histological findings (including Perl's reaction) with MRI results.ResultsMRI scores did not correlate with pain scores or HJHS. Sixteen joints had sufficient cartilage for UTE-T2* analysis. T2* values for cartilage correlated inversely with HJHS (rs Ā =Ā -0.81, PĀ <Ā 0.001) and MRI scores (rs Ā =Ā -0.52, PĀ =Ā 0.037). This was unexpected since UTE-T2* values decrease with better joint status in patients with osteoarthritis, suggesting that iron was present and responsible for the effects. Histological analysis of cartilage confirmed iron deposition within chondrocytes, associated with low UTE-T2* values.ConclusionsIron accumulation can occur in cartilage (not only in synovium) and shows a clear association with joint health. Cartilage iron is a novel biomarker which, if quantifiable with innovative joint-specific MRI T2* sequences, may guide treatment optimization

    DeepSF: deep convolutional neural network for mapping protein sequences to folds

    Get PDF
    Motivation Protein fold recognition is an important problem in structural bioinformatics. Almost all traditional fold recognition methods use sequence (homology) comparison to indirectly predict the fold of a tar get protein based on the fold of a template protein with known structure, which cannot explain the relationship between sequence and fold. Only a few methods had been developed to classify protein sequences into a small number of folds due to methodological limitations, which are not generally useful in practice. Results We develop a deep 1D-convolution neural network (DeepSF) to directly classify any protein se quence into one of 1195 known folds, which is useful for both fold recognition and the study of se quence-structure relationship. Different from traditional sequence alignment (comparison) based methods, our method automatically extracts fold-related features from a protein sequence of any length and map it to the fold space. We train and test our method on the datasets curated from SCOP1.75, yielding a classification accuracy of 80.4%. On the independent testing dataset curated from SCOP2.06, the classification accuracy is 77.0%. We compare our method with a top profile profile alignment method - HHSearch on hard template-based and template-free modeling targets of CASP9-12 in terms of fold recognition accuracy. The accuracy of our method is 14.5%-29.1% higher than HHSearch on template-free modeling targets and 4.5%-16.7% higher on hard template-based modeling targets for top 1, 5, and 10 predicted folds. The hidden features extracted from sequence by our method is robust against sequence mutation, insertion, deletion and truncation, and can be used for other protein pattern recognition problems such as protein clustering, comparison and ranking.Comment: 28 pages, 13 figure
    • ā€¦
    corecore