267 research outputs found

    Hydrogen flash lamps studied

    Get PDF
    Parameters of gas pressure, type of gas, tube voltage, and electrode gap are tested on the intensity and shape of a radiation pulse from a hydrogen-filled lamp

    A large-scale correlated study of linear optical absorption and low-lying excited states of polyacenes: Pariser-Parr-Pople Hamiltonian

    Full text link
    In this paper we present large-scale correlated calculations of linear optical absorption spectrum of oligo-acenes containing up to seven benzene rings. For the calculations we used the Pariser-Parr-Pople (P-P-P) Hamiltonian, along with the configuration interaction (CI) technique at various levels such as the full CI (FCI), the quadruple CI (QCI) and multi-reference singles-doubles CI (MRSDCI). The role of Coulomb parameters used in the P-P-P Hamiltonian was examined by considering standard Ohno parameters, as well as a screened set of parameters. A detailed analysis of the many-body character of the important excited states contributing to the linear absorption has also been performed. The results of our calculations have been compared extensively with the theoretical work of other authors, as well as with the experiments.Comment: 45 pages, 9 figure

    Solid-state-concentration effects on the optical absorption and emission of poly(p-phenylene vinylene)-related materials

    Get PDF
    We present measurements of the optical absorption and emission properties of poly(p-phenylene vinylene) (PPV)-related materials focusing on the differences between molecules isolated by dispersion in an inert host and concentrated molecular films. Optical absorption spectra, photoluminescence (PL) spectra, PL efficiency, and time-resolved PL spectra of dilute blends of PPV oligomers with 2-5 phenylene-phenyl rings are compared with those of dense oligomer and polymer films. In dilute oligomer-poly(methyl methacrylate) (PMMA) blends with high PL efficiency, the PL decay is exponential, independent of both temperature and oligomer length. This implies that the fundamental radiative lifetime of PPV oligomers is essentially independent of oligomer length. Concentrated spin-cast oligomer films and polymers have a faster and strongly temperature-dependent PL decay that approaches that of the dilute oligomer results at low temperature. The differences in PL decay correspond to changes in PL efficiency. The efficiency of the oligomer-PMMA blend is high and only weakly temperature dependent, whereas that of concentrated films is lower and strongly temperature dependent, decreasing by more than a factor of 3 from 10 to 350 K. The quenching of the PL efficiency in concentrated films is due to migration to extrinsic, impurity related centers as opposed to an intrinsic intermolecular recombination process. The PL spectrum of a dilute oligomer blend redshifts substantially, both as the excitation energy is decreased and as the emission time increases. This spectral redshift is due to disorder-induced site-to-site variation and not to diffusion to lower-energy sites. In contrast, no spectral shift with excitation energy or emission time was observed for dense oligomer films

    Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors

    Full text link
    We have constructed a GEANT4-based detailed software model of photon transport in plastic scintillator blocks and have used it to study the NEMO-3 and SuperNEMO calorimeters employed in experiments designed to search for neutrinoless double beta decay. We compare our simulations to measurements using conversion electrons from a calibration source of 207Bi\rm ^{207}Bi and show that the agreement is improved if wavelength-dependent properties of the calorimeter are taken into account. In this article, we briefly describe our modeling approach and results of our studies.Comment: 16 pages, 10 figure

    SiPMs coated with TPB : coating protocol and characterization for NEXT

    Get PDF
    Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless {\beta}{\beta} decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifter tetraphenyl butadienne (TPB). In this paper we describe the protocol developed for coating the SiPMs with TPB and the measurements performed for characterizing the coatings as well as the performance of the coated sensors in the UV-VUV range.Comment: Submitted to the Journal of Instrumentation on december 26th 201
    corecore