161 research outputs found

    Native vegetation of southeast NSW: a revised classification and map for the coast and eastern tablelands

    No full text
    Native vegetation of the NSW south coast, escarpment and southeast tablelands was classified into 191 floristic assemblages at a level of detail appropriate for the discrimination of Threatened Ecological Communities and other vegetation units referred to in government legislation. Assemblages were derived by a numerical analysis of 10832 field sample quadrats including 8523 compiled from 63 previous vegetation surveys. Past bias in the distribution of field data towards land under public tenure was corrected by extensive surveys carried out on private land. The classification revises and integrates the units described in recent vegetation studies of Eden, Cumberland Plain and Sydney-south coast into a single, consistent classification. Relationships between floristic assemblages and climate, terrain, substrate and vegetation structure were used to map the distribution of communities prior to clearing at 1:100 000 scale. The extent of clearing was mapped using interpretations of remote imagery (1991–2001) from previous work, standardised and merged into a single coverage and supplemented with additional work. Profiles for each assemblage, which we term ‘communities’ or ‘map units’, describe their species composition, vegetation structure, environmental habitat, the extent of clearing and conservation status. Lists of diagnostic species were defined using a statistical fidelity measure and a procedure for using these for community identification is described. Approximately 66% of the study area retains a cover of native vegetation, primarily in areas with low fertility soils and dissected topography. Communities subject to over-clearing (>70%) are concentrated in a few large areas characterised by clay/loam soils and flat to undulating terrain. These include the Sydney metropolis, Wingecarribee Plateau, Illawarra Plain, Shoalhaven floodplain, Araluen Valley and Bega Valley, and various smaller river valleys. Forty-one percent of remaining native vegetation is protected within conservation reserves while 31% occurs on private land, 20% in State Forests and 8% on other Crown lands. Forty-five Threatened Ecological Communities (TECs) were recorded in the study area. The majority of TECs are represented by a single map unit, although in some cases a TEC is included within a broader map unit. Twelve TECs are represented by combinations of two or more map units

    International consensus guidelines for the diagnosis and management of food protein–induced enterocolitis syndrome: Executive summary—Workgroup Report of the Adverse Reactions to Foods Committee, American Academy of Allergy, Asthma & Immunology

    Get PDF
    Food protein-induced enterocolitis (FPIES) is a non-IgE cell- mediated food allergy that can be severe and lead to shock. Despite the potential seriousness of reactions, awareness of FPIES is low; high-quality studies providing insight into the pathophysiology, diagnosis, and management are lacking; and clinical outcomes are poorly established. This consensus document is the result of work done by an international workgroup convened through the Adverse Reactions to Foods Committee of the American Academy of Allergy, Asthma & Immunology and the International FPIES Association advocacy group. These are the first international evidence-based guidelines to improve the diagnosis and management of patients with FPIES. Research on prevalence, pathophysiology, diagnostic markers, and future treatments is necessary to improve the care of patients with FPIES. These guidelines will be updated periodically as more evidence becomes available

    CARD15/NOD2 Is Required for Peyer's Patches Homeostasis in Mice

    Get PDF
    BACKGROUND: CARD15/NOD2 mutations are associated with susceptibility to Crohn's Disease (CD) and Graft Versus Host Disease (GVHD). CD and GVHD are suspected to be related with the dysfunction of Peyer's patches (PP) and isolated lymphoid follicles (LFs). Using a new mouse model invalidated for Card15/Nod2 (KO), we thus analysed the impact of the gene in these lymphoid formations together with the development of experimental colitis. METHODOLOGY/PRINCIPAL FINDINGS: At weeks 4, 12 and 52, the numbers of PPs and LFs were higher in KO mice while no difference was observed at birth. At weeks 4 and 12, the size and cellular composition of PPs were analysed by flow cytometry and immunohistochemistry. PPs of KO mice were larger with an increased proportion of M cells and CD4(+) T-cells. KO mice were also characterised by higher concentrations of TNFalpha, IFNgamma, IL12 and IL4 measured by ELISA. In contrast, little differences were found in the PP-free ileum and the spleen of KO mice. By using chamber experiments, we found that this PP phenotype is associated with an increased of both paracellular permeability and yeast/bacterial translocation. Finally, KO mice were more susceptible to the colitis induced by TNBS. CONCLUSIONS: Card15/Nod2 deficiency induces an abnormal development and function of the PPs characterised by an exaggerated immune response and an increased permeability. These observations provide a comprehensive link between the molecular defect and the Human CARD15/NOD2 associated disorders: CD and GVHD

    Allergic sensitization: screening methods

    Get PDF
    Experimental in silico, in vitro, and rodent models for screening and predicting protein sensitizing potential are discussed, including whether there is evidence of new sensitizations and allergies since the introduction of genetically modified crops in 1996, the importance of linear versus conformational epitopes, and protein families that become allergens. Some common challenges for predicting protein sensitization are addressed: (a) exposure routes; (b) frequency and dose of exposure; (c) dose-response relationships; (d) role of digestion, food processing, and the food matrix; (e) role of infection; (f) role of the gut microbiota; (g) influence of the structure and physicochemical properties of the protein; and (h) the genetic background and physiology of consumers. The consensus view is that sensitization screening models are not yet validated to definitively predict the de novo sensitizing potential of a novel protein. However, they would be extremely useful in the discovery and research phases of understanding the mechanisms of food allergy development, and may prove fruitful to provide information regarding potential allergenicity risk assessment of future products on a case by case basis. These data and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity Technical Committee of the International Life Sciences Institute’s Health and Environmental Sciences Institute

    Current challenges facing the assessment of the allergenic capacity of food allergens in animal models

    Get PDF
    Food allergy is a major health problem of increasing concern. The insufficiency of protein sources for human nutrition in a world with a growing population is also a significant problem. The introduction of new protein sources into the diet, such as newly developed innovative foods or foods produced using new technologies and production processes, insects, algae, duckweed, or agricultural products from third countries, creates the opportunity for development of new food allergies, and this in turn has driven the need to develop test methods capable of characterizing the allergenic potential of novel food proteins. There is no doubt that robust and reliable animal models for the identification and characterization of food allergens would be valuable tools for safety assessment. However, although various animal models have been proposed for this purpose, to date, none have been formally validated as predictive and none are currently suitable to test the allergenic potential of new foods. Here, the design of various animal models are reviewed, including among others considerations of species and strain, diet, route of administration, dose and formulation of the test protein, relevant controls and endpoints measured

    Interleukin-17 regulation: an attractive therapeutic approach for asthma

    Get PDF
    Interleukin (IL)-17 is recognized to play a critical role in numerous immune and inflammatory responses by regulating the expression of various inflammatory mediators, which include cytokines, chemokines, and adhesion molecules. There is growing evidence that IL-17 is involved in the pathogenesis of asthma. IL-17 orchestrates the neutrophilic influx into the airways and also enhances T-helper 2 (Th2) cell-mediated eosinophilic airway inflammation in asthma. Recent studies have demonstrated that not only inhibitor of IL-17 per se but also diverse regulators of IL-17 expression reduce antigen-induced airway inflammation, bronchial hyperresponsiveness, and Th2 cytokine levels in animal models of asthma. This review will summarize the role of IL-17 in the context of allergic airway inflammation and discuss the therapeutic potential of various strategies targeting IL-17 for asthma

    Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach

    Get PDF
    A voltammetric biosensor for Ara h 6 (a peanut allergen) detection in food samples was developed. Gold nanoparticle-modified screen-printed carbon electrodes were used to develop a sandwich-type immunoassay using two-monoclonal antibodies. The antibody-antigen interaction was detected through the electrochemical detection of enzymatically deposited silver. The immunosensor presented a linear range between 1 and 100 ng/ml, as well as high precision (inter-day RSD ≀9.8 %) and accuracy (recoveries ≄96.7 %). The detection and quantification limits were 0.27 and 0.88 ng/ml, respectively. It was possible to detect small levels of Ara h 6 in complex food matrices

    Expression of toll-like receptors 2 and 4 in subjects with asthma by total serum IgE level

    Get PDF
    Emerging data suggest that innate immunity may play a role in asthma, particularly the toll-like receptors (TLRs). Some studies pointed to an involvement of TLRs 2 and 4 in the pathogenesis of allergic asthma, and other studies related TLRs to IgE. However, there are not any studies that have comprehensively evaluated the expression of TLRs 2 and 4 in inflammatory cells, in peripheral blood and induced sputum specimens from asthmatic patients, according to their total serum IgE. We studied 44 asthmatic patients (15 with high total serum IgE and 29 with normal total serum IgE). On a single visit, all patients underwent: induced sputum, pulmonary function tests, determination of exhaled nitric oxide fraction, venipuncture for blood analysis and skin prick allergy tests. The induced sputum cellularity was analyzed by flow cytometry, where expression of TLRs 2 and 4 was studied using fluorochrome-conjugated monoclonal antibodies. Asthmatic patients with high total serum IgE showed, a higher percentage of macrophages expressing TLR4 (42.99 % ± 22.49) versus asthmatic patients with normal total serum IgE (28.84 % ± 15.16) (P = 0.048). Furthermore, we observed a correlation (but weak) between the percentage of macrophages expressing TLR4 in induced sputum and the total serum IgE level (R = 0.314; P = 0.040). Asthmatic subjects with high total serum IgE show increased macrophage expression of TLR4 in induced sputum. This outcome may result from a link between innate immunity and IgE-mediated, adaptive immune responses in asthma, and point to TLR4 as a potential therapeutic target
    • 

    corecore