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Abstract

Background: Emerging data suggest that innate immunity may play a role in asthma, particularly the toll-like
receptors (TLRs). Some studies pointed to an involvement of TLRs 2 and 4 in the pathogenesis of allergic asthma,
and other studies related TLRs to IgE. However, there are not any studies that have comprehensively evaluated the
expression of TLRs 2 and 4 in inflammatory cells, in peripheral blood and induced sputum specimens from
asthmatic patients, according to their total serum IgE.

Methods: We studied 44 asthmatic patients (15 with high total serum IgE and 29 with normal total serum IgE). On
a single visit, all patients underwent: induced sputum, pulmonary function tests, determination of exhaled nitric
oxide fraction, venipuncture for blood analysis and skin prick allergy tests. The induced sputum cellularity was
analyzed by flow cytometry, where expression of TLRs 2 and 4 was studied using fluorochrome-conjugated
monoclonal antibodies.

Results: Asthmatic patients with high total serum IgE showed, a higher percentage of macrophages expressing
TLR4 (42.99 % ± 22.49) versus asthmatic patients with normal total serum IgE (28.84 % ± 15.16) (P = 0.048).
Furthermore, we observed a correlation (but weak) between the percentage of macrophages expressing TLR4 in
induced sputum and the total serum IgE level (R = 0.314; P = 0.040).

Conclusion: Asthmatic subjects with high total serum IgE show increased macrophage expression of TLR4 in
induced sputum. This outcome may result from a link between innate immunity and IgE-mediated, adaptive
immune responses in asthma, and point to TLR4 as a potential therapeutic target.
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Background
IgE plays a prominent role in the pathophysiology of al-
lergic asthma. IgE binds to receptors on the surface of
different types of immune effector cells causing them to
release a variety of mediators that promote airway
hyperresponsiveness, mucus secretion and increased vas-
cular permeability [1]. Several strategies for decreasing
IgE have been developed as a possible treatment for

asthma [1]. Some studies have reported that the ligation
of Toll-like receptors (TLRs) by bacterial or viral anti-
gens can affect IgE-dependent mast cell degranulation
and release of preformed mediators, as well as eicosa-
noid production, thus providing evidence on the involve-
ment of innate immunity in the pathogenesis of asthma
[2–5]. Among the various agents involved in innate
immunity in the pathogenesis of asthma, the TLRs may
bear an important role [6–10].
TLRs are a family of cell surface proteins involved in

the recognition of pathogen-associated molecular pat-
terns (PAMPs). Upon stimulation, TLRs can modulate
subsequent adaptive immune responses. TLR2 and 4 are
expressed on the cellular surface and migrate to
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phagosomes after activation on recognising the ligand.
Just because these receptors are expressed on the cellu-
lar surface makes them easy to measure. Our laboratory
has expertise in measuring them [6].
TLRs 2 and 4 function as signal receivers for gram-

positive and negative bacteria (endotoxin recognition)
[6–8]. In some studies, a relationship between micro-
bial products and regulation of the T helper (Th)1
and Th2 responses through TLRs 2 and 4 was ob-
served in allergic diseases [11–13]. Interestingly, TLRs
2 and 4 can modulate the Th response according to
the bacterial burden, where a high lipopolysaccharide
(LPS) level induces a Th1 response and a low LPS
level promotes a Th2 response [9, 14, 15]. Furthe-
more, there is evidence that exposure to endotoxin
during early life [16, 17] may be protective against
the development of atopy and asthma, an argument
in support of the hygiene hypothesis, although such
association remains poorly understood [17].
Previous studies addressing the role of TLRs 2 and

4 in asthmatic patients had several limitations. No
studies approached a differential analysis of TLRs 2
and 4 in blood versus induced sputum. Most of the
studies were limited to blood cells (frequently mono-
cytes) [18, 19], in experimental asthma models or in
cell cultures [9, 13]. The few studies conducted in
humans were done on diseases other than asthma,
such as COPD, bronchiectasis, and cystic fibrosis
[19–23]. The induced sputum technique is a nonin-
vasive procedure that provides direct information on
cells and mediators involved in airway inflammation.
Thus, we expected induced sputum analysis to be
particularly suited to study the role of the innate im-
mune response in the pathogenesis of asthma. The
main objective of the present study was to assess the
expression of TLRs 2 and 4 in monocytes/macro-
phages and neutrophils, both from peripheral blood
and induced sputum, in a group of adult asthmatic
patients stratified by their level of total serum IgE.

Methods
The study was approved by the Institutional Review
Board and registered at ClinicalTrials.gov with identifier
NCT02028637.

Legal and ethical aspects
The study was conducted in accordance with the
Declaration of Helsinki principles (18th Word
Medical Assembly, 1964) and was approved by the
Clinical Research Ethics Committee (approval num-
ber: IIBSP/43/2009) of our institution. The partici-
pants signed their informed consent to participate
in this study and personal identification data were
anonymized.

Subjects and study design
This was an observational, cross-sectional study per-
formed at a hospital outpatients clinic. Forty-four
subjects on maintenance treatment for asthma, aged
18 to 75 years, were included. All subjects were non-
smokers on study inclusion and had asthma diag-
nosed as per the Global INitiative for Asthma (GINA)
criteria [24]. Furthermore, these patients received
inhaled corticosteroids according to GINA [24].
Asthmatic patients were defined as having high total
serum IgE when they had a ≥160 IU/mL total IgE
value in a peripheral blood sample [25]. A normal
level of total serum IgE was defined as less than
160 IU/mL [25]. Patients were excluded if they had:
(i) a respiratory tract infection and/or required the
use of oral corticosteroids within 30 days prior to in-
clusion; (ii) immunomodulatory treatment (iii) low ad-
herence to treatment; (iv) any pulmonary pathology
other than asthma or a significant comorbidity that
might affect the study results upon physician’s judg-
ment; or (v) a cognitive impairment that could limit
their understanding or collaboration in the study.

Clinical procedures
All study procedures were performed at a single
clinic visit. After signing the informed consent, the
participating patients fulfilled an Asthma Control
Test (ACT) questionnaire [26] and underwent spir-
ometry, induced sputum collection, measurement of
exhaled nitric oxide fraction (FeNO), peripheral ven-
ous blood sampling, and skin prick test with stan-
dardized allergen extracts (based on the modified
test of Pepys) [27]. Spirometry was performed with a
Datospir 500 (Sibelmed S.A., Barcelona, Spain) fol-
lowing the standards of the European Respiratory
Society (ERS) [28] and the Sociedad Española de
Neumología y Cirugía Torácica (SEPAR) [29]. FeNO
was measured with a chemiluminescence (SIR® N-6008
device, Madrid, Spain) according to established stan-
dards [30] and reference values [31]. Total serum
IgE was measured by enzyme-linked immunoassay
(ImmunoCAP, Phadia 250. Phadia AB, Uppsala,
Sweden). Normal values of total IgE were established
by the laboratory [25]. Induced sputum samples were
harvested according to the ERS consensus protocol
[32] and processed for flow cytometry and conventional
readouts. Briefly, sputum induction was performed using
an inhalation of an aerosol of hypertonic saline at increas-
ing concentrations (3, 4 and 5 %) generated by an ultra-
sonic nebulizer (Omron NE U07, HEALTHCARE Europe,
Germany) with an output of 3 ml/s and particle size of
7 μm aerodynamic mass median diameter. Sputum
processing was initiated from the fresh specimens
within two hours.
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Processing of sputum and blood specimens
Induced sputum specimens were processed according
to a consensus standard procedure [33]. Mucus plugs
were manually selected and weighed, incubated for
15 min at room temperature in 0.1 % dithiothreitol
(DTT) (Calbiochem, San Diego, CA) in phosphate-
buffered saline (PBS) into a total mL volume of four-
fold the weight in mg of the selected plug, and then
washed and gravity filtered through a 41-μm pore
nylon mesh (Millipore, Membrane solutions, Dallas,
Tx, USA). After homogenization with DTT, each
specimen was aliquoted into two portions of equal
volume, one to be processed for conventional micro-
scopic examination and the other for flow cytometry
analysis. Total cell counts were done in a Neubauer
hemacytometer, and cytocentrifuged slides stained
with Diff-Quik kit (Polysciences Europe GmbH,
Eppelheim, Germany) were used for differential
leukocyte counts. Squamous epithelial cells were ex-
cluded from the total cell count and were required to
be less than 20 % of the total cells as specimen qual-
ity criterion. Samples containing less than 106 cells/g
were not included in the analysis. Cell viability was
determined by trypan blue dye exclusion and was re-
quired to be greater than 40 % as quality criterion.
Differential leukocyte counts were done on a minimum of
400 cells and were expressed as cell percentage of lympho-
cytes, neutrophils, eosinophils and macrophages. Cell
count reference values were previously established [34].
The sputum cell suspension for flow cytometry analysis
was delivered into 100-μl/tube samples approximately
containing 10 [5] cells/tube.
Peripheral venous blood was treated with trisodium

citrate as anticoagulant, then aliquoted into 100 μl/tube
samples, and erythrolysed with TQ Prep Sample Prepar-
ation and COULTER PrepPlus 2 (Beckman Coulter,
Miami, Florida), and immunostaining for flow cytometry
followed.

Flow cytometry
Sputum and blood cell suspensions were blocked with
mouse serum and immunostained with saturating con-
centrations of the following fluorochrome-conjugated
monoclonal antibodies, for 15 min at room temperature
in the dark: phycoerythrin (PE) anti-TLR4 (clone
HTA125), PE anti-CD66b (G10f5) and PE/Cyanin-7
anti-CD14 (clone M5E2) from Biolegend (San Diego,
California); Alexa Fluor 488 anti-TLR2 (clone 11G7) and
PE anti-CD125 (A14) from BD Biosciences (Eembodegen,
Belgium); PE anti-CD16 (3G8), PE anti-CD45 (MEM28),
fluorescein isothiocyanate (FITC) anti-CD16 (3G8), FITC
anti-CD66b (B13.9), and PE/Dy-647 anti CD45 (MEM28)
from Immunotools (Oldenburg, Germany) [33]. PE mouse
IgG2a, ƙ clone MOPC-173 and FITC mouse IgG1, ƙ

clone MOPC21 were used to test the specificities of TLR4
and TLR2 antibodies. The cells were then washed with
2 mL of staining buffer (1 % bovine serum albumin in
PBS) and centrifuged for 5 min at 400 G. Supernatants
were decanted, the cells resuspended in 300 μL of staining
buffer, and the samples stored at 4 °C in the dark until an-
alyzed through the flow cytometer within 2 h.
Flow cytometry data acquisition was performed with

a FC500 equipment (Beckman Coulter, Pasadena,
California, USA). Ten thousand events were analyzed
for all sample runs. Gating of sputum leukocytes was
based on side light scatter versus CD45 expression,
which allowed for the discrimination of lymphocyte,
macrophage and granulocyte populations. The mean
fluorescence intensity (MFI) of the cells stained with
control antibody was subtracted from the MFI of the
cells stained with receptor antibodies to provide a
measure of receptor-specific fluorescence.

Classification of asthma inflammatory phenotypes
Asthma inflammatory phenotypes were classified ac-
cording to sputum cellularity. Patients were classed as
neutrophilic asthma if the neutrophil count was >61 %,
eosinophilic asthma if eosinophils >3 %, as and those
with <61 % neutrophils and <3 % eosinophils were con-
sidered paucigranulocytic asthma [35].

Statistical analysis
Values are presented as percentages and frequencies for
qualitative data and mean ± standard deviation for quan-
titative data. Comparisons between asthma with high
versus normal total serum IgE were analyzed with Stu-
dent’s t-test. Categorical variables were contrasted
through contingency tables and tested with chi-square,
or Fisher’s test where appropriate. Pearson’s coefficient
was employed for correlation analysis. The level of stat-
istical significance was set as α = 0.05. Analysis was done
with SPSS software version 18.0 for Windows (SPSS,
Inc., Chicago, Il, USA).

Results
Clinical outcomes and asthma phenotypes
Out of the 44 subjects with asthma studied, 15 had
high total serum IgE and 29 had normal total serum
IgE. Demographics, clinical and functional data are
shown in Table 1. No significant differences were ob-
served between both groups except for the levels of
total serum IgE and skin prick test results. As for the
latter, 69 % of the asthmatic patients with high level
of total IgE were sensitized to house dust mites, 23 %
to various pollens, and 8 % to fungi species. Among
the subjects classed as asthmatic patients with a nor-
mal level of total IgE, 53.57 % showed a positive skin
prick test (60 % to house dust mites, 13 % to pollens
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and 27 % to other allergens). Data from induced spu-
tum quality assessment and cell counts are summa-
rized in Table 2. Induced sputum quality was high in
most samples as per the cell content, cell viability
and percentage of squamous cells criteria, with no
significant differences between groups. Sputum differ-
ential leukocyte counts revealed the paucigranulocytic
asthma phenotype as the most common in both
asthma groups, followed by the eosinophilic pheno-
type in the asthmatics with high total IgE and the
neutrophilic phenotype in the asthmatics with normal
IgE respectively, yet no significant differences were
found between both asthma groups in terms of in-
flammatory phenotype classification.

TLR expression
TLR expression data are shown in Table 3. TLR2 was
mostly expressed in monocytes/macrophages, and to a
lesser extent in neutrophils, in both induced sputum and
peripheral blood. No significant differences were ob-
served between both groups in the percentage of cells
expressing TLR2 in either induced sputum or blood, nor
in the mean of fluorescence intensity in the cells
analyzed.
The percentage of macrophages expressing TLR4 in

induced sputum was significantly higher in asthma with
high total serum IgE versus asthma with normal total
serum IgE (Fig. 1). In both asthma groups, a greater per-
centage of TLR4 expression was observed in monocytes/

Table 1 Demographics, clinical and pulmonary function data

Normal total serum IgE (n = 29) High total serum IgE (n = 15) P

Age (years), mean (STD) 51.34 (17.5) 52.06 (15.6) 0.894

Sex (% women) 74 % 52.94 % 0.150

BMI (kg/m2), mean (STD) 26.59 (4.45) 27.87 (4.3) 0.368

Rhinitis, % subjects (n) 62.06 % (18) 80 % (12) 0.194

Nasal polyposis, % subjects (n) 21.7 % (6) 40 % (6) 0.157

ACT≥ 20, % subjects, (n) 58.62 % 73.33 % 0.267

FEV1%, mean (STD) 84.93 (18.4) 77.13 (20.7) 0.209

FEV1/FVC, mean (STD) 68.8 (13.9) 63.29 (11.8) 0.173

Total IgE (UI/mL), mean (STD) 67.5 (44.7) 545.4 (467.8) 0.000

Positive skin prick test, % subjects) 55.17 % 86.66 % 0.036

FeNO (ppb), mean (STD) 39.3 (34.1) 28.8 (17.2) 0.272

Patients receiving 2 or > OC within last 12 m, % subjects 1.85 (2.8) 2.33 (3.9) 0.576

ICS dose in patients (high ICS dose: ≥ 800 μg/day
Beclomethasone or equivalent), % subjects (n)

31.03 % (9) H
34.5 %(10) M
31.03 % (9) L
3.44 % (1) N

27 %(4) H
27 % (4) M
46 % (7) L
0 % (0) N

0.697

Values are mean ± standard deviation (STD) or percentage and number of subjects (n), as indicated
BMI body mass index, ACT Asthma Control Test, FEV1 forced expiratory volume in first second, FVC forced vital capacity, IgE total immunoglobulin E, FeNO exhaled
nitric oxide fraction, OC oral corticosteroids, ICS inhaled corticosteroids, H high ICS dose, M medium ICS doses, L low ICS dose, N do not use CIS

Table 2 Inflammatory phenotypes, total and differential leukocyte counts in induced sputum and specimen quality parameters,
distributed as per total serum IgE

Normal total serum IgE (n = 29) High total serum IgE (n = 15) P

Eosinophilic phenotype, % (n) 17.24 (5) 20 (3) 0.620

Neutrophilic phenotype, % (n) 20,68 (6) 13.33 (2) 0.380

Paucigranulocytic phenotype, % (n) 62 (18) 66,66 (10) 0.421

Neutrophils in sputum, % (STD) 49.54 (22.31) 39.93 (20.7) 0.173

Eosinophils in sputum, % (STD) 5.68 (4.96) 10.61 (12.33) 0.065

Lymphocytes in sputum, % (STD) 0.83 (0.78) 0.76 (0.46) 0.769

Macrophages in sputum, % (STD) 40.71 (21.95) 48.38 (21.51) 0.278

Cellular concentration of the sputum sample
(× 106 cell/g), mean (STD)

2.56 (1.81) 3.53 (2.46) 0.349

Sample cell viability, % (STD) 58.91 (20.82) 49.00 (20.04) 0.406

Epithelial cells, % (STD) 5.61 (8.49) 5.53 (5.18) 0.781

Values are percentage and number of subjects (n), mean percentage and standard deviation (STD), or mean and STD as indicated
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macrophages than neutrophils in both induced sputum
and peripheral blood. In the rest of leukocyte subpopula-
tions, there was no significant difference in the percent-
age of cells expressing TLR4, nor in the mean of
fluorescence Intensity.
The percentage of TLR4+ macrophages was not influ-

enced by the patient’s GINA therapeutic step (Fig. 2;
35.59 % (21.39) [mean percentage (STD)] in steps
GINA-1 and 2 together, n = 8; 28.01 % (9.82) in GINA-3,
n = 11; 28.99 % (12.83 %) in GINA-4, n = 9; and 38.66 %
(23.93) in GINA-5, n = 16; P = 0.501).

Correlations
We observed a correlation (but weak) between total
serum IgE and the percentage of macrophages expressing

TLR4 in induced sputum (R=0.314, P=0.04). A correlation
was also found between the percentage of macrophages
and neutrophils expressing TLR4 in induced sputum
(R=0.432, P=0.008).

Discussion
The main outcome of the present study was that the
percentage of macrophages expressing TLR4 in induced
sputum was higher in asthmatic patients with a high
total serum IgE than in asthmatics with normal total
serum IgE. Furthermore, we observed a correlation (but
weak) between total serum IgE and the percentage of
macrophages expressing TLR4 in induced sputum. This
result is consistent with a possible link between innate
immunity and the adaptive immune response in the
pathogenesis of IgE-mediated asthma. The role of TLRs
in the inflammatory process has been the subject of re-
cent investigations. However, most of the studies have
evaluated cellular responses in vitro or systemic reactions,
and few studies focused on the role of TLRs in lung in-
flammation. In the present study, we analyzed the cellular
expression of TLRs 2 and 4 on concurrent induced spu-
tum and peripheral blood samples in adult asthmatics,
and the data were stratified according to the type of
asthma in terms of high versus normal level of total serum
IgE. The study was limited to an observational assessment
of TLR expression, yet the work was performed on a large
sample of clinically well characterized patients, where all
data were collected together at a single time point.
TLRs are a family of proteins responsible for the rec-

ognition of PAMPs, which include repetitive microbial
molecular domains such as lipopolysaccharides, flagellin,
mannose and nucleic acids from viruses and bacteria.
TLRs 2 and 4 are expressed on the cell surface and
translocate to phagosomes after activation, upon binding
their ligands. TLR4 activation leads to a series of events
including bronchoconstriction, expression of adhesion
molecules by vascular endothelial cells and the release of
cytokines. Such actions result in neutrophil recruitment
and activation of pulmonary dendritic cells and macro-
phages [36], as well as a Th2 polarization of subsequent
adaptive immune responses [37]. Previous studies showed
that, in genetically susceptible subjects, allergen exposure
along with low PAMP doses favors allergic responses [38].
In contrast, high-dose PAMP exposure, as it occurs in
livestock farms, rural environments in developing coun-
tries and traditional lifestyles, leads to antigen tolerance
[39]. Such protective “farm effect” has been attributed to
an immunomodulatory role of the exposure to LPS and
other TLR ligands during early childhood, which results in
inhibiting the development of allergic immune responses
[9, 40–42]. Some recent studies [6] have led to interesting
expectations by observing that in neutrophilic asthma
there is an increase in the expression TLR2, TLR4, CD14

Table 3 Expression of TLRs 2 and 4 distributed as per total
serum IgE

Normal total serum
IgE (n = 29)

High total serum
IgE (n = 15)

P

Percentage of cells
expressing TLR2

Neutrophils (sputum)

● Cells (%) 0.89 (0.97) 2.81 (5.02) 0.180

● MFI 2.78 (2.24) 2.81 (1.26) 0.954

Macrophages (sputum)

● Cells (%) 30.78 (21.91) 31.7 (26.36) 0.907

● MFI 2.18 (0.42) 2.55 (0.73) 0.103

Neutrophils (blood)

● Cells (%) 1.19 (0.51) 1.36 (1.32) 0.637

● MFI 1.77 (0.68) 1.77 (0.64) 0.974

Monocytes (blood)

● Cells (%) 85.54 (10.42) 82.61 (15.14) 0.510

● MFI 2.47 (0.59) 2.71 (0.98) 0.379

Percentage of cells
expressing TLR4

Neutrophils (sputum)

● Cells (%) 2.96 (2.7) 7.64 (11.08) 0.118

● MFI 3.83 (2.91) 4.9 (5.34) 0.157

Macrophages (sputum)

● Cells (%) 28.84 (15.16) 42.99 (22.49) 0.048

● MFI 13.18 (11.41) 13.13 (14.39) 0.990

Neutrophils (blood)

● Cells (%) 2.13 (2.12) 1.74 (1.55) 0.532

● MFI 2.66 (1.41) 2.51 (0.72) 0.576

Monocytes (blood)

● Cells (%) 61.81 (14.42) 65.41 (17.00) 0.468

● MFI 2.89 (0.93) 2.56 (0.97) 0.281

MFI Mean of Fluorescence Intensity, TLR toll-like receptors. Values are mean
percentage and standard deviation (STD) for cell counts, and mean (STD)
for MFI
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and surfactant protein-A (SP-A), and that the activation of
TLR, by an allergen for example, generates a cascade of
signals driven by the activation and nuclear translocation
of NF-kB, that results in a cytokine-mediated inflamma-
tory response. The discovery of TLR and their actions pro-
vides an immunological basis for the study of the hygiene
hypothesis. In this study, we measure the TLR2 and 4 for
several reasons: 1) because they are receptors expressed
on the cell surface and they are easy to measure 2) be-
cause in our laboratory we have more experience in the
measurement of receptors expressed on the cell surface
and 3) because these receptors are associated in the
pathogenesis of asthma, specifically with the hygiene hy-
pothesis and the respiratory infections [16, 17]. In this

study, none of the patients included had a respiratory in-
fection within the previous month, nor suffered from
bronchiectasis.
There are findings showing that bacterial and viral in-

fections can modify the course of allergic diseases by af-
fecting high-affinity IgE receptor (FcεRI)-dependent
mast cell activation. Such studies reported that the
ligation of TLRs by bacterial or viral antigens can affect
IgE-dependent mast cell degranulation and preformed
mediator release, as well as eicosanoid production [2].
Furthermore, it has been reported that a synergistic
interaction between TLR ligands and allergens can also
modify cytokine synthesis by mast cells stimulated via
their high-affinity IgE receptor, FcεRI [3–5]. Our present
findings showing higher numbers of induced sputum
macrophages expressing TLR4 in asthmatic subjects
with high total serum IgE, along with a correlation
(weak) between the percentage of TLR4+ macrophages
and the total serum IgE level, are consistent with the
idea of a relationship between respiratory exposure to
PAMPs and asthma with increased IgE, and suggest an
involvement of the macrophage in such relationship.
Macrophages are key cells in the pulmonary innate

immune responses, since they are the most abundant
leucocyte in the air spaces and one of the first cells to
encounter inhaled proteins that may act as allergens. De-
pending on the signals received, macrophages can be
pro- or anti-inflammatory. Macrophage stimulation can
result from a variety of stimuli including TLR engage-
ment in the presence of IL-10 or other cytokines [37].
Our analysis of TLR 2 and 4 expression by different in-
flammatory cells types in induced sputum and blood
showed a higher expression of these receptors in

Fig. 2 Expression of TLR4 by induced sputum macrophages as per
GINA maintenance therapy step

Fig. 1 Expression of TLR4 in macrophages from induced sputum. Macrophages were gated within the CD45+ cells and identified as CD14
+CD66b. a Example of TLR4 expression by induced sputum macrophages in asthmatic subjects with high total serum IgE (dotted histogram)
versus asthmatic patients with normal IgE level (grey line histogram). b Expression of TLR4 in macrophages of induced sputum in asthmatic
subjects with normal versus high level total serum IgE (values are mean percentage and 95 % confidence intervals)
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monocytes/macrophages than in neutrophils, both in
sputum and peripheral blood, which may reflect the
relevance of the macrophage in the pulmonary innate
immune responses. Our findings are also consistent
with previous studies showing that TLR4 stimulation
can induce further recruitment of macrophages to the
airways [37].
The role of TLR2 in airway allergic inflammation is

not fully clear. In our work we did not find any signifi-
cant relationship between TLR2 expression and total
serum IgE. However, TLR2 stimulation by its ligands
was reported to potentiate Th2 responses and exacerbate
airway hyperresponsiveness [43, 44]. The relationship
between TLR2 activation and allergic responses is com-
plex and may depend on the antigen nature and dose,
the timing, and the TLR associated ligands [45]. Variabil-
ity in the techniques employed, and the cell populations
and specimens analyzed, may also account for limita-
tions in the comparability among different studies.
Our study has some limitations: (i) the effect of in-

haled corticosteroids on expression of TLRs in induced
sputum is unknown; (ii) we only analyze receptors that
are expressed on the cell surface (TLR4 and 2); (iii) it is
a descriptive study. Our results were significant but,
should be studied with a higher population size.

Conclusion
In summary, this work is the first evaluation of the
expression of TLRs by blood and induced sputum
leukocytes in subjects with asthma. The main finding
was that asthmatic patients with a high total serum
IgE have a higher percentage of macrophages express-
ing TLR4 in induced sputum, compared with patients
with normal total serum IgE values. This outcome
supports the possibility of therapeutic approaches for
some forms of immune-mediated lung disease through
stimulating or blocking TLRs with agonists or antagonists
[46], and may be exploited in the future for therapeutic
target discovery.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors made substantial contributions to the study (either to conception
and design, acquisition of data, or analysis and interpretation of the results),
critically reviewed the work in progress and approved the final version of the
manuscript. Specifically: AC generated the hypothesis, enrolled patients, built
the database, performed statistical analysis and wrote the manuscript; EM
processed the induced sputum specimens, scored the inflammatory cell
counts and performed the flow cytometry analyses; MT and JG performed
the induced sputum technique, spirometries, skin prick allergy tests, blood
sampling and FeNO determinations; CJ and SV designed the study and
contributed to manuscript writing; DRB and LS, collected patients clinical
data and contributed to manuscript writing; VP designed the study, recruited
patients and contributed to manuscript writing. This paper is part of the
doctoral thesis of ACL. All authors read and approved the final manuscript.

Acknowledgements
We gratefully thank all study participants. We also thank Alicia Belda for her
technical support.

Funding
This study was supported by the Fundació Catalana de Pneumologia (FUCAP)
(Beca Leti 2011, Beca Maria Ravà 2012); the Sociedad Española de Neumología
y Cirugía Toràcica (SEPAR) (Beca becario) and the Plan social y de
Investigación of the Molt Il · lustre Administració (MIA, Fundació Privada de
l’Hospital de la Santa Creu i Sant Pau) (Beca becario), Barcelona, Spain.

Author details
1Respiratory Department, Hospital de la Santa Creu i Sant Pau & Biomedical
Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Maria Claret 167,
08025 Barcelona, Spain. 2Department of Medicine, Universitat Autònoma de
Barcelona, Barcelona, Spain. 3Immunology Department, Hospital de la Santa
Creu i Sant Pau & Biomedical Research Institute Sant Pau (IIB Sant Pau),
Barcelona, Spain.

Received: 17 December 2015 Accepted: 6 April 2016

References
1. Fahy JV. Reducing IgE levels as a strategy for the treatment of asthma. Clin

Exp Allergy. 2000;30 Suppl 1:16–21.
2. Słodka A, Brzezińska-Błaszczyk E. Bacteria and viruses modulate FcεRI-dependent

mast cell activity. Postepy Hig Med Dosw (Online). 2013;67:164–73.
3. Yu Y, Blokhuis BR, Garssen J, Redegeld FA. Non-IgE mediated mast cell

activation. Eur J Pharmacol. 2015;15:30144–8.
4. West CE, Rydén P, Lundin D, Engstrand L, Tulic MK, Prescott SL. Gut

microbiome and innate immune response patterns in IgE-associated
eczema. Clin Exp Allergy. 2015 May 5. doi:10.1111/cea.12566.

5. Suurmond J, Dorjée AL, Knol EF, Huizinga TW, Toes RE. Differential TLR-
induced cytokine production by human mast cells is amplified by FcɛRI
triggering. Clin Exp Allergy. 2015;45(4):788–96.

6. Crespo-Lessmann A, Juárez-Rubio C, Plaza-Moral V. Role of toll-like receptors
in respiratory diseases. Arch Bronconeumol. 2010;46(3):135–42.

7. Xu D, Liu H, Komai-Koma M. Direct and indirect role of toll-like receptor in
Tcell mediated immunity. Cell Mol Inmunol. 2004;1:239–46.

8. Arancibia S, Beltran C, Aguirre I, Silva P, Peralta A, Malinarich F, et al. Toll-like
receptor are key participants in innate immune responses. Biol Res.
2007;40:97–112.

9. Redecke V, Haäcker H, Datta S, Fermin A, Pitha P, Broide D, et al. Cutting
edge: activation of toll-like receptor 2 induces a Th2 immune respose and
promote experimental asthma. J Immunol. 2004;172:2739–43.

10. Fritz JH, Girardon DE. How toll-like receptors and Nod-like receptors
contribute to innate immunity in mammals. J Endotoxin Res. 2005;11:390–4.

11. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, et al.
Lipopolysaccharide-enhanced, toll like receptor 4 dependent T helper cell
type 2 responses to inhaled antigen. J Exp Med. 2001;196:1645–51.

12. Rodriguez D, Keller AC, Faquim-Mauro EL, de Macedo MS, Cunha FQ, et al.
Bacterial lipopolysaccharide signaling through toll-like receptor 4 suppresses
asthma-like responses via nitric oxide synthase 2 activity. J Immunol.
2003;171(2):1001–8.

13. Kim YK, Oh SY, Jeon SG, Park HW, Lee SY, Chun EY, et al. Airway exposure
levels of lipopolysaccharide determine type 1 versus type 2 experimental
asthma. J Immunol. 2007;178(8):5375–82.

14. Fehrenback K, Port F, Grachowy G, Kalis C, Bessler W, Galanos C, et al.
Stimulation of mast cells via FcvarepsilonR1 and TLR2: the type of ligand
determines the outcome. Mol Immunol. 2007;44(8):2087–94.

15. Taylor RC, Richmond P, Upham JW. Toll-like receptor 2 ligands inhibit TH2
responses to mite allergen. J Allergy Clin Immunol. 2006;117(5):1148–54.

16. Martínez FD. The coming-of-age of the hygiene hypothesis. Respir Res.
2001;2:129–32.

17. Weiss ST. Eat dirt — the hygiene hypothesis and allergic diseases. N Engl J
Med. 2002;347:930–1.

18. Chun E, Lee S, Lee S, Shim E, Cho S, Min K, et al. Toll-like receptor
expression on peripheral blood mononuclear cells in asthmatics;
implications for asthma management. J Clin Immunol. 2010;30:459–64.

Crespo-Lessmann et al. Respiratory Research  (2016) 17:41 Page 7 of 8

http://dx.doi.org/10.1111/cea.12566


19. Zhang X, Shan P, Jiang G, Cohn L, Lee P. Research article. Toll-like
receptor 4 deficiency causes pulmonary emphysema. J Clin Invest.
2006;116:3050–9.

20. Pons J, Sauleda J, Regueiro V, Santos C, López M, Ferrer J, et al. Expression
of toll-like receptor 2 is up-regulated in monocytes from patients with
chronic obstructive pulmonary disease. Respir Res. 2006;7:64.

21. Koller B, Kappler M, Latzin P, Gaggar A, Schreiner M, Takyar S, et al. TLR
expression on neutrophils at the pulmonary site of infection: TLR1/TLR2-
mediated up-regulation of TLR5 expression in cystic fibrosis lung disease.
J Immunol. 2008;181:2753–63.

22. Greene C, Branagan P, McElvaney N. Toll-like receptors as therapeutic
targets in cystic fibrosis. Expert Opin Ther Targets. 2008;12:1481–95.

23. Simpson JL, Grissell TV, Douwes J, Scott RJ, Boyle MJ, Gibson PG. Innate
immune activation in neutrophilic asthma and bronchiectasis. Thorax. 2007;
62(3):211–8.

24. Global Initiative for Asthma (GINA). Global strategy for asthma management
and prevention, revised 2009. www.ginasthma.org.

25. Johansson SGO, Yman L. In Vitro Assays for Immunoglobulin E. Clin Rev
Allergy. 1988;6(2):93–139.

26. Vega JM, Badia X, Badiola C, López-Viña A, Olaguíbel JM, Picado C, et al.
Covalair Investigator Group. Validation of the Spanish versión of the Asthma
Control Test (ACT). J Asthma. 2007;44:867–72.

27. Pepys J. Skin testing. Br J Hosp Med. 1975;14:412–4.
28. Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC.

Lung volumes and forced ventilatory flows. Eur Respir J Suppl. 1993;16:5–40.
29. García-Río F, Calle M, Burgos F, Casan P, Del Campo F, Galdiz JB, et al.

Spirometry. Arch Bronconeumol. 2013;49(9):388–401.
30. American Thoracic Society. Recommendations for standardized procedures

for the online and offline measurement of exhaled lower respiratory nitric
oxide and nasal nitric oxide. Am J Respir Crit Care Med. 2005;171:912–30.

31. Fortuna AM, Feixas T, Casan P. Determinacion de oxido nitrico en aire
espirado mediante un equipo portatil en población sana. Arch
Bronconeumol. 2007;43(3):176–9.

32. Paggiaro PL et al. Sputum induction. Eur Respir J Suppl. 2002;37:3s–8s.
33. Vidal J, Bellido C, Granel A, Crespo V, Vidal S, Bellido J, Granel C, Crespo A,

Plaza V, Juárez C. Flow cytometry analysis of leukocytes in induced sputum
from asthmatic patients. Inmunobiology. 2012;217:692–7.

34. Pizzichini E, Pizzichini MM, Efthimiadis A, Evans S, Morris MM, Squillace D, et
al. Indices of airway inflammation in induced sputum: reproducibility and
validity of cell and fluid-phase measurements. Am J Respir Crit Care Med.
1996;154(2 Pt 1):308–17.

35. Pin I, Gibson PG, Kolendowicz R, Girgis-Gabardo A, Denburg JA, Hargreave
FE, et al. Use of induced sputum cell counts to investigate airway
inflammation in asthma. Thorax. 1992;47(1):25–9.

36. Andonegui G, Bonder C, Green F, Mullaly S, Zbytnuik L, Raharjo E, et
al. Endothelium-derived Toll-like receptor 4 is the key molecule in
LPS-induced neutrophil sequestration into lungs. J Clin Invest.
2003;111(7):1011–20.

37. Re F, Strominger JL. Toll like receptor 2 (TLR2) and TLR4 differentially
activate human dendritic cells. J Biol Chem. 2001;276(40):37692–9.

38. Gern JE. Barnyard microbes and childhood asthma. N Engl J Med.
2011;364:769–70.

39. Rabinovitch N et al. Importance of the personal endotoxin cloud in school-
age children with asthma. J Allergy Clin Immunol. 2005;116:1053–7.

40. Gerhold K, Blümchen K, Bock A, Seib C, Stock P, Kallininch T, et al.
Endotoxins prevent murine IgE production, th2 immune responses, and
development of airway eosinophilia but not airway hyperreactivity. J Allergy
Clin Immunol. 2002;110(1):110–6.

41. Platts-Mills JA et al. Airborne endotoxin in homes with domestic animals:
implications for cat-specific tolerance. J Allergy Clin Immunol.
2005;116:384–9.

42. Velasco G, Campo M, Manrique O, Bellou A, He H, Arístides R, et al. Toll-like
receptor 4 or 2 agonists decrease allergic inflammation. Am J Respir Cell
Mol Biol. 2005;32:218–24.

43. Bachar O, Adner M, Uddman R, Cardell LO. Toll-like receptor
stimulation induces airway hyper-responsiveness to bradykinin, an
effect mediated by JNK and NF-kappa B signaling pathways. Eur J
Immunol. 2004;34(4):1196–207.

44. Sukkar MB, Xie S, Khorasani NM, Kon OM, Stanbridge R, Issa R, Chung KF.
Toll-like receptor 2, 3, and 4 expression and function in human airway
smooth muscle. J Allergy Clin Immunol. 2006;118(3):641–8.

45. Berin MC, Zheng Y, Domaradkzki M, Li XM, Sampson HA. Role of TLR4 in
allergic sensitization to food proteins in mice. Allergy. 2006;61(1):64–71.

46. Hansel Trevor, Barnes Peter. New Drugs and targets for asthma and COPD.
Progress in Respiratory Research 2010; Vol 39. Karger.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Crespo-Lessmann et al. Respiratory Research  (2016) 17:41 Page 8 of 8

http://www.ginasthma.org

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Legal and ethical aspects
	Subjects and study design
	Clinical procedures
	Processing of sputum and blood specimens
	Flow cytometry
	Classification of asthma inflammatory phenotypes
	Statistical analysis

	Results
	Clinical outcomes and asthma phenotypes
	TLR expression
	Correlations

	Discussion
	Conclusion
	Competing interests
	Authors’ contributions
	Acknowledgements
	Funding
	Author details
	References

