6,998 research outputs found

    Non-equilibrium distributions at finite noise intensities

    Full text link
    We analyse the non-equilibrium distribution in dissipative dynamical systems at finite noise intensities. The effect of finite noise is described in terms of topological changes in the pattern of optimal paths. Theoretical predictions are in good agreement with the results of numerical solution of the Fokker-Planck equation and Monte Carlo simulations.Comment: 4 pages, 3 figure

    Domain wall in a chiral p-wave superconductor: a pathway for electrical current

    Get PDF
    Superconductors with p+ip pairing symmetry are characterized by chiral edge states, but these are difficult to detect in equilibrium since the resulting magnetic field is screened by the Meissner effect. Nonequilibrium detection is hindered by the fact that the edge excitations are unpaired Majorana fermions, which cannot transport charge near the Fermi level. Here we show that the boundary between p_x+ip_y and p_x-ip_y domains forms a one-way channel for electrical charge. We derive a product rule for the domain wall conductance, which allows to cancel the effect of a tunnel barrier between metal electrodes and superconductor and provides a unique signature of topological superconductors in the chiral p-wave symmetry class.Comment: 6 pages, 3 figure

    Trajectory computation during a maneuver: Thrust estimation with the Goddard Trajectory Determination System (GTDS)

    Get PDF
    Existing thrust modeling capabilities of the Goddard Trajectory Determination System (GTDS) have been enhanced to allow calibration of the onboard propulsion system. These enhancements provide one or more thrust scale factors, based on estimation using the batch least-squares technique, for the case of along-track thrust and the case of attitude-dependent thrust. The enhancements are evaluated using simulated tracking measurements for a test spacecraft and using actual tracking measurements for the Earth Radiation Budget Satellite (ERBS). The effects of tracking measurement noise and distribution on the accuracy of the estimation are investigated and found to be significant. Results and conclusions of the analysis are presented

    Estudio aeoropalinológico de la ciudad de Montevideo, R.O. del Uruguay.Análisis preliminar

    Get PDF

    Energy-optimal steering of transitions through a fractal basin boundary.

    Get PDF
    We study fluctuational transitions in a discrete dy- namical system having two co-existing attractors in phase space, separated by a fractal basin boundary. It is shown that transitions occur via a unique ac- cessible point on the boundary. The complicated structure of the paths inside the fractal boundary is determined by a hierarchy of homoclinic original sad- dles. By exploiting an analogy between the control problem and the concept of an optimal fluctuational path, we identify the optimal deterministic control function as being equivalent to the optimal fluctu- ational force obtained from a numerical analysis of the fluctuational transitions between two states

    Optimal fluctuations and the control of chaos.

    Get PDF
    The energy-optimal migration of a chaotic oscillator from one attractor to another coexisting attractor is investigated via an analogy between the Hamiltonian theory of fluctuations and Hamiltonian formulation of the control problem. We demonstrate both on physical grounds and rigorously that the Wentzel-Freidlin Hamiltonian arising in the analysis of fluctuations is equivalent to Pontryagin's Hamiltonian in the control problem with an additive linear unrestricted control. The deterministic optimal control function is identied with the optimal fluctuational force. Numerical and analogue experiments undertaken to verify these ideas demonstrate that, in the limit of small noise intensity, fluctuational escape from the chaotic attractor occurs via a unique (optimal) path corresponding to a unique (optimal) fluctuational force. Initial conditions on the chaotic attractor are identified. The solution of the boundary value control problem for the Pontryagin Hamiltonian is found numerically. It is shown that this solution is approximated very accurately by the optimal fluctuational force found using statistical analysis of the escape trajectories. A second series of numerical experiments on the deterministic system (i.e. in the absence of noise) show that a control function of precisely the same shape and magnitude is indeed able to instigate escape. It is demonstrated that this control function minimizes the cost functional and the corresponding energy is found to be smaller than that obtained with some earlier adaptive control algorithms

    Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    Get PDF
    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented

    A synthesis of palynological data from the Lower Permian Cerro Pelado Formation (Parana Basin, Uruguay): A record of warmer climate stages during Gondwana glaciations

    Get PDF
    This paper presents a synthesis of the palynological record in the Cerro Pelado Formation deposits (Lower Permian, Paraná basin, Cerro Largo Department, north-eastern Uruguay) based on pre-existing data and new findings. The successions studied in this formation consist mainly of non-marine to glacial-marine mudstones and sandy mudstones. The palynological assemblages yielded by 32 samples collected from two outcrops and thirty borehole samples demonstrate that not significant floral changes took place through the considered stratigraphic range. The correlation of these assemblages with biostratigraphic palynozones, proposed previously for the Paraná/Chacoparaná Basin of Brazil, Argentina and Uruguay point to their Early Permian age. The most widespread spore genera in these assemblages are Punctatisporites, Lundbladispora, Vallatisporites and Granulatisporites. Among pollen grains, Caheniasaccites, Vittatina, Potonieisporites, Protohaploxypinus and Plicatipollenites are the most representative. Palynomorphs assigned to Chlorophyta, Prasinophyta, and acritarchs indicate the development of brackish to fresh water lacustrine environments. The results from the facies and palynological analyses suggest that these deposits were formed during interglacial or postglacial warmer climatic episodes. This fact would agree well with the proposal that Gondwana glaciations were characterized by discrete glacial phases (with multiple glacial lobe advance-retreat phases) alternating with warmer climatic episodes. These episodes could be recognized thanks to sub-glacial and melt water related continental deposits that would bear characteristic palynological assemblages, like the recorded in the Cerro Pelado Fm. successions

    Topological insight into the non-Arrhenius mode hopping of semiconductor ring lasers

    Get PDF
    We investigate both theoretically and experimentally the stochastic switching between two counter-propagating lasing modes of a semiconductor ring laser. Experimentally, the residence time distribution cannot be described by a simple one parameter Arrhenius exponential law and reveals the presence of two different mode-hop scenarios with distinct time scales. In order to elucidate the origin of these two time scales, we propose a topological approach based on a two-dimensional dynamical system.Comment: 4 pages, 3 figure
    corecore