23 research outputs found

    Cost Effectiveness of a CYP2C19 Genotype-Guided Strategy in Patients with Acute Myocardial Infarction:Results from the POPular Genetics Trial

    Get PDF
    INTRODUCTION: The POPular Genetics trial demonstrated that a CYP2C19 genotype-guided P2Y12 inhibitor strategy reduced bleeding rates compared with standard treatment with ticagrelor or prasugrel without increasing thrombotic event rates after primary percutaneous coronary intervention (PCI). OBJECTIVE: In this analysis, we aimed to evaluate the cost effectiveness of a genotype-guided strategy compared with standard treatment with ticagrelor or prasugrel. METHODS: A 1-year decision tree based on the POPular Genetics trial in combination with a lifelong Markov model was developed to compare costs and quality-adjusted life-years (QALYs) between a genotype-guided and a standard P2Y12 inhibitor strategy in patients with myocardial infarction undergoing primary PCI. The cost-effectiveness analysis was conducted from a Dutch healthcare system perspective. Within-trial survival and utility data were combined with lifetime projections to evaluate lifetime cost effectiveness for a cohort of 1000 patients. Costs and utilities were discounted at 4 and 1.5%, respectively, according to Dutch guidelines for health economic studies. Besides deterministic and probabilistic sensitivity analyses, several scenario analyses were also conducted (different time horizons, different discount rates, equal prices for P2Y12 inhibitors, and equal distribution of thrombotic events between the two strategies). RESULTS: Base-case analysis with a hypothetical cohort of 1000 subjects demonstrated 8.98 QALYs gained and €725,550.69 in cost savings for the genotype-guided strategy (dominant). The deterministic and probabilistic sensitivity analysis confirmed the robustness of the model and the cost-effectiveness results. In scenario analyses, the genotype-guided strategy remained dominant. CONCLUSION: In patients undergoing primary PCI, a CYP2C19 genotype-guided strategy compared with standard treatment with ticagrelor or prasugrel resulted in QALYs gained and cost savings. TRIAL REGISTRATION: Clinicaltrials.gov number: NCT01761786, Netherlands trial register number: NL2872

    Subsequent Event Risk in Individuals with Established Coronary Heart Disease:Design and Rationale of the GENIUS-CHD Consortium

    Get PDF
    BACKGROUND: The "GENetIcs of sUbSequent Coronary Heart Disease" (GENIUS-CHD) consortium was established to facilitate discovery and validation of genetic variants and biomarkers for risk of subsequent CHD events, in individuals with established CHD. METHODS: The consortium currently includes 57 studies from 18 countries, recruiting 185,614 participants with either acute coronary syndrome, stable CHD or a mixture of both at baseline. All studies collected biological samples and followed-up study participants prospectively for subsequent events. RESULTS: Enrollment into the individual studies took place between 1985 to present day with duration of follow up ranging from 9 months to 15 years. Within each study, participants with CHD are predominantly of self-reported European descent (38%-100%), mostly male (44%-91%) with mean ages at recruitment ranging from 40 to 75 years. Initial feasibility analyses, using a federated analysis approach, yielded expected associations between age (HR 1.15 95% CI 1.14-1.16) per 5-year increase, male sex (HR 1.17, 95% CI 1.13-1.21) and smoking (HR 1.43, 95% CI 1.35-1.51) with risk of subsequent CHD death or myocardial infarction, and differing associations with other individual and composite cardiovascular endpoints. CONCLUSIONS: GENIUS-CHD is a global collaboration seeking to elucidate genetic and non-genetic determinants of subsequent event risk in individuals with established CHD, in order to improve residual risk prediction and identify novel drug targets for secondary prevention. Initial analyses demonstrate the feasibility and reliability of a federated analysis approach. The consortium now plans to initiate and test novel hypotheses as well as supporting replication and validation analyses for other investigators

    Association of Chromosome 9p21 with Subsequent Coronary Heart Disease events:A GENIUS-CHD study of individual participant data

    Get PDF
    BACKGROUND:Genetic variation at chromosome 9p21 is a recognized risk factor for coronary heart disease (CHD). However, its effect on disease progression and subsequent events is unclear, raising questions about its value for stratification of residual risk. METHODS:A variant at chromosome 9p21 (rs1333049) was tested for association with subsequent events during follow-up in 103,357 Europeans with established CHD at baseline from the GENIUS-CHD Consortium (73.1% male, mean age 62.9 years). The primary outcome, subsequent CHD death or myocardial infarction (CHD death/MI), occurred in 13,040 of the 93,115 participants with available outcome data. Effect estimates were compared to case/control risk obtained from CARDIoGRAMPlusC4D including 47,222 CHD cases and 122,264 controls free of CHD. RESULTS:Meta-analyses revealed no significant association between chromosome 9p21 and the primary outcome of CHD death/MI among those with established CHD at baseline (GENIUS-CHD OR 1.02; 95% CI 0.99-1.05). This contrasted with a strong association in CARDIoGRAMPlusC4D OR 1.20; 95% CI 1.18-1.22; p for interaction Conclusions: In contrast to studies comparing individuals with CHD to disease free controls, we found no clear association between genetic variation at chromosome 9p21 and risk of subsequent acute CHD events when all individuals had CHD at baseline. However, the association with subsequent revascularization may support the postulated mechanism of chromosome 9p21 for promoting atheroma development

    Efficacy and safety of glycoprotein IIb/IIIa inhibitors in addition to P2Y12 inhibitors in ST-segment elevation myocardial infarction: A subanalysis of the POPular Genetics trial

    No full text
    Background: Glycoprotein IIb/IIIa inhibitors (GPI) are still used in patients with ST-segment elevation myocardial infarction (STEMI) who undergo primary percutaneous coronary intervention (PCI), although discussion about its clinical benefit is ongoing. Methods: GPI use was analyzed in this subanalysis of the POPular Genetics trial, which randomized STEMI patients to CYP2C19 genotype-guided treatment (clopidogrel or ticagrelor) or standard treatment with ticagrelor/prasugrel. The composite thrombotic endpoint consisted of cardiovascular death, myocardial infarction (MI), definite stent thrombosis, and stroke at 30 days. The combined bleeding endpoint consisted of Platelet Inhibition and Patient Outcomes (PLATO) major and minor bleeding at 30 days. Univariable and multivariable analyses in addition to a propensity score-matched (PSM) analysis were conducted. Results: In total, 2378 patients, of whom 1033 received GPI and 1345 did not, were included. In multivariable analysis, GPI administration was associated with fewer thrombotic events (hazard ratio [HR] 0.22, 95% confidence interval [CI] 0.09–0.55) and MIs (HR 0.24, 95% CI 0.08–0.73). Furthermore, GPI administration was associated with an increase in bleedings (HR 2.02, 95% CI 1.27–3.19), driven by minor bleedings (HR 2.32, 95% CI 1.43–3.76), without a significant difference in major bleedings (HR 0.69, 95% CI 0.19–2.57). In the PSM analysis, no significant association was found. Conclusion: In STEMI patients undergoing primary PCI, GPI administration was associated with a reduction in thrombotic events at a cost of an increase in (mostly minor) bleedings in multivariable analysis, while propensity score analysis did not show significant associations

    Efficacy and safety of glycoprotein IIb/IIIa inhibitors in addition to P2Y(12) inhibitors in ST-segment elevation myocardial infarction:A subanalysis of the POPular Genetics trial

    No full text
    Background: Glycoprotein IIb/IIIa inhibitors (GPI) are still used in patients with ST-segment elevation myocardial infarction (STEMI) who undergo primary percutaneous coronary intervention (PCI), although discussion about its clinical benefit is ongoing. Methods: GPI use was analyzed in this subanalysis of the POPular Genetics trial, which randomized STEMI patients to CYP2C19 genotype-guided treatment (clopidogrel or ticagrelor) or standard treatment with ticagrelor/prasugrel. The composite thrombotic endpoint consisted of cardiovascular death, myocardial infarction (MI), definite stent thrombosis, and stroke at 30 days. The combined bleeding endpoint consisted of Platelet Inhibition and Patient Outcomes (PLATO) major and minor bleeding at 30 days. Univariable and multivariable analyses in addition to a propensity score-matched (PSM) analysis were conducted. Results: In total, 2378 patients, of whom 1033 received GPI and 1345 did not, were included. In multivariable analysis, GPI administration was associated with fewer thrombotic events (hazard ratio [HR] 0.22, 95% confidence interval [CI] 0.09–0.55) and MIs (HR 0.24, 95% CI 0.08–0.73). Furthermore, GPI administration was associated with an increase in bleedings (HR 2.02, 95% CI 1.27–3.19), driven by minor bleedings (HR 2.32, 95% CI 1.43–3.76), without a significant difference in major bleedings (HR 0.69, 95% CI 0.19–2.57). In the PSM analysis, no significant association was found. Conclusion: In STEMI patients undergoing primary PCI, GPI administration was associated with a reduction in thrombotic events at a cost of an increase in (mostly minor) bleedings in multivariable analysis, while propensity score analysis did not show significant associations

    Genomewide Association Study of Platelet Reactivity and Cardiovascular Response in Patients Treated With Clopidogrel: A Study by the International Clopidogrel Pharmacogenomics Consortium

    Get PDF
    Antiplatelet response to clopidogrel shows wide variation, and poor response is correlated with adverse clinical outcomes. CYP2C19 loss-of-function alleles play an important role in this response, but account for only a small proportion of variability in response to clopidogrel. An aim of the International Clopidogrel Pharmacogenomics Consortium (ICPC) is to identify other genetic determinants of clopidogrel pharmacodynamics and clinical response. A genomewide association study (GWAS) was performed using DNA from 2,750 European ancestry individuals, using adenosine diphosphate-induced platelet reactivity and major cardiovascular and cerebrovascular events as outcome parameters. GWAS for platelet reactivity revealed a strong signal for CYP2C19*2 (P value = 1.67e−33). After correction for CYP2C19*2 no other single-nucleotide polymorphism reached genomewide significance. GWAS for a combined clinical end point of cardiovascular death, myocardial infarction, or stroke (5.0% event rate), or a combined end point of cardiovascular death or myocardial infarction (4.7% event rate) showed no significant results, although in coronary artery disease, percutaneous coronary intervention, and acute coronary syndrome subgroups, mutations in SCOS5P1, CDC42BPA, and CTRAC1 showed genomewide significance (lowest P values: 1.07e−09, 4.53e−08, and 2.60e−10, respectively). CYP2C19*2 is the strongest genetic determinant of on-clopidogrel platelet reactivity. We identified three novel associations in clinical outcome subgroups, suggestive for each of these outcomes

    CYP2C19 genotype-guided antiplatelet therapy in ST-segment elevation myocardial infarction patients-Rationale and design of the Patient Outcome after primary PCI (POPular) Genetics study

    No full text
    RATIONALE: In patients with ST-segment elevation myocardial infarction (STEMI) who undergo primary percutaneous coronary intervention (pPCI), the use of dual antiplatelet therapy is essential to prevent atherothrombotic complications. Therefore, patients are treated with acetylsalicylic acid and clopidogrel, prasugrel, or ticagrelor. Clopidogrel, however, shows a major interindividual variation in antiplatelet effect, which is correlated to an increase in atherothrombotic events in patients with high platelet reactivity. This interindividual variation is partly a result of CYP2C19 genetic variants. Ticagrelor and prasugrel reduce atherothrombotic events but increase bleeding rate and drug costs, as compared with clopidogrel. CYP2C19-based tailoring of antiplatelet therapy might be beneficial to STEMI patients. STUDY DESIGN: POPular Genetics (NCT01761786) is a randomized, open-label, multicenter trial involving 2,700 STEMI patients who undergo pPCI. Patients are randomized to CYP2C19 genotyping or routine ticagrelor or prasugrel treatment. In the genotyping group, *1/*1 (wild-type) patients receive clopidogrel, and patients carrying 1 or 2 *2 or *3 loss-of-function alleles receive ticagrelor or prasugrel. The primary net clinical benefit end point is the composite of death, (recurrent) myocardial infarction, definite stent thrombosis, stroke, and Platelet Inhibition and Patient Outcomes (PLATO) major bleeding at 1 year. Primary safety end point is the composite of (PLATO) major and minor bleeding. Cost-effectiveness and quality of life will be assessed by calculating quality-adjusted life-years, net costs per life-year, and per quality-adjusted life-year gained. CONCLUSION: The POPular Genetics study is the first large-scale trial comparing CYP2C19 genotype-guided antiplatelet therapy to a nontailored strategy in terms of net clinical benefit, safety, and cost-effectiveness
    corecore