50 research outputs found

    Diagnostic applications of next generation sequencing: working towards quality standards

    Get PDF
    Over the past 6 years, next generation sequencing (NGS) has been established as a valuable high-throughput method for research in molecular genetics and has successfully been employed in the identification of rare and common genetic variations. All major NGS technology companies providing commercially available instruments (Roche 454, Illumina, Life Technologies) have recently marketed bench top sequencing instruments with lower throughput and shorter run times, thereby broadening the applications of NGS and opening the technology to the potential use for clinical diagnostics. Although the high expectations regarding the discovery of new diagnostic targets and an overall reduction of cost have been achieved, technological challenges in instrument handling, robustness of the chemistry and data analysis need to be overcome. To facilitate the implementation of NGS as a routine method in molecular diagnostics, consistent quality standards need to be developed. Here the authors give an overview of the current standards in protocols and workflows and discuss possible approaches to define quality criteria for NGS in molecular genetic diagnostics

    Latent class analysis reveals clinically relevant atopy phenotypes in 2 birth cohorts

    Get PDF
    Background: Phenotypes of childhood-onset asthma are characterized by distinct trajectories and functional features. For atopy, definition of phenotypes during childhood is less clear. Objective: We sought to define phenotypes of atopic sensitization over the first 6 years of life using a latent class analysis (LCA) integrating 3 dimensions of atopy: allergen specificity, time course, and levels of specific IgE (sIgE). Methods: Phenotypes were defined by means of LCA in 680 children of the Multizentrische Allergiestudie (MAS) and 766 children of the Protection against allergy: Study in Rural Environments (PASTURE) birth cohorts and compared with classical nondisjunctive definitions of seasonal, perennial, and food sensitization with respect to atopic diseases and lung function. Cytokine levels were measured in the PASTURE cohort. Results: The LCA classified predominantly by type and multiplicity of sensitization (food vs inhalant), allergen combinations, and sIgE levels. Latent classes were related to atopic disease manifestations with higher sensitivity and specificity than the classical definitions. LCA detected consistently in both cohorts a distinct group of children with severe atopy characterized by high seasonal sIgE levels and a strong propensity for asthma; hay fever; eczema; and impaired lung function, also in children without an established asthma diagnosis. Severe atopy was associated with an increased IL-5/IFN-gamma ratio. A path analysis among sensitized children revealed that among all features of severe atopy, only excessive sIgE production early in life affected asthma risk. Conclusions: LCA revealed a set of benign, symptomatic, and severe atopy phenotypes. The severe phenotype emerged as a latent condition with signs of a dysbalanced immune response. It determined high asthma risk through excessive sIgE production and directly affected impaired lung function.Peer reviewe

    Gestational Weight Gain and Body Mass Index in Children: Results from Three German Cohort Studies

    Get PDF
    Previous studies suggested potential priming effects of gestational weight gain (GWG) on offspring's body composition in later life. However, consistency of these effects in normal weight, overweight and obese mothers is less clear. We combined the individual data of three German cohorts and assessed associations of total and excessive GWG (as defined by criteria of the Institute of Medicine) with offspring's mean body mass index (BMI) standard deviation scores (SDS) and overweight at the age of 5-6 years (total: n = 6,254). Quantile regression was used to examine potentially different effects on different parts of the BMI SDS distribution. All models were adjusted for birth weight, maternal age and maternal smoking during pregnancy and stratified by maternal pre-pregnancy weight status. In adjusted models, positive associations of total and excessive GWG with mean BMI SDS and overweight were observed only in children of non- overweight mothers. For example, excessive GWG was associated with a mean increase of 0.08 (95% CI: 0.01, 0.15) units of BMI SDS (0.13 (0.02, 0.24) kg/m(2) of 'real' BMI) in children of normal-weight mothers. The effects of total and excessive GWG on BMI SDS increased for higher- BMI children of normal-weight mothers. Increased GWG is likely to be associated with overweight in offspring of non-overweight mothers

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Introduction

    No full text
    Region A region is at the same time a geographic area distinguished by similar features and a cultural space with social, economic, and ecological implications (Fresonke; Zagarell, “Region”). Literary regionalism had its starting point in the late nineteenth century, when writers connected their specific region’s character to its nature, people, and history (Baym). “New England” is generally seen “as the source of regionalist writing, Sarah Orne Jewett as the paradigmatic regional writer, and..

    Stories of Female Initiation: Two 19th-Century Examples of Female Professional Success

    No full text
    Stories of female initiation that lead to self-realization and independence have seldom been approached. Elizabeth Stuart Phelps Ward’s "The Girl Who Could Not Write a Composition" (1871) and Sarah Orne Jewett’s "Farmer Finch" (1885) are discussed with regard to the causes of this neglect and the generalizing patterns of Elaine Ginsberg's "The Female Initiation Theme in American Fiction" (1975)

    Gender and the Performance of Local and Global Conflicts in Postmodern and Contemporary Drama: LeRoi Jones, José Rivera, David H. Hwang

    No full text
    Raussert W. Gender and the Performance of Local and Global Conflicts in Postmodern and Contemporary Drama: LeRoi Jones, José Rivera, David H. Hwang. In: Achilles J, Bergmann I, Däwes B, eds. Contemporary Drama In English: Global Challenges and Regional Responses in Contemporary Drama in English. Trier: WVT; 2003: 85-103

    Pneumococcus Infection of Primary Human Endothelial Cells in Constant Flow

    No full text
    Interaction of Streptococcus pneumoniae with the surface of endothelial cells is mediated in blood flow via mechanosensitive proteins such as the Von Willebrand Factor (VWF). This glycoprotein changes its molecular conformation in response to shear stress, thereby exposing binding sites for a broad spectrum of host-ligand interactions. In general, culturing of primary endothelial cells under a defined shear flow is known to promote the specific cellular differentiation and the formation of a stable and tightly linked endothelial layer resembling the physiology of the inner lining of a blood vessel. Thus, the functional analysis of interactions between bacterial pathogens and the host vasculature involving mechanosensitive proteins requires the establishment of pump systems that can simulate the physiological flow forces known to affect the surface of vascular cells. The microfluidic device used in this study enables a continuous and pulseless recirculation of fluids with a defined flow rate. The computer-controlled air-pressure pump system applies a defined shear stress on endothelial cell surfaces by generating a continuous, unidirectional, and controlled medium flow. Morphological changes of the cells and bacterial attachment can be microscopically monitored and quantified in the flow by using special channel slides that are designed for microscopic visualization. In contrast to static cell culture infection, which in general requires a sample fixation prior to immune labeling and microscopic analyses, the microfluidic slides enable both the fluorescence-based detection of proteins, bacteria, and cellular components after sample fixation; serial immunofluorescence staining; and direct fluorescence-based detection in real time. In combination with fluorescent bacteria and specific fluorescence-labeled antibodies, this infection procedure provides an efficient multiple component visualization system for a huge spectrum of scientific applications related to vascular processes
    corecore