1,594 research outputs found

    D3-D5 Holography with Flux

    Get PDF
    It is shown that the Berezinski-Kosterlitz-Thouless phase transition that has been found in D3-D5 brane systems with nonzero magnetic field and charge density can also be found by tuning an extra-dimensional magnetic flux. We find numerical solutions for the probe D5-brane embedding and discuss properties of the solutions. We also demonstrate that the nontrivial embeddings include those which can be regarded as spontaneously breaking chiral symmetry

    Quark mass and condensate in HQCD

    Full text link
    We extend the Sakai-Sugimoto holographic model of QCD (HQCD) by including the scalar bi-fundamental "tachyon" field in the 8-brane-anti-8-brane probe theory. We show that this field is responsible both for the spontaneous breaking of the chiral symmetry, and for the generation of (current algebra) quark masses, from the point of view of the bulk theory. As a by-product we show how this leads to the Gell-Mann- Oakes-Renner relation for the pion mass.Comment: 23 pages, 7 figures; v2: corrected typos in eqs. (4.3), (4.4), (4.5), (4.9) and (4.11), and corrected figures 3, 4, 5 and 6; v3: section 5.3 on the pion mass rewritten in a clearer way, version published in JHE

    Instantons at Strong Coupling, Averaging over Vacua, and the Gluino Condensate

    Get PDF
    We consider instanton contributions to chiral correlators, such as <0| Tr \lambda^2 (x) Tr \lambda^2(x') |0>, in N=1 supersymmetric Yang-Mills theory with either light adjoint or fundamental matter. Within the former model, extraction of the gluino condensate from a connected 1-instanton diagram, evaluated at strong coupling, can be contrasted with expectations from the Seiberg-Witten solution perturbed to an N=1 vacuum. We observe a numerical discrepancy, coinciding with that observed previously in N=1 SQCD. Moreover, since knowledge of the vacuum structure is complete for softly broken N=2 Yang-Mills, this model serves as a counterexample to the hypothesis of Amati et al. that 1-instanton calculations at strong coupling can be interpreted as averaging over vacua. Within N=1 SQCD, we point out that the connected contribution to the relevant correlators actually vanishes in the weakly coupled Higgs phase, despite having a nonzero value through infra-red effects when calculated in the unbroken phase.Comment: 20 pages, LaTeX; minor additions, to appear in Nucl. Phys.

    Symmetry Algebras of Large-N Matrix Models for Open Strings

    Get PDF
    We have discovered that the gauge invariant observables of matrix models invariant under U(NN) form a Lie algebra, in the planar large-N limit. These models include Quantum Chromodynamics and the M(atrix)-Theory of strings. We study here the gauge invariant states corresponding to open strings (`mesons'). We find that the algebra is an extension of a remarkable new Lie algebra VΛ{\cal V}_{\Lambda} by a product of more well-known algebras such as glgl_{\infty} and the Cuntz algebra. VΛ{\cal V}_{\Lambda} appears to be a generalization of the Lie algebra of vector fields on the circle to non-commutative geometry. We also use a representation of our Lie algebra to establish an isomorphism between certain matrix models (those that preserve `gluon number') and open quantum spin chains. Using known results on quantum spin chains, we are able to identify some exactly solvable matrix models. Finally, the Hamiltonian of a dimensionally reduced QCD model is expressed explicitly as an element of our Lie algebra.Comment: 44 pages, 8 eps figures, 3 tables, LaTeX2.09; this is the published versio

    The Role of Slow Slip Events in the Cascadia Subduction Zone Earthquake Cycle

    Get PDF
    Slow slip events (SSEs) detected on the Cascadia Subduction Zone interface at 30–50 km depth imply a release of accumulated strain. However, studies of interseismic deformation in Cascadia typically find coupling on the upper 30 km of the interface, which is generally accepted as defining the seismogenic zone. Estimates of coupling using net interseismic velocities (including SSE effects) and restricting coupling to the shallow interface may underestimate slip deficit accumulation at depths \u3e30 km. Here, we detect reversals in GPS motion as indications of SSEs, then use SSE displacements to estimate cumulative slow slip from 2007 to 2021. We calculate pure interseismic velocities, correcting for SSE displacements, and use them to constrain an elastic block model, estimating slip deficit on the subduction interface down to 50 km. By evaluating slip deficit and slow slip independently, we examine SSEs’ effect on interseismic strain accumulation, and the effect of inter-SSE slip deficit and slow slip on vertical deformation of the forearc. We find that moderate to high coupling extends to 40 km depth, and while shallow coupling is consistent with previous estimates of the seismogenic zone, a deeper region of slip deficit beneath the Olympic Peninsula may be partially (61%) relieved aseismically by SSEs. Patterns of surface uplift suggest that complete relief of deep coupling over multiple decades may be accomplished by time-varying rates of aseismic slip

    A Review of Symmetry Algebras of Quantum Matrix Models in the Large-N Limit

    Full text link
    This is a review article in which we will introduce, in a unifying fashion and with more intermediate steps in some difficult calculations, two infinite-dimensional Lie algebras of quantum matrix models, one for the open string sector and one for the closed string sector. Physical observables of quantum matrix models in the large-N limit can be expressed as elements of these Lie algebras. We will see that both algebras arise as quotient algebras of a larger Lie algebra. We will also discuss some properties of these Lie algebras not published elsewhere yet, and briefly review their relationship with well-known algebras like the Cuntz algebra, the Witt algebra and the Virasoro algebra. We will also review how Yang--Mills theory, various low energy effective models of string theory, quantum gravity, string-bit models, and quantum spin chain models can be formulated as quantum matrix models. Studying these algebras thus help us understand the common symmetry of these physical systems.Comment: 77 pages, 21 eps figures, 1 table, LaTeX2.09; an invited review articl

    The Baryonic Phase in Holographic Descriptions of the QCD Phase Diagram

    Full text link
    We study holographic models of the QCD temperature-chemical potential phase diagram based on the D3/D7 system with chiral symmetry breaking. The baryonic phase may be included through linked D5-D7 systems. In a previous analysis of a model with a running gauge coupling a baryonic phase was shown to exist to arbitrarily large chemical potential. Here we explore this phase in a more generic phenomenological setting with a step function dilaton profile. The change in dilaton generates a linear confining qˉq\bar{q}q potential and opposes the screening effect of temperature. We show that the persistence of the baryonic phase depends on the step size and that QCD-like phase diagrams can be described. The baryonic phase's existence is qualitatively linked to the existence of confinement in Wilson loop computations in the background.Comment: 21 pages, 7 figure

    Chiral Dynamics and Meson with Non-commutative Dipole Field in Gauge/Gravity Dual

    Full text link
    Apply the T-duality and smeared twist to the D3-brane solution one can construct the supergravity backgrounds which may dual to supersymmetric or non-supersymmetric non-commutative dipole field theory. We introduce D7-brane probe into the dual supergravity background to study the chiral dynamics and meson spectrum therein. We first find that the non-commutative dipole field does not induce the chiral symmetry breaking even if the supersymmetry was completely broken, contrast to the conventional believing that the chiral symmetry will be broken in the non-supersymmetric theory. Next, we find that the dipole field does not modify the meson spectrum in the supersymmetric theory while it will reduce the meson bound-state energy in the non-supersymmetric theory. We also evaluate the static quark anti-quark potential and see that the dipole field has an effect to produce attractive force between the quark and anti-quark.Comment: Latex 12 pages, typos corrected, detail several point

    Holographic DC conductivities from the open string metric

    Full text link
    We study the DC conductivities of various holographic models using the open string metric (OSM), which is an effective metric geometrizing density and electromagnetic field effect. We propose a new way to compute the nonlinear conductivity using OSM. As far as the final conductivity formula is concerned, it is equivalent to the Karch-O'Bannon's real-action method. However, it yields a geometrical insight and technical simplifications. Especially, a real-action condition is interpreted as a regular geometry condition of OSM. As applications of the OSM method, we study several holographic models on the quantum Hall effect and strange metal. By comparing a Lifshitz background and the Light-Cone AdS, we show how an extra parameter can change the temperature scaling behavior of conductivity. Finally we discuss how OSM can be used to study other transport coefficients, such as diffusion constant, and effective temperature induced by the effective world volume horizon.Comment: 33 page

    Effects of Altering Freshwater Chemistry on Physiological Responses of Rainbow Trout to Silver Exposure

    Get PDF
    The influence of different water Cl- (50–600 μM), Ca2+ (50–1,500 μM), Na+ (50–1,500 μM), or dissolved organic carbon (DOC, 0.31–5 mg/L) levels on silver-induced physiological and biochemical perturbations of rainbow trout were investigated. Fish were acclimated to soft water (50 μM; Cl-, Ca2+, and Na+), then exposed to 3.7 μg/L Ag (as AgNO3) for 6 h, which resulted in a reduction in Na+ influx from the water, an inhibition of gill sodium- and potassium-activated adenosine triphosphatase (Na+/K+-ATPase) activity, and an accumulation of silver on the gills. Increasing the water Cl- or DOC levels ameliorated the silver toxicity. However, increasing water Ca2+ or Na+ concentration did not reduce the silver-induced physiological and biochemical perturbations. The free silver ion (Ag+) concentrations (calculated from MINEQL+, a geochemical speciation computer program) showed a negative correlation with the Na+ influx rates and gill Na+/K+-ATPase activity. However, gill silver levels did not correlate to Ag+ concentrations and no correlation was found between gill silver levels and either Na+ influx rates or gill Na+/K+-ATPase activity. These results support the notion that the [Ag+] concentration is of major importance when assessing silver toxicity in fish, and that this should be taken into account in regulatory strategies for silver in the natural environment
    corecore