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It is shown that the Berezinski–Kosterlitz–Thouless phase transition that has been found in D3–D5
brane systems with nonzero magnetic field and charge density can also be found by tuning an extra-
dimensional magnetic flux. We find numerical solutions for the probe D5-brane embedding and discuss
properties of the solutions. We also demonstrate that the nontrivial embeddings include those which can
be regarded as spontaneously breaking chiral symmetry.
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The AdS/CFT duality of an appropriately oriented probe D5-
brane embedded in AdS5 × S5 space–time and a supersymmetric
defect conformal field theory is a well-studied example of holog-
raphy [1–11]. In the limit of large N and large radius of curvature,
the D5-brane geometry is found as an extremum of the Dirac–
Born–Infeld action with appropriate Wess–Zumino terms added. Its
world-volume is the product space AdS4(⊂ AdS5)× S2(⊂ S5) which
preserves an OSp(4|4) subgroup of the SU(2,2|4) superconformal
symmetry of the AdS5 × S5 background. The superconformal field
theory which is dual to this D3–D5 system, and which is described
by it in the strong coupling limit, has a co-dimension one mem-
brane that is embedded in 3+1-dimensional flat space. The bulk of
the 3 + 1-dimensional space is occupied by N = 4 supersymmet-
ric Yang–Mills theory with SU(N) gauge group. A bi-fundamental
chiral hypermultiplet lives on the membrane defect and its field
theory is dual to the low energy modes of open strings connect-
ing the D5-branes and the D3-branes. These fields transform in the
fundamental representation of the SU(N) bulk gauge group and in
the fundamental representation of the global U (N5), where N5 is
the number of D5-branes (in the probe limit, N5 � N and we will
take N5 = 1). The defect field theory preserves half of the super-
symmetries of the bulk N = 4 theory, resulting in the residual
OSp(4|4) super-conformal symmetry. It is massless with a hyper-
multiplet mass operator which breaks an SU(2) R-symmetry [3].

An external magnetic field has a profound effect on this system.
In the quantum field theory, the magnetic field is constant and is
perpendicular to the membrane defect. In the string theory, the
magnetic field destabilizes the conformal symmetric state to one
which spontaneously breaks the SU(2) R-symmetry and generates
a mass gap for the D3–D5 strings [5]. The only solution for the D5-
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brane embedding has it pinching off before it reaches the Poincaré
horizon of AdS5. As a result, the D3–D5 strings which, when ex-
cited, must reach from the D5-brane to the Poincaré horizon, have
a minimum length and an energy gap. This occurs for any value
of the magnetic field, in fact, since the theory has conformal in-
variance, the magnetic field is the only dimensional parameter and
there is no distinction between large field and small field. A mass
and a mass operator condensate for the D3–D5 strings can readily
be identified (the conformal dimensions of their field theory duals
are protected by supersymmetry) and there is simply no solution
of the probe D5-brane embedding problem with a magnetic field
when both the mass and the condensate are zero. There can be
a solution when one of those parameters vanishes and the other
does not vanish. Such a solution can be interpreted as presence of
a condensate in the absence of a mass operator, that is, as dynam-
ical symmetry breaking. This phenomenon is regarded as a holo-
graphic realization of the “magnetic catalysis” of chiral symmetry
breaking that has been studied in 2+1-dimensional quantum field
theories [14–20]. The field theory studies rely on weak coupling
expansions and re-summation of Feynman diagrams. Whether the
phenomenon can persist at strong coupling is an interesting ques-
tion which appears to have an affirmative answer in the context
of this construction. It and many other aspects of the phase dia-
gram of the D5-brane have been well studied in what is by now
an extensive literature [5–13].

This interesting behavior becomes more complex when a U (1)

charge density, as well as the magnetic field, is introduced. The
state then has a nonzero density of D3–D5 strings. There is also
a tuneable dimensionless parameter, the ratio of charge density to
the field, the “filling fraction” ν = 2πρ

B . In this case, there is no
charge gap. The D5-brane must necessarily reach the Poincaré hori-
zon. This is due to the fact that, to have a nonzero charge density,
there must be a density of fundamental strings suspended between
the D5-brane and the Poincaré horizon. However, the fundamental
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string tension is always greater than the D5-brane tension [6] and
such strings would therefore pull the D5-brane to the horizon. The
result is a gapless state: the D3–D5 strings could have zero length,
and therefore have no energy gap. At weak coupling, the dual pro-
cess is the formation of a Fermi surface and a gapless metallic state
when the charge density is nonzero.

What is more, if the filling fraction is large enough, the state
with no mass term and mass operator condensate equal to zero ex-
ists and is stable. In this state, the SU(2) R-symmetry is not broken.
As the filling fraction is lowered from large values where the sys-
tem takes up this symmetric phase, as pointed out in the beautiful
paper [10], the system undergoes a Berezinski–Kosterlitz–Thouless-
like (BKT) phase transition. This phase transition has BKT scaling
and is one of the rare examples on non-mean field phase transi-
tions in holographic systems. When the filling fraction is less than
the critical value, again, even though the D5-brane world-volume
now reaches the Poincaré horizon, there is no solution of the the-
ory unless either the mass operator or mass operator condensate
or both are turned on. This state breaks the SU(2) R-symmetry but
still has no charge gap.

In this Letter, we shall observe that, as well as density, there is
a second parameter which can drive the BKT-like transition. The
parameter is the value of a magnetic flux which forms a U (1)

monopole bundle on the D5-brane world-volume 2-sphere. The
possibility of adding this flux was suggested by Myers and Wapler
[6]. They found that the idea could be used to construct stable
D3–D7 systems, in particular, and a modification of their idea was
subsequently used to study holography in D3–D7 systems [21–23].
In the limit where the string theory is classical, the problem of em-
bedding a D5-brane in the AdS5 × S5 geometry reduces to that of
finding an extremum of the Dirac–Born–Infeld and Wess–Zumino
actions,

S = T5

gs

∫
d6σ

[−
√

−det
(

g + 2πα′ F
) + C (4) ∧ 2πα′ F

]
(1)

where gs is the closed string coupling constant, which is related
to the N = 4 Yang–Mills coupling by 4π gs = g2

Y M , gab(σ ) is the
induced metric of the D5-brane, C (4) is the 4-form of the AdS5 × S5

background, F is the world-volume gauge field and T5 = 1
(2π)5α′ 3 .

We shall use the metric of AdS5 × S5 and 4-form

ds2 = L2
[

r2(−dt2 + dx2 + dy2 + dx2) + dr2

r2
+

+ dψ2 + cos2 ψ
(
dθ2 + sin2 θ dφ2)

+ sin2 ψ
(
dθ̃2 + sin2 θ̃ dφ̃2)] (2)

C (4) = L4r4 dt ∧ dx ∧ dy ∧ dz

+ L4 c(ψ)

2
d cos θ ∧ dφ ∧ d cos θ̃ ∧ dφ̃ (3)

with ∂ψ c(ψ) = 8 sin2 ψ cos2 ψ . In (2), the 5-sphere is represented
by two 2-spheres fibered over the interval ψ ∈ [0, π

2 ]. The radius

of curvature of AdS is L and L2 = √
λα′ with λ = g2

Y M N . The em-
bedding of the D5-brane is mostly determined by symmetry. The
dynamical variables are {x(σ ), y(σ ), z(σ ), t(σ ), r(σ ),ψ(σ ), θ(σ ),

φ(σ ), θ̃(σ ), φ̃(σ )}. We look for a solution of the form

σ1 = x, σ2 = y, σ3 = t, σ4 = r, σ5 = θ − π

2
,

σ6 = φ, θ̃ = 0, φ̃ = 0 (4)
and the remaining coordinates depending only on σ4 = r, (z(r),
ψ(r)).1 With this Ansätz, the D5-brane world-volume metric is

ds2 = L2
[

r2(−dt2 + dx2 + dy2) + dr2

r2

(
1 + r2ψ ′2 + r4z′2)

+ cos2 ψ
(
dθ2 + sin2 θ dφ2)] (7)

where prime denotes derivative by r and the world-volume gauge
fields are

F = L2

2πα′ a′(r)dr ∧ dt + L2

2πα′ b dx ∧ dy

+ L2

2πα′
f

2
d cos θ ∧ dφ (8)

Here, f is the strength of the monopole bundle.2 b is a con-
stant magnetic field which is proportional to a constant magnetic
field in the field theory dual. a(r) is the temporal world-volume
gauge field which must be nonzero in order to have a uniform
charge density in the field theory dual. The bosonic part of the R-
symmetry is SU(2) × SU(2). One SU(2) is the isometry of the S2

which is wrapped by the D5-brane (7) and is also a symmetry of
the background fields (8). The other is the rotation in the trans-
verse S2 ⊂ S5 with S5 coordinates θ̃ , φ̃. This is a symmetry of the
embedding only when the former S2 is maximal, that is, when
ψ(r) = 0 for all r. If ψ(r) deviates from zero, it must choose a di-
rection in the transverse space, and the choice breaks the second
SU(2). The hypermultiplet mass shows up in the D5-brane embed-
ding as

M ∼ m ≡ lim
r→∞ r sinψ(r), ψ(r → ∞) = m

r
+ c

r2
+ · · · (9)

and deviation of ψ(r) from the constant ψ = 0 so that the parame-
ter m is nonzero is a signal of having switched on a hypermultiplet
mass operator in the dual field theory. The parameter c is dual to
the chiral condensate, although in an alternative quantization these
could be interchanged [24].

With (7) and (8), the action (1) is

S = N
∫

d3x dr

× [−
√(

f 2 + 4 cos4 ψ
)(

b2 + r4
)(

1 + r2ψ ′2 + r4z′2
) − a′2

+ f r4z′] (10)

1 This ansatz is symmetric under space–time parity which can be defined for the
Wess–Zumino terms∫

d6σ εμ1μ2 ...μ6 ∂μ1 x(σ )∂μ2 y(σ )∂μ3 z(σ )∂μ4 t(σ )r4(σ )∂μ5 Aμ6 (σ ) (5)

∫
d6σ εμ1μ2 ...μ6 ∂μ1 cos θ(σ )∂μ2 φ(σ )∂μ3 cos θ̃ (σ )∂μ4 φ̃(σ )c(ψ)∂μ5 Aμ6 (σ ) (6)

in the following way. The world-volume coordinates transform as {σ ′
1, σ ′

2, . . . , σ ′
6} =

{−σ1, σ2, . . . , σ6} and the embedding functions as x′(σ ′) = −x(σ ), θ̃ ′(σ ′) = π −
θ(σ ), A′

1(σ ′) = −A1(σ ) with all other variables obeying χ(σ ′) = χ(σ ). This is
a symmetry of the Wess–Zumino terms and the Ansätz (4) is invariant. Charge
conjugation flips the sign of all gauge fields, A → −A and we augment it by
{σ ′

1, . . . , σ ′
5, σ ′

6} = {σ1, . . . ,−σ5, σ6}. The Wess–Zumino terms are invariant. The
background field f d cos θ ∧ dφ is also invariant once we choose σ5 = θ − π

2 . The
fields a(r) breaks C and preserves P. b breaks C and P and preserves CP.

2 A monopole bundle has quantized flux. Here the number of quanta is very large

in the strong coupling limit nD ∼ √
λ, so that it is to a good approximation a con-

tinuously variable parameter. b and q are related to the physical magnetic field and

charge density as b = 2π√
λ

B , q = 4π3√
λN

ρ so that q
b = π

N
2πρ

B ≡ π
N ν where the dimen-

sionless parameter ν is the filling fraction. A Landau level would have degeneracy
N . The filling fraction of a set of N degenerate levels naturally scales like N to give
order one b and q in the large N limit.
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where N = 2π T5 L6

gs
=

√
λN

4π3 . The factor of 2π in the numerator
comes from half of the volume of the unit 2-sphere (the other
factor of 2 is still in the action). The Wess–Zumino term gives a
source for z(r).

Now, we must solve the equations of motion for the functions
ψ(r), a(r) and z(r) which result from (10) and the variational
principle. The variables a(r) and z(r) are cyclic and they can be
eliminated using their equations of motion,

d

dr

δS

δz′(r)
= 0 →

√
( f 2 + 4 cos4 ψ)(b2 + r4)r4z′√

1 + r2ψ ′2 + r4z′2 − a′2
− f r4 = pz

(11)

d

dr

δS

δa′(r)
= 0 →

√
( f 2 + 4 cos4 ψ)(b2 + r4)a′√

1 + r2ψ ′2 + r4z′2 − a′2
= −q (12)

where pz and q are constants of integration. If these equations are
to hold near r → 0, we must set pz = 0. q is proportional to the
charge density in the field theory dual. Then, we can solve for z′
and a′ ,

z′ = f
√

1 + r2ψ ′2√
4 cos4 ψ(b2 + r4) + f 2b2 + q2

(13)

a′ = −q
√

1 + r2ψ ′2√
4 cos4 ψ(b2 + r4) + f 2b2 + q2

(14)

We must then use the Legendre transformation

R = S −
∫

a′(r) ∂L

∂a′(r)
−

∫
z′(r) ∂L

∂z′(r)
to eliminate z′ and a′ . We obtain the Routhian

R = −N
∫

d3x dr
√

4 cos4 ψ
(
b2 + r4

) + b2 f 2 + q2
√

1 + r2ψ ′2

(15)

which must now be used to find an equation of motion for ψ(r),

ψ̈

1 + ψ̇2
+ ψ̇

[
1 + 8r4 cos4 ψ

4(b2 + r4) cos4 ψ + f 2b2 + q2

]

+ 8(b2 + r4) cos3 ψ sinψ

4(b2 + r4) cos4 ψ + f 2b2 + q2
= 0 (16)

where the overdot is the logarithmic derivative ψ̇ = r d
dr ψ .

First, we note that, if ψ(r) is to be finite at r → ∞, its logarith-
mic derivatives should vanish. Then, the only boundary condition
which is compatible with the equation of motion is ψ(r → ∞) = 0.
The asymptotic solution of (16) at large r is given in (9).

If we set b = 0, f does not appear in the Routhian (15) or in
the equation of motion (16). ψ(r) which is then f -independent.
In fact, when b = 0, the constant solution ψ = 0 is a stable so-
lution of (16). z(r) is f - and r-dependent. Eq. (13) has the solu-
tion z(r) = ∫

dr f√
4r4+ f 2

= r2 F1(
1
4 , 1

2 ; 5
4 ;− 4r4

f 2 ). The world-volume

is AdS4 × S2, where the radii of the two spaces differ, the S2 has

radius L whereas AdS4 has radius L
√

1 + f 2

4 . The field theory dual
of this system was discussed in Ref. [6]. It has a planar defect di-
viding three-dimensional space into two half-spaces with N = 4
Yang–Mills theory with gauge group SU(N +nD) on one side of the
defect and N = 4 Yang–Mills theory with gauge group SU(N) on
the other side. Here nD is the number of Dirac monopole quanta
in f . The r-dependence of the embedding function z(r) can be
viewed as an energy-scale dependent position of the defect in the
field theory.
When b is not zero, scaling r → √
br, removes b from most of

Eq. (16), the dependence which remains is only in the parameter
f 2 + (

q
b )2. If this parameter is large enough, the solution ψ(r) = 0

is still a stable solution of (16). When f 2 + (
q
b )2 is lowered to a

critical value, the ψ = 0 solution becomes unstable. At that point,
the BKT-like phase transition occurs. That transition was found in
Ref. [10] where they adjusted q

b (they had f = 0) with the critical
value being (

q
b )2|crit. = 28. The onset of instability of the sym-

metric solution ψ = 0 at that point is easily seen by looking at
solutions of the linearized equation which, at small r, must be

ψ ∼ c1rν+ + c2rν− with ν± = − 1
2 ± 1

2

√
1 − 32/(4 + f 2 + q

b )2. The

instability sets in when the exponents become complex, that is, at
[ f 2 + (

q
b )2]crit. = 28. The complex exponents are due to the fact

that, in the r ∼ 0 regime, the fluctuations obey a wave equation
for AdS2 with a mass that violates the Breitenholder–Freedman
bound. Since, in the stable regime, f 2 + (

q
b )2 > 28 both of the ex-

ponents in the fluctuations are negative, deviation from ψ(r) = 0
is not allowed, it is an isolated solution. Here we point out that
we can find the phase transition even when q

b vanishes by vary-
ing f , stability occurs where f 2 > 28 and the phase transition at
f 2
crit = 28. In particular, this allows us to study the theory in the

charge neutral state where q = 0.
When the symmetric solution ψ = 0 is unstable, we must find

another solution of Eq. (16) for ψ(r), where we now assume that
it depends on r. ψ = 0 was an isolated solution, there are no other
solutions closeby. As soon as it depends on r, if ψ(r) is to remain
finite in the small r region, it must go to the other solution of (16)
at small r, ψ(r → 0) = π

2 . At this point, the S2 which the D5-brane
wraps has collapsed to a point and the D5-brane is effectively a
D3-brane with world-volume oriented in the x, y, t, r-directions.

When q, b and f are all nonzero, it is interesting that the em-

bedding problem depends only on the combination
√

f 2 + (
q
b )2,

reminiscent of bound states of F-strings and D-branes [25]. When
either or both of q and f are nonzero, the D5-brane must reach the
Poincaré horizon. Otherwise, the charge density q and magnetic
monopole flux f would have to have sources on the D5-brane
world-volume. The appropriate source would be nD D3-branes car-
rying electric charge density q suspended between the D5 world-
volume and the Poincaré horizon. However, as in the case of funda-
mental strings when there was only charge present, it is possible
to show that the appropriate D3-brane tension is always greater
than the D5-brane tension. The suspended D3-branes would pull
the D5-brane to the horizon. The D5-brane world-volume could
still reflect this behavior with a spike or funnel-like configuration
which emulates suspended strings and D3-branes in the r < 1/

√
b

regime.
We expect to find solutions of (16) which interpolate between

ψ = 0 at r → ∞ to ψ = π
2 at r → 0. Indeed, for generic asymptotic

behavior, such solutions are easy to find by a shooting technique.
Examples are given in Fig. 1. Indeed we see that, as a function
of ln(

√
br) and when f 2 + (

q
b )2 < [ f 2 + (

q
b )2]2

crit. = 28, they ex-

hibit a rapid soliton-like crossover between ψ = 0 at large
√

br,
which is a D5-brane, and ψ ∼ π

2 at small
√

br, which is like nD

D3-branes with electric charge q dissolved into them. In the third
plot in Fig. 1, where f 2 + (

q
b )2 > [ f 2 + (

q
b )2]2

crit. , the funnel is much
more diffuse.

It is also possible to find solutions that can be interpreted as
chiral symmetry breaking, although the D5-brane still reaches the
Poincaré horizon and we expect that the D3–D5 strings are still
gapless. In the region of large r, the linearized equation for ψ(r)
is solved by (9). The two asymptotic behaviors have power laws
associated with the ultraviolet conformal dimensions of the mass
and the chiral condensate in the dual field theory. These are the
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Fig. 1. Eq. (16) integrated with q = 0 and f 2 = 0.01 f 2 = 1 and f 2 = 100. The
solutions interpolate between the correct asymptotic values, ψ(r = ∞) = 0 and
ψ(r = 0) = π

2 . The AdS radius r is measured in units of 1/
√

b. For smaller values of

f , the transition is sharp and occurs at
√

br ∼ 1.

Fig. 2. The constants c versus m are plotted for a sequence of embeddings of the
D5-brane in the region where the constant ψ solutions are unstable, f 2 = .01.

Fig. 3. The function r sin(ψ(r)) is plotted versus r for some embeddings, parameter-
ized by the asymptotic m and c, including the one which is close the solution with
m = 0 which is associated with dynamical symmetry breaking.

same as their classical dimensions since they are protected by su-
persymmetry. A symmetry breaking solution would have one of
these equal to zero (and the other one interpreted as a conden-
sate). Indeed, it is easy to find a family of solutions of (16) which,
as we tune m, still exists and has nonzero c in the limit where m
goes to zero. The c versus m behavior of this family of solutions
is shown in Fig. 2. The behavior if r sin(ψ(r)) which can be inter-
preted as the separation of the D5- and D3-branes is plotted in
Fig. 3 for some values of m and c.

As an extension of our results, it would be interesting to an-
alyze the electromagnetic properties of the solution with finite f
and q = 0. This is a charge neutral state and it has a mass operator
condensate. It is possible to study Maxwell’s equations for fluctu-
ations of the world-volume gauge field and though it is difficult
to fully derive even a formal solution, it is relatively straightfor-
ward to show that they have no solution when the field strength
is a constant. This implies that the charged matter is still gapless
and provides the singularities in response functions which make
the theory singular at low energy and momentum.

From the point of view of the space–time symmetry, the flux f
is charge conjugation symmetric, whereas the finite charge density
state is not. In fact f itself does not violate any 2 + 1-dimensional
space–time symmetries associated with Lorentz, C, P or T invari-
ance. The fact that states with finite f need to have a vanishing
charge gap is somewhat mysterious from the field theory point
of view. When q is nonzero, the absence of a charge gap is un-
derstandable as the theory should be in a finite density metallic
state, even when it breaks chiral symmetry. When q = 0 but f is
nonzero, the system must also be gapless, even though the charge
density is zero and the hypermultiplet should be massive. One
possibility is that, in the field theory, the planar defect which sep-
arates spaces where N = 4 Yang–Mills theory has different gauge
groups has a band of gapless edge states. It would be interesting
to examine this further in the field theory.
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