2,995 research outputs found
Cities in fiction: Perambulations with John Berger
This paper explores selected novels by John Berger in which cities play a central role. These cities are places, partially real and partially imagined, where memory, hope, and despair intersect. My reading of the novels enables me to trace important themes in recent discourses on the nature of contemporary capitalism, including notions of resistance and universality. I also show how Berger?s work points to a writing that can break free from the curious capacity of capitalism to absorb and feed of its critique
International guidelines for the management and treatment of Morquio A syndrome.
Morquio A syndrome (mucopolysaccharidosis IVA) is a lysosomal storage disorder associated with skeletal and joint abnormalities and significant non-skeletal manifestations including respiratory disease, spinal cord compression, cardiac disease, impaired vision, hearing loss, and dental problems. The clinical presentation, onset, severity and progression rate of clinical manifestations of Morquio A syndrome vary widely between patients. Because of the heterogeneous and progressive nature of the disease, the management of patients with Morquio A syndrome is challenging and requires a multidisciplinary approach, involving an array of specialists. The current paper presents international guidelines for the evaluation, treatment and symptom-based management of Morquio A syndrome. These guidelines were developed during two expert meetings by an international panel of specialists in pediatrics, genetics, orthopedics, pulmonology, cardiology, and anesthesia with extensive experience in managing Morquio A syndrome
ALG12 mannosyltransferase defect in congenital disorder of glycosylation type lg
In the endoplasmic reticulum (ER) of eukaryotes, N-linked glycans are first assembled on the lipid carrier dolichyl pyrophosphate. The GlcNAc2Man9Glc3 oligosaccharide is transferred to selected asparagine residues of nascent polypeptides. Defects along the biosynthetic pathway of N-glycans are associated with severe multisystemic syndromes called congenital disorders of glycosylation. Here, we describe a deficiency in the ALG12 ER α1,6-mannosyltransferase resulting in a novel type of glycosylation disorder. The severe disease was identified in a child presenting with psychomotor retardation, hypotonia, growth retardation, dysmorphic features and anorexia. In the patient's fibroblasts, the biosynthetic intermediate GlcNAc2Man7 oligosaccharide was detected both on the lipid carrier dolichyl pyrophosphate and on newly synthesized glycoproteins, thus pointing to a defect in the dolichyl pyrophosphate-GlcNAc2Man7-dependent ALG12 α1,6 mannosyltransferase. Analysis of the ALG12 cDNA in the CDG patient revealed compound heterozygosity for two point mutations that resulted in the amino acid substitutions T67M and R146Q, respectively. The impact of these mutations on ALG12 protein function was investigated in the Saccharomyces cerevisiae alg12 glycosylation mutant by showing that the yeast ALG12 gene bearing the homologous mutations T61M and R161Q and the human mutant ALG12 cDNA alleles failed to normalize the growth defect phenotype of the alg12 yeast model, whereas expression of the normal ALG12 cDNA complemented the yeast mutation. The ALG12 mannosyltransferase defect defines a new type of congenital disorder of glycosylation, designated CDG-I
Efficiency improvements for the numerical computation of NLO corrections
In this paper we discuss techniques, which lead to a significant improvement
of the efficiency of the Monte Carlo integration, when one-loop QCD amplitudes
are calculated numerically with the help of the subtraction method and contour
deformation. The techniques discussed are: holomorphic and non-holomorphic
division into sub-channels, optimisation of the integration contour,
improvement of the ultraviolet subtraction terms, importance sampling and
antithetic variates in loop momentum space, recurrence relations.Comment: 34 pages, version to be publishe
Glycosylation Patterns of Proteins Studied by Liquid Chromatography-Mass Spectrometry and Bioinformatic Tools
Due to their extensive structural heterogeneity, the elucidation of glycosylation patterns in glycoproteins such as the subunits of chorionic gonadotropin (CG), CG-alpha and CG-beta remains one of the most challenging problems in the proteomic analysis of posttranslational modifications. In consequence, glycosylation is usually studied after decomposition of the intact proteins to the proteolytic peptide level. However, by this approach all information about the combination of the different glycopeptides in the intact protein is lost. In this study we have, therefore, attempted to combine the results of glycan identification after tryptic digestion with molecular mass measurements on the intact glycoproteins. Despite the extremely high number of possible combinations of the glycans identified in the tryptic peptides by high-performance liquid chromatography-mass spectrometry (> 1000 for CG-alpha and > 10.000 for CG-beta), the mass spectra of intact CG-alpha and CG-beta revealed only a limited number of glycoforms present in CG preparations from pools of pregnancy urines. Peak annotations for CG-alpha were performed with the help of an algorithm that generates a database containing all possible modifications of the proteins (inclusive possible artificial modifications such as oxidation or truncation) and subsequent searches for combinations fitting the mass difference between the polypeptide backbone and the measured molecular masses. Fourteen different glycoforms of CG-alpha, including methionine-oxidized and N-terminally truncated forms, were readily identified. For CG-beta, however, the relatively high mass accuracy of ± 2 Da was still insufficient to unambiguously assign the possible combinations of posttranslational modifications. Finally, the mass spectrometric fingerprints of the intact molecules were shown to be very useful for the characterization of glycosylation patterns in different CG preparations
Deficiency of the first mannosylation step in the N-glycosylation pathway causes congenital disorder of glycosylation type Ik
Defects of N-linked glycosylation represent diseases with multiple organ involvements that are classified as congenital disorders of glycosylation (CDG). In recent years, several CDG types have been attributed to defects of dolichol-linked oligosaccharide assembly in the endoplasmic reticulum. The profiling of [3H]mannose-labeled lipid-linked oligosaccharides was instrumental in identifying most of these glycosylation disorders. However, this method is poorly suited for the identification of short lipid-linked oligosaccharide biosynthesis defects. To adequately resolve deficiencies affecting the first steps of lipid-linked oligosaccharide formation, we have used a non-radioactive procedure employing the fluorescence detection of 2-aminobenzamide-coupled oligosaccharides after HPLC separation. By applying this method, we have detected the accumulation of dolichylpyrophosphate-GlcNAc2 in a previously untyped CDG patient. The accumulation pattern suggested a deficiency of the ALG1 β1,4 mannosyltransferase, which adds the first mannose residue to lipid-linked oligosaccharides. This was supported by the finding that this CDG patient was compound heterozygous for three mutations in the ALG1 gene, leading to the amino acid substitutions S150R and D429E on one allele and S258L on the other. The detrimental effect of these mutations on ALG1 protein function was demonstrated in a complementation assay using alg1 Saccharomyces cerevisiae yeast mutants. The ALG1 mannosyltransferase defect described here represents a novel type of CDG, which should be referred to as CDG-I
La organización de la información, los lenguajes documentales y la normalización
La calidad de la información que se maneja actualmente ha aumentado debido a las nuevas tecnologías. Esta comunicación se plantea la calidad de la información que los bibliotecarios ofrecen a sus usuarios a través de diversas herramientas : control de autoridades, normalización, normas bibliográficas, lenguajes documentales y encabezamientos de materia
Random template placement and prior information
In signal detection problems, one is usually faced with the task of searching
a parameter space for peaks in the likelihood function which indicate the
presence of a signal. Random searches have proven to be very efficient as well
as easy to implement, compared e.g. to searches along regular grids in
parameter space. Knowledge of the parameterised shape of the signal searched
for adds structure to the parameter space, i.e., there are usually regions
requiring to be densely searched while in other regions a coarser search is
sufficient. On the other hand, prior information identifies the regions in
which a search will actually be promising or may likely be in vain. Defining
specific figures of merit allows one to combine both template metric and prior
distribution and devise optimal sampling schemes over the parameter space. We
show an example related to the gravitational wave signal from a binary inspiral
event. Here the template metric and prior information are particularly
contradictory, since signals from low-mass systems tolerate the least mismatch
in parameter space while high-mass systems are far more likely, as they imply a
greater signal-to-noise ratio (SNR) and hence are detectable to greater
distances. The derived sampling strategy is implemented in a Markov chain Monte
Carlo (MCMC) algorithm where it improves convergence.Comment: Proceedings of the 8th Edoardo Amaldi Conference on Gravitational
Waves. 7 pages, 4 figure
Fermi surface induced lattice distortion in NbTe
The origin of the monoclinic distortion and domain formation in the quasi
two-dimensional layer compound NbTe is investigated. Angle-resolved
photoemission shows that the Fermi surface is pseudogapped over large portions
of the Brillouin zone. Ab initio calculation of the electron and phonon
bandstructure as well as the static RPA susceptibility lead us to conclude that
Fermi surface nesting and electron-phonon coupling play a key role in the
lowering of the crystal symmetry and in the formation of the charge density
wave phase
Development of a GEM-TPC prototype
The use of GEM foils for the amplification stage of a TPC instead of a con-
ventional MWPC allows one to bypass the necessity of gating, as the backdrift
is suppressed thanks to the asymmetric field configuration. This way, a novel
continuously running TPC, which represents one option for the PANDA central
tracker, can be realized. A medium sized prototype with a diameter of 300 mm
and a length of 600 mm will be tested inside the FOPI spectrometer at GSI using
a carbon or lithium beam at intermediate energies (E = 1-3AGeV). This detector
test under realistic experimental conditions should allow us to verify the
spatial resolution for single tracks and the reconstruction capability for
displaced vertexes. A series of physics measurement implying pion beams is
scheduled with the FOPI spectrometer together with the GEM-TPC as well.Comment: 5 pages, 4 figures, Proceedings for 11th ICATTP conference in como
(italy
- …