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In the endoplasmic reticulum (ER) of eukaryotes, N-linked glycans are first assembled on the lipid carrier
dolichyl pyrophosphate. The GIlcNAc.ManyGlc; oligosaccharide is transferred to selected asparagine
residues of nascent polypeptides. Defects along the biosynthetic pathway of N-glycans are associated with
severe multisystemic syndromes called congenital disorders of glycosylation. Here, we describe a deficiency
in the ALG12 ER o1,6-mannosyltransferase resulting in a novel type of glycosylation disorder. The severe
disease was identified in a child presenting with psychomotor retardation, hypotonia, growth retardation,
dysmorphic features and anorexia. In the patient’s fibroblasts, the biosynthetic intermediate GlIcNAc,;Man,
oligosaccharide was detected both on the lipid carrier dolichyl pyrophosphate and on newly synthesized
glycoproteins, thus pointing to a defect in the dolichyl pyrophosphate—GlcNAc;Man,-dependent ALG12 o1,6
mannosyltransferase. Analysis of the ALG12 cDNA in the CDG patient revealed compound heterozygosity for
two point mutations that resulted in the amino acid substitutions T67M and R146Q, respectively. The impact
of these mutations on ALG12 protein function was investigated in the Saccharomyces cerevisiae alg12
glycosylation mutant by showing that the yeast ALG12 gene bearing the homologous mutations T61M and
R161Q and the human mutant ALG12 cDNA alleles failed to normalize the growth defect phenotype of the
alg12 yeast model, whereas expression of the normal ALG12 cDNA complemented the yeast mutation. The
ALG12 mannosyltransferase defect defines a new type of congenital disorder of glycosylation, designated
CDG-lg.

INTRODUCTION

Glycosylation is a widespread post-translational modification
affecting properties and functions of proteins, and thus having a
considerable impact on numerous biological processes (1).
Accordingly, defects of glycosylation often result in develop-
mental alterations, and, when not lethal, lead to various clinical
manifestations. Within the last few years, the range of clinical
phenotypes related to glycosylation defects has been extended
to hereditary multiple exostoses (2), progeroid syndromes (3)
and muscular dystrophies (4). Hundreds of genes are involved
in the shaping of several classes of glycoconjugates (5)
suggesting a large number of potential defects along these
biosynthetic pathways leading to pathological conditions.
Alterations of N-linked glycan biosynthesis have been
grouped under the general designation congenital disorders
of glycosylation (CDG), where 10 distinct defects have been
described to date (6,7). Defects affecting the assembly of the

dolichyl pyrophosphate (DolPP)-linked GlcNAc,ManyGlcs
oligosaccharide and its subsequent transfer to nascent glyco-
proteins are classified as CDG-I, whereas alterations of N-
glycan processing represent types of CDG-II (8). Clinically,
most CDG patients present with psychomotor retardation,
hypotonia, cerebellar hypoplasia, hormonal disorders and
stroke-like episodes (9,10). However, the constellation of
symptoms often differs from case to case, hence rendering a
CDG diagnosis solely based on clinical examination a difficult
task. The detection of underglycosylated glycoproteins, such as
serum transferrin, by isoelectric focusing (11) represents a
simple diagnostic tool, although this test does not discriminate
between the different causes of CDG.

Genetic models, such as yeast and Chinese hamster ovary cell
glycosylation mutants, have been instrumental in elucidating
the molecular basis of CDG (12). Because of the conservation
in glycosylation pathways among eukaryotes, these models
provide essential clues to relate a glycosylation phenotype to its
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underlying genetic defect. In the present study, we report the
identification of a novel type of N-glycosylation disorder
characterized by a deficiency of the endoplasmic reticulum
(ER)-resident ALG12 o1,6 mannosyltransferase.

RESULTS

The patient NJ is the first child of unrelated Danish parents. He
was delivered at 34 weeks of gestation by Caesarean section
due to deterioration of the pregnancy as reflected by hemolysis,
elevated liver enzymes and a low platelet count (HELLP
syndrome). Birth weight was 1742 g, and the neonatal course
was complicated by respiratory distress, hypoglycemia,
lethargy and feeding difficulties. At age 13 months, he was
referred because of developmental delay. A computed tomo-
graphy at age 16 months showed slight widening of the frontal
subarachnoidal space. Presently, at age 2% years, psychomotor
retardation and hypotonia are prominent, and he is not able to
sit without support. Dysmorphic features include triangular
face, epicanthus, inverted nipples, micropenis, undescended
testes, club foot and sandal gaps. Eye examination is normal
except for a convergent squint. He has feeding problems, and
his weight and length are far below the 3% percentile.

Insulin-like growth factor (IGF)-1 and IGF-binding protein 3
are undetectable in the patient, but growth hormone stimulation
test as well as thyroid hormones are normal. Antithrombin III
(ATIID) is low (0.24U; normal range 0.82-1.18). Alanine
aminotransferase (ALT) is normal. Notably, immunoglobulins
are repeatedly low: IgA 0.09 g/l (normal range 0.70-3.65), IgG
1.1 g/l (normal range 6.1-14.9) and IgM 0.14 g/l (normal range
0.39-2.08). He is receiving infusions of immunoglobulins at
regular intervals. He has had pneumonia three times, but no
severe infections. The karyotype is normal. Urine metabolic
screening for amino and organic acids is unremarkable.

The combination of psychomotor retardation and low ATIII
levels led to the suspicion of CDG. Isoelectric focusing of
serum transferrin showed decreased amounts of tetrasialotrans-
ferrin and increased amounts of disialo- and asialotransferrin,
thus confirming the occurrence of a glycosylation disorder
(data not shown). Phosphomannomutase and phosphomannose
isomerase activities measured in cultured fibroblasts were
normal, thus excluding CDG-la and -Ib (data not shown).
Analysis of lipid-linked oligosaccharides (LLO) in the patient’s
fibroblasts revealed an accumulation of the incomplete
oligosaccharide DolPP-GlcNAc,Man, and the absence of the
mature core DolPP-GlcNAc,MangGles; that is normally
detected in cells from healthy subjects (Fig. 1). The LLO
DolPP-GlcNAc,MangGles is the preferred substrate of the
oligosaccharyltransferase (OTase) complex (13), although
truncated LLO may still be transferred to proteins at low
efficiency, as shown in yeast (14).

Once on proteins, oligosaccharides are trimmed to
GIlcNAc,Mang by glucosidase-I and -II (15,16). The
GlcNAc,Mang core usually undergoes cycles of reglucosyla-
tion and deglucosylation during the process of protein folding
(17), thereby yielding GlcNAc,MangGlc; besides
GlcNAc,Mang. Before leaving the ER, the oligosaccharide
core is further trimmed by o-mannosidase to GIcNAc,Mang
(18). Therefore, the normal N-linked oligosaccharide (NLO)
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Figure 1. Lipid-linked oligosaccharide profiles. HPLC separation of [°H]man-
nose-labeled lipid-linked oligosaccharides from yeasts (A), control human
fibroblasts (B) and patient NJ fibroblasts (C). The identity of the oligo-
saccharide peaks is marked on (A) ranging from GIcNAc,Man, (M1) to
GlcNAc,MangGles (G3). (C) shows the GIcNAc,Man, peak accumulating in
patient NJ cells, whereas GIcNAc,ManoGle; is normally found in control cells,
as shown in (B).

profile of newly synthesized proteins mainly consists of the
species GIctNAc,Mang, GleNAc,Mang and GleNAc,MangGlc,
(Fig. 2A). In contrast, the NLO profile of patient NJ fibroblasts
predominantly showed the GlcNAc,Man; structure (Fig. 2C).
The detection of this truncated NLO in patient NJ fibroblasts
suggested that an oligosaccharide species that lacks two
mannose residues is transferred to glycoproteins in the patient’s
cells. To address the question whether DolPP—-GlcNAc,Man,
or DolPP-GlcNAc,Man,Glc; served as a substrate for the
OTase in this patient’s cells, we analyzed the NLO profile of
control and patient NJ fibroblasts in the presence of the
glucosidase inhibitor castanospermine. Whereas in control
cells castanospermine enables the detection of untrimmed
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Figure 2. N-linked oligosaccharide profiles. HPLC analysis of [*H]mannose-labeled N-linked oligosaccharides from control (A, B) and patient NJ (C, D) fibro-
blasts after cleavage from proteins with N-glycosidase F. The elution positions of standard oligosaccharides from GlcNAc,Man; (M1) to GlcNAc,ManyGle; (G3)
are marked at the tops of the panels. In (A) and (C), cells were metabolically labeled for 1 h at 37°C. In (B) and (D), cells were treated with the glucosidase inhibitor
castanospermine (250 pM) for 2 h prior to metabolic labeling and extraction of N-linked oligosaccharides.

GlcNAc,MangGlc; (Fig. 2B), an untrimmed
GlcNAc,Man,Glc; species was not visible in the NLO profile
of patient NJ fibroblasts (Fig. 2D). This indicates that
GlcNAc,Man; acts as donor substrate for the OTase complex
in patient NJ cells.

The accumulation of the LLO DolPP-GlcNAc,Man, has
been previously documented in the Saccharomyces cerevisiae
alg12 mutant strain. This strain is characterized by a defect in
the ER-resident DolPP-GlcNAc,Man,-dependent o1,6 man-
nosyltransferase enzyme (19). The human ortholog to the yeast
ALGI12 gene has not been described so far, but a BLAST
search in GenBank revealed the cDNA entry NM_024105,
which included an open reading frame encoding a protein of
488 amino acids displaying 44% similarity to the yeast ALG12
protein. Genes encoding homologous proteins were also
detected in the Drosophila melanogaster and Caenorhabditis
elegans genomes (Fig. 3). Primary sequence alignment of
putative ALG12 proteins showed highly conserved motifs, thus
pointing to regions possibly involved in the catalytic activity.
The overall identity was 32—42% between the animal sequences
and 24-26% between all the sequences.

The NM_024105 cDNA was amplified from control and
patient NJ fibroblasts and directly sequenced. We detected
compound heterozygosity for two point mutations, 200C>T and
437G>A, in the patient-derived cDNA. These two mutations
introduced the amino acid substitutions T67M and R146Q,
respectively, in the ALGI12 protein sequence. These two
mutations were not found in the control cDNAs sequenced or
in the 25 expressed sequence tags retrieved from GenBank
representing fragments of the NM_024105 ¢cDNA. The amino
acid changes introduced were at positions strictly conserved
among the eukaryotic homologous proteins analyzed (Fig. 3).
The human ALGI2 gene was localized on chromosome 22
according to the working draft sequence of the clone CITF22-
1A6 (GenBank accession no. AL671710). The ALG12 gene
included 10 exons spanning 15 kb (Fig. 4A). The 200C>T and
437G> A mutations detected in patient NJ mapped to exons 3
and 4, respectively. Sequencing of these exons in parental DNA
samples indicated that the T67M mutation was of maternal origin
and the R146Q mutation was inherited from the father (Fig. 4B).

To determine whether the T67M and R146Q amino acid
substitutions affected ALGI12 activity, the corresponding
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Figure 3. Comparison of ALG12 protein sequences. ClustalW alignment (38) of ALG12 proteins from Homo sapiens (GenBank accession no. NM_024105),
D. melanogaster (RE17513), C. elegans (NM_072670) and S. cerevisiae (NP_014427). Positions conserved in the four proteins are shaded in black and residues
conserved in three proteins are shaded in gray. The amino acid substitutions T67M and R146Q detected in patient NJ are indicated above the human sequence. The
end of the D. melanogaster predicted ALG12 protein is truncated to fit this alignment.

changes (T61M and R161Q) were introduced in the
S. cerevisiae ALGI12 locus. As Aalgl2 strains display no
obvious growth phenotype, the effect of alg/2 mutant alleles
was investigated in a Adalgl2wbpl-2 strain. This strain shows
ALGI12-dependent growth at 23°C on full medium (YPD)
containing low amounts of hygromycin B (Fig. 5A). This
aminoglycoside antibiotic is known to be more potent against
many yeast glycosylation mutants (20).

As opposed to the wild-type gene, the mutant ALG12/T61M]
gene failed to complement this growth defect. The R161Q
mutation had a weaker effect on the integrity of the ALG12
protein than did the T61M mutation, since growth of
Aalgl2wbpl-2 yeasts was restored by expression of
ALGI2[R161Q] (Fig. 5A). The double mutant T61M/R161Q
had the same phenotype as the T61M mutant. We also assessed
the glycosylation status of the vacuolar glycoprotein carboxy-
peptidase Y (CPY) in Aalgl?2 yeasts transformed with algl?2
mutant alleles. Although CPY is only mildly hypoglycosylated
in Aalgl2 mutant strains, its mobility is increased owing to
truncated oligosaccharides transferred to protein (Fig. 5B)
(19). Transformation with the wild-type yeast ALG12 gene
restored a normal CPY glycosylation profile, but trans-
formation with the mutant ALG12/T61M] DNA did not. As
observed with the growth phenotype of Aalgi2wbpi-2
yeast, the mutation R161Q only slightly affected ALG12
function, since the glycosylation of CPY was nearly normal
(Fig. 5B).

We expressed the NM_024105 human ALG12 cDNA under
the control of the GPD promoter in Aalgl2wbpl-2 yeasts. As
shown in Figure 6, growth of Aalgl2wbpl-2 yeasts was
restored by expression of this cDNA, thus establishing the
function of the corresponding protein. Importantly, the two
mutant ALG12 alleles found in the CDG patient NJ, namely
ALGI2[T67M] and ALGI2[R146Q], did very weakly restore
growth to the levels reached with the normal human
ALG12 ¢DNA. This analysis confirmed the direct relation
between these ALGI12 mutations and the strongly reduced
activity of the encoded mannosyltransferase. In conjunction

with the identical phenotype observed both in patient NJ cells
and algl/2 mutant yeast cells, namely the accumulation of
incompletely assembled LLO, we postulate a novel type of
CDQG, specifically called CDG-Ig, that is due to a deficiency in
the ALG12 locus.

DISCUSSION

The present study defines a novel genetic disease in humans by
identifying a defect at the ALG12 mannosyltransferase locus as
cause of a glycosylation disorder in a patient presenting with
psychomotor retardation, hypotonia and various dysmorphic
features. The ALGI12 defect was characterized by an
accumulation of the LLO Dol/PP-GIcNAc,Man; oligosacchar-
ide in the ER. Because this LLO is a poor substrate for the
OTase complex, several N-glycosylation sites of glycoproteins
remained unoccupied. It is noteworthy that the failure to detect
the mature oligosaccharide GIcNAc,ManyGlcs, either as an
LLO or an NLO, indicates that the mutations detected in patient
NI inactivate ALG12 activity. Thus, this CDG case represents
the first occurrence of a complete block along the LLO
biosynthetic pathway identified in humans. In fact, in all cases
of CDG-I analyzed so far, a significant portion of NLO have
been shown to be derived from the mature LLO DolPP-
GlcNAc,MangGle; (21-24) (C.E. Grubenmann and C.G. Frank,
unpublished data).

The accumulation of DolPP-GlcNAc,Man,; observed in
ALG12-deficient fibroblasts indicates that, as in yeast, this
oligosaccharide is not a suitable substrate for the ALG6
glucosyltransferase, which transfers Glc via an «1,3 linkage to
the terminal mannose of the o1,2-mannose branch on DolPP—
GlcNAc,Mang (25). In consequence, the OTase complex,
which recognizes the three terminal Glc residues on oligosac-
charides, will only transfer the truncated GlcNAc,Man, species
at low efficiency to nascent glycoproteins. However, as
indicated by the NLO profile of castanospermine-treated cells,
it is evident that GlcNAc,Manj, is transferred to glycoproteins
in patient NJ cells. The detection of the oligosaccharide
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Figure 4. Human ALG12 gene. (A) Genomic organization of the human ALG12 gene, with exons represented as numbered boxes. Introns are indicated as solid
lines. The positions of the T67M and R146Q mutations are marked on exons 3 and 4, respectively. (B) Electropherograms of ALG12 exons 3 and 4 sequenced from
patient NJ and his parents. The 200C>T and 437G>A mutations are indicated by arrows.

GlcNAc,Man,Glc, in the fibroblasts of patient NJ is certainly
caused by the reglucosylation of GIcNAc,Man, catalyzed by
the ER-resident UDP-Glc glucosyltransferase enzyme involved
in the quality control of protein folding (17).

The absence of mature oligosaccharides in patient NJ cells
not only decreases the amount of N-glycan chains on proteins
but also likely affects the functions assumed by this
oligosaccharide along the secretion pathway of glycoproteins.
After transfer to proteins, N-linked oligosaccharides function

as signals in the process of protein folding (26) and for the
export of misfolded glycoproteins to the cytosol for degrada-
tion (27,28). In the latter events, it has been shown in
S. cerevisiae that the transition from GIcNAc,Mang to
GlcNAc,Mang favors the targeting of misfolded proteins to
the degradation pathway (29). The degradation of misfolded
proteins was especially slowed down in Adalg9 and Aalgl?2
yeasts, indicating that GIcNAc,Mangs and GIcNAc,Man,
lacked the signaling ability for degradation of proteins.
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Figure 5. Phenotypes of ALG12 yeast mutants. (A) Growth phenotype of Aalgl2wpbI-2 yeasts transformed with (1) empty pRS416 vector or with pRS416 vector
expressing (2) the normal S. cerevisiae ALG12 gene, (3) the S. cerevisiae ALG12[T61M] gene, (4) the S. cerevisiae ALGI2[R161Q] gene, (5) the S. cerevisiae
ALGI2[T6IM,R161Q] gene or (6) the S. cerevisiae normal WBP1 gene. Yeasts were grown on YPD medium at 23°C without hygromycin (left panel) and with
hygromycin at 50 pg/ml (right panel). (B) Western blot analysis of carboxypeptidase Y (CPY) in Aalgl2 yeasts transformed with an empty pRS416 expression
vector (mock) or with a pRS416 vector expressing the normal S. cerevisiae ALG12 gene (WT), the S. cerevisiae ALG12[T61M] gene (T61M), the S. cerevisiae
ALGI2[R161Q] gene (R161Q) or the S. cerevisiae ALG12[T61M,R161Q] gene (T61M,R161M). At the left side, the positions of normally glycosylated CPY and
of those glycoforms with four, three and two truncated oligosaccharides (CPY*, CPY*[—1] and CPY*[—2], respectively) are marked.

Inhibition of mannose trimming by deoxymannojirimycin also
slows down the degradation of misfolded proteins in
mammalian cells (30), indicating that mannose trimming also
functions as a degradation signal in higher eukaryotes.
Besides acting as signals in the quality control of
glycoprotein folding and in the ER-associated protein degrada-
tion response (31), N-linked oligosaccharides also function as
ligands for lectin proteins such as ERGIC53 and VIP36 (32)
involved in the intracellular transport of cargo glycoproteins. It
is reasonable to expect that the combination of under-
occupancy of N-glycosylation sites and the occurrence of

truncated GlcNAc,Man; oligosaccharides may interfere with
the folding, intracellular trafficking and ER-elimination of
glycoproteins in patient NJ cells. Therefore, altered glycopro-
tein folding and intracellular transport may account for some of
the features identified in patient NJ. For example, the absence
or low levels of the serum glycoproteins IGF-binding protein 3,
ATIII and immunoglobulins may be related to alterations along
the secretory pathway. The availability of the ALG12-deficient
cells from patient NJ now allows us to address this eventuality
and to compare the intracellular maturation of proteins with
other types of CDG.
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Figure 6. Complementation of Aalgl2wbpl-2 yeasts with human ALG12 cDNAs. YG843 transformants were spotted in 10-fold dilutions on YPD plates and
incubated at 23°C for 6 days in the absence (left panel) or presence of 30 pg/ml hygromycin (right panel). Transformation was done with the pRS416 vector alone
(mock), the pRS416 vector expressing the S. cerevisiae ALG12 gene (ScALG12), the p426GPD vector expressing the human ALGI2 cDNA (HsALGI2) or the
mutant HsALG12 cDNAs (HSALG12[T67M] and HsALG12[R146Q]), and with the YEp352 vector expressing the WBP1 gene (39) (WBPI).

MATERIALS AND METHODS

Cell culture

Primary fibroblasts obtained from skin biopsies were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM/F12, Gibco)
with 4.5 g/ glucose and 10% fetal calf serum (FCS).

Mannose labeling

Fibroblasts were grown to 90% confluence on 450 cm?. Before
labeling, cells were washed twice with phosphate-buffered
saline (PBS) and incubated for 90min at 37°C in 45ml
minimal Eagle’s medium (Gibco) supplemented with 5%
dialyzed FCS (Gibco). When specified, the glucosidase
inhibitor castanospermine (Calbiochem) was added at 250 um
to the cells 2h prior to labeling. For labeling, 150 uCi
[PH]mannose (54.0 Ci/mmol, Amersham Bioscience) was
added to the cell medium and incubated for 1h at 37°C.
Cells were washed once with ice-cold PBS and scraped from
the plates in 10 ml of methanol/0.1 mM Tris pH 7.4 (8 :3 v/v).

Extraction of lipid- and protein-linked oligosaccharides

Chloroform (10.9 ml) was added to the cell suspension (10 ml)
and the mixture was centrifuged at 5000g for 5min after
thoroughly mixing by vortexing. The upper and lower phases
were removed and 3 ml chloroform/methanol/water (10:10:3
v/v/v) were added to the solid interphase. LLO were recovered
from the supernatant after vortexing and centrifugation at

5000g for 5 min. The extraction was repeated three times, and
the supernatants were pooled. The samples were dried under N,
at 37°C, and the dried LLOs were hydrolyzed and prepared as
described previously (33). NLO were recovered from the solid
pellet of the LLO extraction after drying under N, at 37°C.
Proteins were solubilized and denatured in 200 pl 0.5% SDS/
2% B-mercaptoethanol at 100°C for 10 min. Oligosaccharides
were cleaved from proteins by digestion with 1 unit of
N-glycosidase F (Roche Diagnostics) in 300 ul of 50 mm
sodium phosphate buffer pH 7.5, 1% Nonidet-P40, 0.33%
SDS and 1.33% B-mercaptoethanol for 12h at 37°C.
Thereafter, 900 pul of cold ethanol was added, and the samples
were centrifuged for 20 min at 2600g. The supernatants were
then spun again for 30 min at 20 000g at 4°C. This supernatant
was dried in a Speed-vac concentrator and resuspended in
400 ul of acetonitrile/water (7:3 v/v), passed through a
0.45 pm filter (Millipore) and subjected to HPLC.

HPLC analysis of oligosaccharides

[PH]Mannose-labeled oligosaccharide samples were separated
on a 250mm x4.6mm LC-NH, aminopropyl column
(Supelco), equipped with an LC-NH, guard column, as
described previously (33).

RT-PCR

Total RNA was extracted from fibroblasts (2 x 107) using Tri-
reagent (Sigma), following the instructions of the manufacturer.
The human ALG12 ¢cDNA was prepared from 4 pg of total
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RNA using the primer 5-TGCCCAGTCCTTTGA-
CTTGCTTC-3' and 4 units of Omniscript reverse transcriptase
(Qiagen). The 20 pl reaction mixtures were incubated at 37°C
for 2 h. The protein-coding region of the human ALG12 cDNA
was amplified by PCR from 2 pl of RT product with the primers
5'-CAGTGCTAACGGCTGGTGTCTC-3’ and 5'-CTGGTAG-
TGATAACAGCTCCTGGA-3'. The cycling conditions were
35 cycles at 94°C for 45s, 60°C for 30s and 72°C for 2 min.
Primers and unincorporated nucleotides were removed with
QIAquick columns (Qiagen), and the PCR products were
sequenced (Microsynth, Balgach, Switzerland).

Genomic DNA PCR

Genomic DNA from patient NJ and his parents was isolated
from 10’ fibroblasts and 5 ml of blood, respectively. The human
ALGI12 gene sequence was included in the chromosome
22 clone CITF22-1A6 (GenBank accession no. AL671710).
ALGI12 exons 3 and 4 were amplified with the primers 5-AAG
TGGAGGAGAGCTTCAAC-3’, 5-GCAGGCAAGAC
TAACAGACA-3' and 5'-GCTGGCATTGCAGCAGCATA-3,
5-GCTGTTGGCCAGGAAGTGTG-3/, respectively, for 35
cycles at 94°C for 455, 55°C for 30s and 72°C for 1 min.
The PCR products were sequenced (Microsynth, Balgach,
Switzerland) after removal of primers and unincorporated
nucleotides.

Plasmid construction

Human ALG12 cDNAs were amplified from normal and CDG-
Ig patient cDNA with the primers 5-CTAAAGAATTCT
GTCTCGCACTGTTG-3" and 5'-GCTTCTAGAAGACCTG
TGGCTGCTGA-3' containing EcoRI and Xbal restriction
sites, respectively, and subcloned into the same sites of
pBluescript-II KS+ (Stratagene). The human ALG12 cDNAs
were subcloned as blunted HindIlI-Xbal fragments into the
Smal site of p426GPD (34), placing them under control of the
strong glyceraldehyde-3-phosphate dehydrogenase promoter.
The homologous T61M and R161Q substitutions were
introduced into the yeast ALG12 gene by quick-change
mutagenesis (Stratagene) of pALG12 (19) using the oligo-
nucleotides 5'-GGAGTAGTCCCTAGAATGTTCGTTGGTGC
TGTGATTATTGC-3' and 5-GCAATAATCACAGCACCAAC
GAACATTCTAGGGACTACTCC-3' for T61M and the oligo-
nucleotides 5-CCTCATGTTCTACAGCACTCAAACTC
TGCCTAATTTTGTCATGAC-3" and 5'-GTCATGACAAAAT
TAGGCAGAGTTTGAGTGCTGTAGAACATGAGG-3’ for
R161Q. The 1.2kb Eco811-Sacl fragments from the result-
ing plasmids were subcloned into pCFZ14-416ALG12 (see
below), replacing its Eco811-Sacl fragment, to yield the
mutated forms. A second round of mutagenesis following the
same procedure was performed to combine the mutations. The
regions between the Eco811 and Sacl sites of the mutated
plasmids were verified by sequencing. To create pCFZ14—
416ALG12, a single-copy plasmid with the yeast ALG12 gene,
the 2.4 kb Kpnl-Sacl fragment of pALG12 was subcloned into
the same sites of pRS416 (35).

Yeast strains and media

S. cerevisiae strains used in this study were derivatives of
YG840 (MATa ade2-101 wura3-52 his3A200 lys2-801
Aalgl2::kanMX4) (19) or YG843 (MATo ade?—101 ade3
ura3—52 his3A200 leu2 Aalgl2::kanMX4 wbpl-2) (19).
Standard yeast media and genetic techniques were used (36).
Strain YG840 and its transformants were propagated at 30°C,
and strain YG843 and its transformants at 23°C.

Complementation of algl2 yeast mutants

Western blotting of the carboxypeptidase Y glycoprotein was
performed as described previously (37). Hygromycin B
sensitivity of Aalgl2 wbpl-2 transformants was assessed on
full medium (YPD) plates containing 30 or 50 pg/ml hygro-
mycin B (Roche Diagnostics). For the spot assay, 5 pl of serial
10-fold dilutions of YG843 transformants grown overnight in
liquid medium were spotted, starting at 5 x 10> cells. Plates
were incubated at a given temperature for 6 days.
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