In signal detection problems, one is usually faced with the task of searching
a parameter space for peaks in the likelihood function which indicate the
presence of a signal. Random searches have proven to be very efficient as well
as easy to implement, compared e.g. to searches along regular grids in
parameter space. Knowledge of the parameterised shape of the signal searched
for adds structure to the parameter space, i.e., there are usually regions
requiring to be densely searched while in other regions a coarser search is
sufficient. On the other hand, prior information identifies the regions in
which a search will actually be promising or may likely be in vain. Defining
specific figures of merit allows one to combine both template metric and prior
distribution and devise optimal sampling schemes over the parameter space. We
show an example related to the gravitational wave signal from a binary inspiral
event. Here the template metric and prior information are particularly
contradictory, since signals from low-mass systems tolerate the least mismatch
in parameter space while high-mass systems are far more likely, as they imply a
greater signal-to-noise ratio (SNR) and hence are detectable to greater
distances. The derived sampling strategy is implemented in a Markov chain Monte
Carlo (MCMC) algorithm where it improves convergence.Comment: Proceedings of the 8th Edoardo Amaldi Conference on Gravitational
Waves. 7 pages, 4 figure