632 research outputs found

    Analysis of the forces driving the oscillations in 3D fluidic oscillators

    Get PDF
    One of the main advantages of fluidic oscillators is that they do not have moving parts, which brings high reliability whenever being used in real applications. To use these devices in real applications, it is necessary to evaluate their performance, since each application requires a particular injected fluid momentum and frequency. In this paper, the performance of a given fluidic oscillator is evaluated at different Reynolds numbers via a 3D-computational fluid dynamics (CFD) analysis. The net momentum applied to the incoming jet is compared with the dynamic maximum stagnation pressure in the mixing chamber, to the dynamic output mass flow, to the dynamic feedback channels mass flow, to the pressure acting to both feedback channels outlets, and to the mixing chamber inlet jet oscillation angle. A perfect correlation between these parameters is obtained, therefore indicating the oscillation is triggered by the pressure momentum term applied to the jet at the feedback channels outlets. The paper proves that the stagnation pressure fluctuations appearing at the mixing chamber inclined walls are responsible for the pressure momentum term acting at the feedback channels outlets. Until now it was thought that the oscillations were driven by the mass flow flowing along the feedback channels, however in this paper it is proved that the oscillations are pressure driven. The peak to peak stagnation pressure fluctuations increase with increasing Reynolds number, and so does the pressure momentum term acting onto the mixing chamber inlet incoming jetPostprint (published version

    A 8-neighbor model lattice Boltzmann method applied to mathematical-physical equations

    Get PDF
    © 2016. This version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/A lattice Boltzmann method (LBM) 9-bit model is presented to solve mathematical-physical equations, such as, Laplace equation, Poisson equation, Wave equation and Burgers equation. The 9-bit model has been verified by several test cases. Numerical simulations, including 1D and 2D cases, of each problem are shown respectively. Comparisons are made between numerical predictions and analytic solutions or available numerical results from previous researchers. It turned out that the 9-bit model is computationally effective and accurate for all different mathematical-physical equations studied. The main benefits of the new model proposed is that it is faster than the previous existing models and has a better accuracy.Peer ReviewedPostprint (author's final draft

    Integration of multimodal data based on surface registration

    Get PDF
    The paper proposes and evaluates a strategy for the alignment of anatomical and functional data of the brain. The method takes as an input two different sets of images of a same patient: MR data and SPECT. It proceeds in four steps: first, it constructs two voxel models from the two image sets; next, it extracts from the two voxel models the surfaces of regions of interest; in the third step, the surfaces are interactively aligned by corresponding pairs; finally a unique volume model is constructed by selectively applying the geometrical transformations associated to the regions and weighting their contributions. The main advantages of this strategy are (i) that it can be applied retrospectively, (ii) that it is tri-dimensional, and (iii) that it is local. Its main disadvantage with regard to previously published methods it that it requires the extraction of surfaces. However, this step is often required for other stages of the multimodal analysis such as the visualization and therefore its cost can be accounted in the global cost of the process.Postprint (published version

    Numerical study of the 2D lid-driven triangular cavities based on the Lattice Boltzmann method

    Get PDF
    Numerical study of two dimensional lid driven triangular cavity flow is performed via using lattice Boltzmann method on low Reynolds numbers. The equilateral triangular cavity is the first geometry to be studied, the simulation is performed at Reynolds number 500 and the numerical prediction is compared with previous work done by other scholars. Several isosceles triangular cavities are studied at different initial conditions, Reynolds numbers ranging from 100 to 3000, regardless of the geometry studied, the top lid is always moving from left to right and the driven velocity remains constant. Results are also compared with previous work performed by other scholars, the agreement is very good. According to the authors’ knowledge, this is the first time that MRT-LBM model is used to simulate the flow inside the triangular cavities. One of the advantages of this method is that it is capable of producing at low and high Reynolds numbers.Peer ReviewedPostprint (published version

    Pedrell i els pianistes catalans a París

    Get PDF
    Montserrat Bergada analiza en su ponencia el relevante papel que alcanzó en Francia la música española, coincidiendo con la difusión de obras de compositores españoles realizada por la Société Espagnole de Quatuors. Repasa las distintas relaciones de Pedrell con Francia: su estancia personal, 10s estrenos de algunas obras y 10s contactos establecidos a través de sus publicaciones. Bergada describe 10s lazos que mantuvo Pedrell con 10s pianistas catalanes residentes en la capital francesa: Joan Baptista Pujol, Granados, Lliurat, Malats, Viñes, Riera i Joaquim Nin. A través de estos hombres, Pedrell se relacionó, por ejemplo, con Calvocoressi y con la Schola Cantorum. Debemos señalar el papel de maestro que ejerció Pedrell sobre algunos de sus discípulos partir, especialmente, de la progresión ascendente de 10s pianistas españoles en Paris. A través de diversas noticias i de una importante documentación epistolar, se demuestra el alcance de sus enseñanza

    Festes d'infants

    Get PDF

    Espai de recerca

    Get PDF

    A Fast hierarchical traversal strategy for multimodal visualization

    Get PDF
    In the last years there is a growing demand of multimodal medical rendering systems able to visualize simultaneously data coming from different sources. This paper addresses the Direct Volume Rendering (DVR) of aligned multimodal data in medical applications. Specifically, it proposes a hierarchical representation of the multimodal data set based on the construction of a Fusion Decision Tree (FDT) that, together with a run-length encoding of the non-empty data, provides means of efficiently accessing to the data. Three different implementations of these structures are proposed. The simulations results show that the traversal of the data is fast and that the method is suitable when interactive modifications of the fusion parameters are required.Postprint (published version

    Machines.

    Get PDF

    Speeding up rendering of hybrid surface and volume models

    Get PDF
    Hybrid rendering of volume and polygonal model is an interesting feature of visualization systems, since it helps users to better understand the relationships between internal structures of the volume and fitted surfaces as well as external surfaces. Most of the existing bibliography focuses at the problem of correctly integrating in depth both types of information. The rendering method proposed in this paper is built on these previous results. It is aimed at solving a different problem: how to efficiently access to selected information of a hybrid model. We propose to construct a decision tree (the Rendering Decision Tree), which together with an auxiliary run-length representation of the model avoids visiting unselected surfaces and internal regions during a traversal of the model.Postprint (published version
    corecore