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Abstract. Numerical study of two dimensional lid driven triangular cavity flow is performed via 

using lattice Boltzmann method on low Reynolds numbers. The equilateral triangular cavity is the 

first geometry to be studied, the simulation is performed at Reynolds number 500 and the numerical 

prediction is compared with previous work done by other scholars. Several isosceles triangular 

cavities are studied at different initial conditions, Reynolds numbers ranging from 100 to 3000, 

regardless of the geometry studied, the top lid is always moving from left to right and the driven 

velocity remains constant. Results are also compared with previous work performed by other 

scholars, the agreement is very good. According to the authors’ knowledge, this is the first time that 

MRT-LBM model is used to simulate the flow inside the triangular cavities. One of the advantages 

of this method is that it is capable of producing at low and high Reynolds numbers.  

Introduction  

Two dimensional lid driven cavity flow is a very popular issue of fluid mechanics over the past few 

decades. Many scholars [1-12] dedicated themselves into this field. In 1982, Giha et al [1] studied 

two dimensional lid driven square cavity flow by solving the Navier-Stokes equations. The 

incompressible flow inside the cavity was investigated at different Reynolds numbers and grid 

resolutions. A multi grid method for mesh refinement was proposed and tested in their work. One 

year later, Schreiber and Keller [2] also investigated the incompressible flow inside a square cavity 

at different Reynolds numbers and grid resolutions. In their work, efficient and reliable numerical 

techniques of high-order accuracy were presented. It is well known that the fluidic characteristics 

inside cavities changes as the Reynolds numbers increase. As an interesting topic of fluid 

mechanics, the research of the lid driven cavity flow appeared back in 1980’s, covering different 

geometries and configurations. The triangular and trapezoidal cavities have received interest from 

some researchers [13-28], yet, they are still not fully investigated.  

Without any doubts, the lattice Boltzmann method has already become a trustworthy 

methodology in computational fluid mechanics since it was born. Gradually, the lattice Boltzmann 

method has been developed for many years and numerical studies are covering many research fields, 

recently, nano-fluids [29], thermal flows [30], aero-acoustic [31], porous media [32], multi-phase 

flow [33] and etc. Regarding the present topic, flow inside triangular cavities, which is going to be 

investigated in this paper by lattice Boltzmann method, there is barely few similar studies to be 

considered. For this reason, the authors believe the novelty of this paper is the numerical study of 

the laminar and turbulent flows inside triangular cavities by using the multiple-relaxation-term 

lattice Boltzmann method (MRT-LBM). 

Numerical Methodologies  

In what follows, a brief description of the original LBM is presented. The lattice Boltzmann 

equation is given by equation (1). It is to be noticed that all equations presented in this paper are 

non-dimensional. To simplify the collision term, Bhatnagar, Gross and Krook [34], presented the 

famous BGK approximation, where the collision term was replaced by a simple collision 

operator f
. 
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 is the singular relaxation time term and ( , )eqf r  is the equilibrium distribution function.  

Discretizing equation (2) both on space and time, the lattice Boltzmann equation is obtained and 

given by equation (3)  
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where represents the direction of discrete velocities, 
( , )f r e t t t   

and
( , )f r t  are the discrete 

-post and -pre collision distribution functions vector and f


is the discrete collision operator on 

 directions.  

The LBGK model for solving the Navier-Stokes equations was presented by Qian et al [35], and 

it is one of the most popular models used in LBM when applied to fluid dynamic problems, this 

model is also employed in the present paper. According to the LBGK model [35], the equilibrium 

distribution functions, for the 9 discrete velocities (9-bit model), are determined by 
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where  are the weight coefficients, and sc is the non-dimensional sound speed.  

Figure 1 shows the discrete velocities of the LBGK D2Q9 model employed in all simulations 

presented in this paper. 

 

 

Fig. 1. Discrete velocities of lattice Boltzmann D2Q9 model, where 1c x t     is the lattice velocity, 

and , x t  are lattice grid spacing and time step. 

Boundary Conditions  

The non-equilibrium extrapolation scheme [36] is employed to treat the wall boundary condition in 

the current numerical cases. The basic idea of this scheme is that the distribution function of each 

direction is able to be classified into two parts, known as the non-equilibrium term and the 

equilibrium term.  

As shown in Fig. 2, grid nodes A, B and C are flow points, grid nodes D, E and F are wall 

boundary points. For the points E and B. the distribution function of each direction are written as 

( , ) ( , ) ( , )eq neqf E t f E t f E t   
                                                       (4)  

( , ) ( , ) ( , )eq neqf B t f B t f B t   
                                                       (5)  
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Fig. 2. Wall boundary. 

The equilibrium part ( , )eqf E t is obtained from the macroscopic quantities of the point E. While, 

the non-equilibrium distribution functions of the point E can be replaced by that of the point B. 

( , ) ( , )neq neqf E t f B t 
                                                           (6)  

Hence, the distribution functions of the point E become  

( , ) ( , ) ( , ) ( , )eq eqf E t f E t f B t f B t     
                                            (7)  

Considering the collision process, the distribution functions of point E are achieved 
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Code Validations  

Lid-Driven Flow of an Equilateral Triangular Cavity  

Figure 3 shows the geometry and boundary conditions of an equilateral triangular cavity, case (a), 

the length of each side is 1 and lid-driven velocity is 0.1. This lid driven velocity will remain the 

same for all cases introduced in this paper. The grid spacing is 0.0039. Although not presented in 

this paper, the grid independency test was performed, and the grid spacing used is small enough to 

obtain trustable results. 

 

 

Fig.3. Wall boundary. 

                      
This paper     Ref. [7]        Ref. [11]                               Ref. [5]        Ref. [9]       Ref. [10] 

Fig.4. Streamlines inside the cavity at Re=500. Comparison between the actual prediction and 

computed results from previous work. 

Figure 4 presents the streamlines inside the equilateral triangular cavity of each data source at 

Reynolds 500. It can be seen there is a good agreement between the present prediction and previous 
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research performed by other scholars.  It can be noticed that the main vortex gradually moves to the 

right corner as the Reynolds number increases. 

Table 1. The position of primary vortex. 

Data source This paper Ref.[7] Ref.[11] Ref.[5] 

Primary vortex 
X=1.885 

Y=2.24 

X=1.871 

Y=2.16 

X=2.021 

Y=2.325 

X=1.905 

Y=2.265 

 

Table 1 shows the position of the main vortex of each data source. From the table, it is observed 

that the comparison is good. 

Lid Driven Flow of a Isosceles Triangular Cavity  

The second simulation presented in this paper, case (b), is a right-angled side driven isosceles 

triangular cavity. Figure 5 describes the geometry and boundary conditions of this case. The right-

angled side is 1 and the oblique angle is 45 degrees. 

 

 

Fig.5. Lid-driven triangular isosceles cavity with wall motion towards the rectangular corner, case 

(b). 

Figure 6 shows the streamlines inside the cavities at Reynolds 100. A good agreement has been 

found from the comparison between the present numerical data and several results obtained by 

previous researchers. In all figures, a main vortex and two secondary small vortices located near the 

lower corner are found. At low Reynolds numbers, these two secondary small vortices, unlike the 

main vortex, does not change much as the Reynolds number increases, this effect can be seen when 

comparing figures 6 and 7. 

 

                                  
        This paper            Erturk & Gokcol                  Sidik & Munir               González et al 

Fig. 6. Lid-driven triangular isosceles cavity with wall motion towards the rectangular corner, case 

(b). Re=100 

Table 2 shows the positions of the primary vortex obtained by different authors. The comparison 

is very good. 

Table 2. The position of primary vortex 

Data source This paper Erturk & Gokcol Sidik & Munir Gonzalez et al 

Primary vortex 
X=-0.289 

Y=0.831 

X=-0.291 

Y=0.832 

X=-0.29 

Y=0.83 

X=-0.29 

Y=0.831 
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Figure 7 describes the streamlines obtained in this paper and by Idris et al at Reynolds number 

2000. It can be observed there is a new secondary vortex appearing near the left corner along the 

hypotenuse. The appearance of this particular secondary vortex is due to the kinetic energy increase 

associated to fluid upper layers. 

 

                                          
        This paper                  Idris et al (FDM)                Idris et al (LBM)   

Fig. 7. Streamlines inside the cavity at Re=2000. Comparison between the actual prediction and 

computed results from previous work. 

 

Fig. 8. Lid-driven isosceles triangular cavity with wall motion way from the rectangular corner, 

case (c). 

The next case to be introduced, case (c), is described in figure 8. It can be observed that case (c) 

is also a right-angled side driven isosceles triangular cavity, yet, with the opposite lid driven 

direction from case (b). Compared with case (b), everything remains the same, except for the 

direction of lid driven velocity. 

Figure 9 describes the comparison between the present data and computational results obtained 

by other scholars. When comparing figures 9 and 10, it is observed that the main vortex moves 

towards the right corner as Reynolds number increases, however, the secondary vortices are not 

deeply influenced. 

 

                                      
This paper            Ahmed & Kuhlmann        Jagannathan et al       González et al 

Fig. 9. Streamlines inside the cavity at Re=100. Comparison between the actual prediction and 

computed results from previous work. 

Table 3 shows the position of the primary vortex obtained by different scholars at Reynolds 100, 

a good agreement has been found from the comparison. 

Table 3. The position of primary vortex. 

Data source This paper Erturk & Gokcol Sidik & Munir Gonzalez et al 

Primary 

vortex 

X=0.4466 

Y=0.8518 

X=0.4472 

Y=0.8520 

X=0.4465 

Y=0.8521 

X=0.4439 

Y=0.8489 

 

Figure 10 shows the streamlines inside the cavity at Reynolds number 2000, obtained in the 

present paper and previous research. It is observed that when the Reynolds number increases the 
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main vortex is split into two vortices and the upper one stretches along the lid and moves towards 

the right corner. The rest of the secondary vortices barely change. 

 

                         
This paper           Idris et al(FDM)             Idris et al(LBM)                Erturk & Gokcol 

Fig.10. Streamlines inside the cavity at Re=2000. Comparison between the actual prediction and 

computed results from previous work. 

The last case to be presented in this paper is case (d).  The hypotenuse driven isosceles triangular 

cavity and the boundary conditions are shown in figure 11. 

 

 

Fig. 11. Lid-driven isosceles triangular cavity, case (d). 

Figure 12 describes the streamlines inside the cavity at Reynolds number 3000, the comparison 

between the present data and the results obtained by Sidik & Munir is found to be very good. As in 

the previous case, the main vortex separates into two sub-vortices as the Reynolds number increases, 

the upper one moves to the right corner and the lower one moves to the left corner. Although not 

presented in the present paper, it was observed that the secondary vortex located near the bottom 

corner keeps growing with the Reynolds number increases, and moving toward the left corner along 

the left side, while the main vortex is streaming to the right corner. Then another bottom secondary 

vortex is being generated and growing with the increase of the Reynolds numbers.  

 

             
This paper                                    Sidik&Munir 

Fig. 12. Streamlines of lid driven triangular cavity, where the Reynolds number is 3000. 

            
Re=100000 (MRT-LBM)                                             Re=1000000 (MRT-LBM) 

 
Re=2000000 (MRT-LBM) 

Fig. 13. Streamlines and votex contour of lid driven triangular cavity at higher Reynolds number 

obtained by MRT-LBM. 
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Figure 13 shows the computational results obtained in the present work at Reynolds numbers 

25000, 250000 and 500000. According to authors’ knowledge, this is the first time for triangular 

cavities to be investigated at Reynolds numbers as high as these. In order to make a comparison, 

another modified LBM model, known as LES-LBM is also employed. Figure 14 describes the 

counterparts obtained by using LES-LBM at each involved Reynolds number.  

 

           
Re=100000 (LES-LBM)                                              Re=1000000 (LES-LBM) 

 
Re=2000000 (LES-LBM) 

Fig. 14. Streamlines and votex contour of lid driven triangular cavity at higher Reynolds number 

obtained by LES-LBM. 

From figures 13 and 14, it is can be observed that when the Reynolds number is overcoming a 

certain value, the kinetic energy embedded in the fluid particles takes the full control of the fluid 

field, the flow itself is being irregular and chaotic, flow is fully unsteady. At a relatively low 

Reynolds number 25000, a good agreement has been found between both results obtained by MRT-

LBM and LES-LBM respectively. While, for higher Reynolds numbers, the flow inside the cavity is 

random and instantaneous, which could explain why the agreement is not good. At this point, the 

authors have realized that the critical Reynolds number between the steady and unsteady flow is not 

yet defined for triangular cavities 

Conclusions  

Two types of geometry, equilateral and isosceles triangular cavities, are studied at low Reynolds 

numbers. The vortex structures inside the cavities are shown at different Reynolds numbers. It turns 

out that the main vortex moves to the lid driven direction as the Reynolds number increases. The 

geometry of the considered triangular cavity has small influence on the vortex structures. It is found 

that the present numerical predictions have a very good agreement with the previous work 

performed by other researchers. It is interesting to highlight that all previous research was done via 

finite-volume-method, spectral element method and conventional lattice Boltzmann method. In the 

present research, MRT-LBM method is employed and it is proved that this modified method 

produces very accurate results at low Reynolds numbers, having the advantage of performing well 

at higher Reynolds numbers, where the conventional lattice Boltzmann method fails. 
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