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Abstract

The paper proposes and evaluates a strategy for the alignment of
anatomical and functional data of the brain. The method takes as an in-
put two different sets of images of a same patient: MR data and SPECT.
It proceeds in four steps: first, it constructs two voxel models from the two
image sets; next, it extracts from the two voxel models the surfaces of re-
gions of interest; in the third step, the surfaces are interactively aligned by
corresponding pairs; finally a unique volume model is constructed by selec-
tively applying the geometrical transformations associated to the regions
and weighting their contributions. The main advantages of this strategy
are (i) that it can be applied retrospectively, (ii) that it is tri-dimensional,
and (iii) that it is local. Its main disadvantage with regard to previously
published methods it that it requires the extraction of surfaces. However,
this step is often required for other stages of the multimodal analysis such
as the visualization and therefore its cost can be accounted in the global
cost of the process.

Keywords Volume Modeling and Visualization - Multimodal Registration of
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1 Introduction

The integral study of the anatomy and the activity of the brain is one the
major challenges of the present-day medicine. The new registration devices fa-
cilitate this study. Thereby, Magnetic Resonance images (MR) provide brain
anatomy data, whereas Angiographies (MRA) show the vascular system. Func-
tional Magnetic Resonance (MRf) and Nuclear Medicine devices such as SPECT



and PET give information on the cerebral activity. The analysis of these data
separately fails at giving a global view of the structures. The integration of the
anatomy and the activity makes easier the detection of tumours or injuries, and
it allows better predictions to be done about the scope of these lesions and of
their secondary effects on the health and the behaviour of the patients. This
is why, in the last years, the integration of multimodal data has become a very
active research area in hardware as well as in software. New technologies are
currently being designed, able to sample simultaneously various types of data
[1]. In addition, new methods for the alignment and joint processing of different
image sets are being developed [2]. This paper focuses on the software regis-
tration methods. It first reviews the current methods and next it describes and
evaluates a new strategy.

2 Previous work

The image and volume registration methods can be classified according to sev-
eral criteria [3]. A key difference between them is if they use external references
(extrinsic methods) or they don’t (intrinsic methods). Extrinsic methods are
applied whenever the need for a multimodal analysis is known a priori. They
consist of identifying the markers on the images [4] and of aligning the im-
age sets in order to match the corresponding marks. The external references
(stereotactic frames, fiducials markers...) make the alignment easier but they
can be inconvenient for the patients. In the opposite side, intrinsic methods,
although more complex, present the advantage of being harmless and applicable
retrospectively.

The intrinsic strategy is divided into three main groups: (i) the pixel/voxel based
methods (ii) the methods based on feature points and, (iii) the methods based
on binary segmented regions. The first approach embraces various strategies
based on image processing and pattern recognition algorithms, such as the com-
putation of gravity centers and main axes, the global correlation along with the
minimization of gradient variances and intensities [5], [6]. Up to now, because of
their high cost, these methods are mainly applied in 2D, to image pairs, rather
than in 3D. The identification of feature points is probably the most used strat-
egy. It may require the intervention of a specialist who marks the points, either
anatomical characteristics or image singularities [7]. The alignment consists of
matching the pairs of feature points, by applying a least-squares fit algorithm.
The major advantages of this method are its speed and its versatility, since it
is applicable to any image set. In contrast, it is mostly suitable for global and
rigid alignments.

Finally, the methods based on segmented binary regions look for a matching
function between corresponding regions and next, they apply the function to
the whole data sets. Borgefors [8] has proposed to directly align the segmented
regions using the chamfer distance metrics. The head and hat method [9],
extracts sets of contours from the images. It has been applied to the skin in
MR, CT and PET data. Hill [10] extends the method to the alignment of no



identical but equivalent regions, specifically the brain and the skull. Later works
focus on the automatic segmentation of the regions. The main drawback of this
approach is the extra cost of the segmentation and even more of the contour
tracking. However, it should be noted that the segmentation is often necessary
in other steps of the data analysis, for instance, in the visualization and in the
volumetric computations. Thus, its cost should be attributable to the whole
process rather than to the registration only.

A problem of the segmented regions registration is that it only allows global
transformations to be computed. It does not take into account local distortions
of the data and thus it does not guarantee that the alignment is equally correct
in all the volume set. The snakes technique [11] performs local and elastic
deformations of two equivalent contours in 2D. The extension of this method
has been proposed in [12]. The snakes are suitable for the registration of images
of the same modality but with little similarity such as real images with an atlas
[13]. However, their use is often too complex and computationally expensive
for the alignment of multimodal images of the same patient, where a global
registration is aproximatively correct and it requires only local adjustments.

In this paper, a new methodology for the integration of MR and SPECT data
of the same patient is proposed and evaluated. It is based on the registration of
pairs of segmented regions. It admits different levels of precision in the alignment
and it can be applied locally. It is mainly suitable when the registration function
is not completely homogeneous in the images.

3 Surface registration

3.1 General Scheme

Fig. 1 shows an overview of surface registration. Starting from two different
sets of images, the corresponding volume data of each modality are constructed.
The models are segmented and each voxel is labeled according to the region to
which it belongs. The following stage of the registration consists of computing
in each modality the boundary surface representation of the interest regions.
Next, an interactive application allows the matching function between pairs of
corresponding surfaces to be computed. Finally, an integrated model is obtained
by assigning to each voxel the corresponding set of properties and weighting
them. In this step, the geometrical transformations are locally applied to each
region.



Figure 1. Description of the general scheme.

Region segmentation

The integration of the information acquired with different techniques is difficult,
because of the complementary nature of the contents of the images and due to
the differences in resolution, position and orientation of the scanned volumes.
As an example, the initial images used in the simulations described in Section
3.3 are 512x512x33 and 64x64x64 respectively and they have been captured
with completely different orientations. The strategy based on binary discrete
regions [8] mentioned in the previous section, is not valid at that such different
resolutions. The strategy based on searching for the boundary of corresponding
structures in both volumes removes in a natural way the problem of the different
sampling rates: the surfaces have the same proportions, although, obviously,
the level of detail of the meshes is different and it depends on the initial data
sampling.

By opposite to previous references [9], who obtain the polygonal mesh from par-
allel contours, in this work, the boundary surface is extracted with the Marching
Cubes algorithm [14]. This technique avoids the typical surface aspect of poly-
gons ribbons, that gives a artificial orientation and thus may produce a higher
matching error. Furthermore, according to the needs, the surfaces can be com-
puted at different levels of resolution in the original data. Even more, different
levels of detail can be given to each surface, depending on the degree of interest
of the different areas.

Matching procedure

Once a set of points defining a concrete structure has been defined, the next step
consists of calculating the geometrical transformation to apply to each dataset.
The matching procedure is interactive. The user establishes the correspondences
between pairs of surfaces by directly selecting them. Next, two alignment strate-
gies are available: a totally interactive one, and a semiautomatic one. In the
fully manual method, the user moves and rotates one surface to make it match
the other one. In the semiautomatic method, the user selects at least 3 charac-
teristic pairs of points and a rigid geometrical transformation is computed by
using a least-squares fit. Although it fails off the scope of the application, an
automatic location of moments and principal axes in the original datasets could
also be applied.



Reconstruction

After the matching step, a unique integrated model is constructed. This step
is not strictly necessary, if specific algorithm able to process simultaneously
the two models and to apply on line the geometrical transformation pairs are
designed. However, as the purpose of this work is to perform many operations on
the integrated data, it is better to construct the model once, in a pre-process,
rather than applying the transformations for each operation. However, the
transformation process explained below is basically the same that would be
applied on-line.

In this work, the coordinate system of the integrated model is the same as
the larger initial model (referenced from now, as static model). Therefore, the
geometrical transformations that must be applied are those that match the
smaller model (referenced as dynamic model) over the static model. Currently,
the two properties are both kept in all the voxels of the final model. A more
efficient representation scheme is under study.

If the transformation between the two data sets is unique, the reconstruction
consists simply of revoxelizing the dynamic model. This can be performed by
applying the three step affine transformations method [15]. The main problem
that must be solved with the proposed approach is how to deal with several
rigid transformations.

The method scans through the static model and, for each voxel, it distinguishes
three cases: (i) when the voxel does not belong to any of the segmented regions,
(ii) when it is interior to one region, and (iii) when it is at the boundary of
two or more regions. In the first case, the value is not relevant and thus no
geometrical transformation is applied. This is an area of the model where a lot
of compression could be done. In the second case, as the classification of the
voxel is unique, there is no ambiguity and thus, the geometrical transformation
corresponding to the region is directly applied.

Finally, in the third case two or more geometrical transformations can be ap-
plied, those corresponding to the boundary regions inside the voxel. In this
case, first, the proportion of volume occupied by each region in the voxel is
computed. This is done either by aproximatively evaluating the ratio of volume
clipped by the extracted surface in the voxel or, by applying a classification
function as proposed in [16] and [17]. Next, the geometrical transformations
who correspond to the different regions that share the voxel are applied, and
the different values obtained are weighted according to the occupancy ratios
computed before.

3.2 Matching a phantom

In order to evaluate the proposed strategy, the process has been applied to the
phantom model depicted in Figure 2. The original model represented in Figure
2.a is composed of two surfaces L-shaped with different size and orientation.
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Figure 2a. Surfaces in the original model.

The model is voxelided with two different orientations by applying a rotation
to the original model. The resulting voxel models have the same resolution of
128x128x128 (2.b). These models represent the multimodal images that should
be aligned.
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Figure 2b Data models to be aligned.
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The boundaries of the two “L” surfaces are extracted from the two voxel mod-
els (4 surfaces) using the Marching Cubes algorithm at full resolution. Color
Plate 2c shows the surfaces along with their bounding boxes. The four surfaces
altogether have a total size of 75.591 polygons. In the next table the different
cases are analyzed.

Model Resolution | Nber. polygons | Processing Time
Two L 128x128x128 23.220 15 seconds
Two Rotated L | 128x128x128 52.371 18 seconds

Table 1. Surfaces extraction results.

Next, the two pairs of surfaces have been aligned interactively and the integrated
model shown in Color Plate 2.d has been computed. The numerical results are
summarized in the next table.



Model Nro. voxels
inside
Two L 44.321
Two Rotated L 78.126
Reconstructed 45.414

Table 2. Registration results.

The final model has a little larger number of voxels inside the region than
the original model. Analyzing the images, it can be seen that most of the
discrepancy is at a side of the object. This is due to the fact that the original
model is binary, thus as the property value is not interpolated, a discretization
error occurs at the boundary.

3.3 Matching of cerebral images models

The described method has been applied to MR and SPECT-HMPAO images
from the same patient. The MR images have a resolution of 512x512x33 and
the SPECT have a resolution of 64x64x64. Figure 3 shows an example of each
one.

Figure 3 MR and SPECT images.

It can be seen that the MR images are cleaner than the SPECT which are very
noisy and present the typical hair-like features around the images. This is why
MR images are easier to be segmented than the SPECT ones. However, the
regions obtained are more complex in the MR than in the SPECT because of
the anatomical structure of the brain. As a consequence, the marching cubes
surfaces extracted from MR images are more complex, made of a lot of polygons.
Their memory occupancy is very large and they are not easily simplificable.

Specifically, the occupation of the brain surface in the different models, measured
as number of polygons is:



Model | Resolution | Polygon number | Time process
MRI 512x512x33 379.769 8 min.
MRI 256x256x33 109.672 43 sg.

SPECT | 64x64x64 19.843 9 sg.

Table 3. Surface extraction results.
Color plate 4 shows a rendering of these surfaces.

The registration process takes as input data two pairs of surfaces: the brain and
a tumor. The interactive alignment step takes as a dynamic model the SPECT
surfaces, which are smaller. The integrated model is computed by applying the
local matching and averaging. The numerical results are summarized in the next
table. The matching results are good, as it can be seen from the differences in
the number of inside voxels which are very little and in all the cases don’t arrive
at b

The value in brackets corresponds to the value that would have been computed
if a unique global transformation would have been applied. As expected, the
results are worse than those of the local transformations. Although, the dif-
ferences are not very large, they are significant enough to make it necessary to
apply local transformations.

Model Resolution | Nro. voxels
inside
Brain MRI 256x256x33 247.196
Brain SPECT 64x64x64 11.130
Reconstructed Brain | 256x256x33 236.460
Tumor MRI 256x256x33 2.617
Tumor SPECT 64x64x64 88
Reconstructed Tumor | 256x256x33 2.407
(2.113)

Table 4. Data obtained in the brain registration.

The final integrated model is shown in Color Plate 4, too. MR data are rendered
in blue and SPECT in red. The colors are simply summed, as the research for
multimodal rendering methods giving clues of both data types ([18], [19] falls,
by now, out of the scope of this work. The local matching between the two
models is visually good. The occupancy of the final model is twice the original
one.

4 Conclusions

A new process for the alignment of multimodal data has been proposed. It has
been proved on MR and SPECT cerebral images, giving good matching results.
The main advantages of the method are that it is local and that it allows different
pairs of registration functions being computed and applied simultaneously.



This work has two main future research lines: the investigation of an integrated
model that would keep information on the original data at different resolution
levels, while minimizing the cost of the data access [20]; the proposal of new
integrated visualization strategies able to give as much information as possible
of the two data sets in a single image [18].

Acknowledgments This work has been funded by the Ministerio de Educacin
y Ciencia, project: TIC 99-1230-C02-02.

References

[1]
[2]

3]

[4]

[8]

[9]

[10]

General Electrics. http:://www.e.com/medical /nuclear/library.com. 2000.

M.A. Viergever, J.B.A. Maintz, R. Stokking, P.A. Elsen, and K.J.
Zuiderveld. Matching and integrated display of brain images from mul-
tiple modalities. SPIE, 2434:2-13, 1995.

J.B.A. Maintz. Automatic Registration of CT and MR Brain Images Using
Correlation of Geometrical Features. Doctoral Thesis- Helmholtz Instituut,
1996.

M.Y. Wang, C.R. Maurer, J.M. Fitzpatrick, and R.J. Maciunas. An auto-
matic technique for finding and localizing externally attached markers in
ct and mr volume images of the head. IEEE Transactions on Biomedical
Engineering, 43(6):627-637, June 1996.

W.M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal
volume registration by maximization of mutual information. Medical Image
Analysis, 1(1), 1996.

P.A. van den Elsen, J.B.A. Maintz, E.J.D. Pol, and M.A. Viergever. Auto-
matic registration of ct and mr brain images using correlation of geometri-
cal features. IEEE Transactions on Medical Imaging, 14(2):384-396, June
1995.

J.E. Desmond and K.O. Lim. On- and offline talairach registration for
structural and functional mri studies. Human Brain Mapping, 5:58-73,
1997.

G. Borgefors. Hierarchical chamfer matching: a parametric edge matching
algorithm. [EFEE Transactions on pattern analysis and machine intelli-
gence, 10:849-865, 1988.

C.A. Pelizzari, G.T.Y. Chen, D.R. Spelbring, R.R. Weichselbaum, and C.T
Chen. Accurate three-dimensional registration of ct, pet, and/or mr im-
ages of the brain. Journal of Computer-Assisted Tomography, 13(1):20-26,
January 1989.

D.L.G. Hill. Combination of 3D medical images from multiple modalities.
PhD thesis, Univerity of London, December 1993.



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models.
International Journal of Computer Vision, pages 321-331, 1988.

J.V. Miller, D.E. Breen, W.E. Lorensen, R. O’Bara, and M.J. Wozny. Ge-
ometrically deformed models: A method for extracting closed geometric
models from volume data. ACM Computer Graphics, 25(4), July 1991.

R. Bajcsy and S. Kovacic. Multiresolution elastic matching. Computer
Vision, Graphics and Image Processing, 46:1-21, 1989.

W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. ACM Computer Graphics, 21(4):163-169,
July 1987.

P. Hanrahan. Three-pass affine transformations for volume rendering. ACM
Computer Graphics, 24(5):71-78, November 1990.

R.A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. Computer
Graphics, 22(4):65-74, August 1988.

S. Fang, T. Biddlecome, and M. Tuceryan. Image-based transfer function
design for data exploration in volume visualization. Proceedings IEEE Vi-
sualization, pages 319-326, 1998.

W. Cai and G. Sakas. Data intermixing and multi-volume rendering. Com-
puter Graphics Forum, 18(3):359-368, 1999.

U. Tiede, T. Schiemann, and K.H. Hohne. High quality rendering of at-
tributed volume data. Proceedings IEEE Visualization, pages 255-262,
1998.

Tost D. Puig, A. and I. Navazo. A hybrid model for vascular tree structures.
Data Visualization, Springer Verlag, Eds. W. de Leeuv, R. Van Liere, 2000.

10



Color Plate 2¢ Surfaces to be aligned and their bounding boxes.
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Color Plate 2d Surfaces before and after the alignment.

Color Plate 4 MR, SPECT and integrated surfaces.
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