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Abstract 

A lattice Boltzmann method (LBM) 8-neighbour model (9-bit model) is presented to solve mathematical-
physical equations, such as, Laplace equation, Poisson equation, Wave equation and Burgers equation. The 9-
bit model has been verified by several test cases. Numerical simulations, including 1D and 2D cases, of each 
problem are shown respectively. Comparisons are made between numerical predictions and analytic solutions 
or available numerical results from previous researchers. It turned out that the 9-bit model is computationally 
effective and accurate for all different mathematical-physical equations studied. The main benefits of the new 
model proposed is that it is faster than the previous existing models and has a better accuracy. 
© 2015 Elsevier Inc.  All rights reserved. 
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1. Introduction 

Lattice Boltzmann method (LBM) is a relatively new alternative of computational fluid mechanics. It was 
generated and developed from lattice gas automata (LGA) [1]-[3] and the kinetic theory of Boltzmann 
equation [4]-[5]. This method has been studied and researched for over 30 years since it was born, and it 
gradually became a hot topic worldwide. LBM is based on the mechanism of gas molecules. But, it is different 
from the traditional numerical methods. Besides, it is a discrete method in macroscopic scale, while, a 
continuous method in microscopic scale [6]. It is known that LBM can be employed in many research fields, 
such as microscopic flow [7], crystal growth [8], magnetic fluid [9]-[10], biological fluid [11]-[12], porous 
media flows [13]-[15], turbulence [16]-[17], burning chambers [18], multiphase flows [19]-[20], micro-
nanoscopic and non-equilibrium flows[21]-[22], non-Newtonian and transcritical flows [23]-[24] etc., where 
the traditional numerical methods are very difficult to be applied. Many scholars have made great 
contributions in simulating mathematical-physical equations, such as, Laplace equation, Poisson equation, 
wave equation, Burgers equation, KdV equation, Schrödinger equation, Euler equation and N-S equation. The 
aim of this paper is to construct a series of 9-bit models as an inheritance and improvement of those 
predecessors’ work [25]-[32]. Zhang et al, presented a 5-bit model in their work [28], this model works well in 
dealing with the Laplace equation. Chai and Shi presented a lattice Boltzmann model to solve the 2D and 3D 



2 Bo AN and J.M. Bergadà / Applied Mathematical Modelling   (2015) 

Poisson equations [25], in the model they presented there was a genuine solver to the Poisson equation, the 
transient term was eliminated. For 2D Poisson equation, they developed a 5-bit model, which was tested by 
numerical cases. In 2000, Yan [27] developed a lattice Boltzmann model for 1D and 2D wave equations with 
truncation error of order two. In his paper, the author presented a 5-bit model and a 9-bit model with tested 
numerical cases. In his model, it is not necessary to have an ensemble average to get the macroscopic quantity, 
so the statistical errors disappear. Duan and Liu [26] developed a special lattice Boltzmann model to simulate 
2D unsteady Burgers equation. The maximum principle and the stability were proved in their work. Their 
study indicates that lattice Boltzmann model is highly stable and efficient even for the problems with severe 
gradient. This model is a 4-bit model without the stationary state in discrete velocities. They developed 
another lattice Boltzmann model to solve the modified Burgers equation in 2008 [30]. In this new paper, they 
presented a 2-bit model without stationary state in discrete velocities for 1D modified Burgers equation. 
Zhang and Yan [32] proposed a higher-order moment lattice Boltzmann method for 1D and 2D Burgers 
equation. In order to achieve higher order accuracy, they used seven and four moments of the equilibrium 
distribution functions in 1D and 2D models respectively. In their paper, they presented a 5-bit model with 
verified numerical cases. 

 

Nomenclature 

c   The lattice sound speed 

0C         Coefficients to be determined 

1C          Coefficients to be determined 

2C         Coefficients to be determined 

e


  Unit velocities vector along discrete directions 

( )f u   Source term in mathematical-physical equations 

F   Out-force term of lattice Boltzmann equation 

(2)F   Multiple scale expansion term of out-force term of lattice Boltzmann equation 

( , )f r t
   Distribution functions 

f   
Discrete distribution functions 

(1)f   
Multiple scale expansion term of discrete distribution functions around eqf  

(2)f   
Multiple scale expansion term of discrete distribution functions around eqf  

eqf   
The equilibrium state of discrete distribution functions 

neqf   The non-equilibrium state of discrete distribution functions 

r


  Space position vector 

br


           Space position vector of point b 

fr


  Space position vector of point f 
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ffr


  Space position vector of point ff 

wr


  Space position vector of point w 

Re  Reynolds number 

t   Time 

1t   Expansion term of time scale 

2t   Expansion term of time scale 

0t   Present time step used in fourth order Runge-Kutta scheme 

u   Macroscopic quantities in mathematical-physical equations 

0tu   u of present time step 

0t tu    u of next time step 

1,2,3,4k     Parameters of fourth order Runge-Kutta scheme 

   Discrete directions 

   A parameter of wave equation to be determined 

e   Embed depth 

t   Time step 

x   Grid spacing 

   Small Knudsen number 

   A parameter to be determined 

   Kinematic viscosity coefficient 

ij   Kronecker symbol 

   Single relaxation time 

   Weight coefficient 

   Weight coefficient in Chai’s model 

2           Laplace operator 

u          Gradient of macroscopic quantity u  

            Partial differential operator 

1           Space expansion term of partial differential operator  

Superindices 
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i           represents discrete directions and 1,2i  represents the coordinates in x and y directions 

j          represents discrete directions and 1,2j  represents the coordinates in x and y directions 

eq           Represents equilibrium 

neq         Represents no-equilibrium 

2. Lattice Boltzmann Method 

In 1988, Mcnamara and Zanetti presented the earliest lattice Boltzmann model [2]. In their model, the 
evolution equation of lattice gas automata was replaced by Boltzmann equation. Since then (1988), many 
efforts have been done to improve and develop the lattice Boltzmann method in order to increase its 
numerical stability, accuracy, applicability and other numerical properties. In 1989, Higuera and Jimenez 
proposed a simplified model [33] via introducing the equilibrium distribution function, which linearize the 
collision operator. In the same year, Higuera et al. proposed an improved model [34] with the enhanced 
collision operator to improve the numerical stability of the model itself. These two models above eliminated 
the statistical noise of the lattice gas automata and overcame the complexity of collision operator. 

In 1991, Chen et al. advanced a single-relaxation-time model [9], simplifying the collision operator even 
further. In 1992, Qian et al. presented a similar method called LBGK model [35], the model in their work was 
based on the collision theory [36] presented by Bhatnagar, Gross and Krook, which is aiming to simplify the 
complex collision term in the Boltzmann equation. Besides, many researchers have developed new models 
like multiple-relaxation-time LB model and regularized LB model. In 2001, d'Humières developed the 
multiple-relaxation-time LB model, in his work [37], he demonstrated the superior numerical stability of the 
multiple-relaxation-time lattice Boltzmann equation over the popular lattice BGK equation. Recently, Li et al. 
[38] used a double MRT model to simulate 3D fluid with heat transfer, it turned out this double MRT model 
had a good performance in 3D natural convection numerical simulations. Latt et al. [39], presented the 
regularized LB model, where they proved that the new scheme was both more accurate and stable in the 
hydrodynamic regime. Montessori et al. [40], investigated the accuracy and performance of the regularized 
version of the single-relaxation-time lattice Boltzmann equation. As a numerical methodology, LBM has been 
well developed in many aspects, nowadays, thanks to researchers’ contributions, LBM can be successfully 
applied to many research fields. Regarding future LBM perspectives, Succi [41] predicted some possibilities 
for the next 25 years. 

In the present approach, the variables ( , )f r t


 are defined as the particles distribution function. The lattice 

Boltzmann BGK equation is defined as 

1
( , ) ( , ) [ ( , ) ( , )]f r e t t t f r t f r t f r t    
      
    

     (1) 

This equation is the same as the one previously used by other researchers in order to solve Navier-Stokes 
equations [35]. Regarding the definition of macroscopic quantities used in the present paper, equation 2(a) is 

given to define u in Laplace-Poisson and Burgers equations, equation 2(b) defines the term 
u

t




in wave 

equation.  

The macroscopic quantities u and 
u

t




are defined as 
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     ( )

   ( )

u f a

u
f b

t







 


 





      (2) 

To satisfy the conservation condition, it is assumed  

equ f f 
 

         (3) 

For simplicity, the macroscopic quantity u is defined in a general way in all target equations. However, 
this variable u  characterizes a different physical meaning in each equation. Notice that all equations and 
variables presented in the present paper are non-dimensional. These three equations above, which were also 
used by other researchers [25]-[32], are the keystone equations in solving mathematical-physical equations 
with LBM.  

Being a numerical methodology, like other kinds of traditional computational methods, lattice Boltzmann 
method also needs research of stability analysis. In 1996, J.D. Sterling et al. [42] presented an analysis of the 
stability of lattice Boltzmann models with a 7-velocity hexagonal lattice, a 9-velocity square lattice, and a 15-
velocity cubic lattice. In their work [42], they proved that, for lattice BGK model, the single relaxation term 
 must be greater than 0.5. In 2006, M.K. Banda et al. [43] introduced a stability analysis requirement for the 
lattice Boltzmann method and derived some relations of parameters for several lattice Boltzmann models. The 
present 9-bit model introduced in this paper, can be characterized by the same stability analysis of the lattice 
Boltzmann method [42, 43] introduced above. Since the discrete velocities lattice employed in the present 
paper is the same as the one used in [42, 43]. 

3. Recovering The Target Equations From LBE 

In this section, the target equations are recovered from the lattice Boltzmann equation, and the equilibrium 
distribution functions are constructed for each mathematical-physical equation studied in this paper. 

Figure 1 presents the two dimensional 9-bit model where the discrete velocities e


are introduced, the 

term  , called the weight coefficients applied in the 9-bit model, is also presented. 

 

 

4 1 1 1 1 1 1 1 1
[ , , , , , , , , ] ( =0,...,8)
9 9 9 9 9 36 36 36 36

   
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Fig. 1. Introduces the two dimensional 9-bit model, which describes the discrete velocities, where 
 are the weight coefficients applied 

in the 9-bit model.  

3.1. Laplace-Poisson Equations 

The target equation is written as  

2 ( )u f u        (4) 

where ( )f u  is the source term that is zero for the Laplace equation. If it is not zero, the equation becomes the 

Poisson equation. In order to recover the target equation from the LBE the following assumptions were 
considered 

0

eq

eq

eq
i j ij

f u

f e

f e e u




 


  


 








 










 

      (5) 

where ( 1,2)ie i 
  represent the unit velocities vector along discrete directions and 1,2i  denotes 

x or y directions in 2-dimensional Cartesian coordinates. 

The lattice Boltzmann equation (LBE), with out-force term, is given by 

1
( , ) ( , ) [ ( , ) ( , )]eqf r e t t t f r t f r t f r t tF     


         
    

     (6) 

F is the out-force term of lattice Boltzmann equation. Via implementing the out-force term, the relation 

between this term and the source term of equation (4) can be obtained. This relation will allow to recover the 
Laplace-Poisson equation from lattice Boltzmann equation, allowing as well to solve both equations via using 
the present 9-bit model. 

With the use of second-order Taylor expansion to the equation above, it is obtained 

2
2 1

( ) ( ) ( )
2

eqt
t e f e f f f tF

t t
      



  
          

 

       (7) 

Via using the multi-scale expansion given in [36, 44], the following equations can be derived. 

(1) 2 (2)

(2)

1

2

2

eqf f f f

F F

t t

   

 

 







   




  

  

 

      (8) 
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where   is a small Knudsen number and 
ix


 


  is the partial differential operator, where ( 1,2)ix i  denote 

x or y directions in 2-dimensional Cartesian coordinates.  

Introducing equations (8) into equation (7). The equation to the first order of is presented as: 

1 (1)
1

1
:  eqte f f  


   


      (9) 

The equation to the second order of is called 2  and takes the form: 

2 (1) 2 (2) (2)
1 1

2

1
:  ( )

2
eq eqt

f e f e f f F
t t

      


 
      

 

       (10) 

Performing the operation    equation (9) + 2   equation (10), the following equation is obtained 

2 (1)1
(0.5 ) ( )eq eq eqf te f t e f f F

t
       




         



       (11) 

It must be noticed that in equation (11), u is time independent. Summarizing equation (11), it is obtained 

2(0.5 )t u F


           (12) 

where   is a parameter to be determined. 
Then the Laplace-Poisson equation has been recovered as 

2 ( )u f u        (13) 

Hence, it is obtained that ( )(0.5 )F f u t      . 

At this point it is assumed that the equilibrium distribution function has the following form 

2 30 1 2eqf C u C u C u            (14) 

0C 
, 1C 

and 2C 
are coefficients to be determined. 

Empirically, in order to close the system, it is necessary to introduce some artificial complementary 
conditions which are given by 

1 2 3 4

5 6 7 8

1 5

0 0 0 0

0 0 0 0

0 4 0

C C C C

C C C C

C C

  


  
 

      (15) 

Introducing equation (5) and equation (15) into equation (14), the equilibrium distribution function is 
obtained. 
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0 2

1,2,3,4 2

5,6,7,8 2

5
(1 )

3

3

12

eq

eq

eq

f u
c

u
f

c

u
f

c








 











      (16) 

Where c x t   . Notice that the present 9-bit model is capable of solving the Laplace and Poisson equation 

in a general way, which is different from the 5-bit model presented in Zhang’s et al work [28], where the 
equilibrium distribution function was given by the following equation 

1,2,3,4

0

1

2

(1 2 )

eq

eq

f u

f u









  

      (17) 

It is also different from the model presented in Chai’s work [25], where the equilibrium distribution 
function was given by the following equation 

( 1) ,   0

,  =1,2,3,4 

eq

eq

f u

f u

 

 

 

 

   




      (18) 

3.2. Burgers Equations 

The Burgers equation is a fundamental partial differential equation in fluid mechanics. It is written as 

2 0
u

u u u
t




    


      (19) 

where =1/Re. 

Following the process described in the previous section, it is defined f  as the particle distribution 

function with discrete directions denoted by .  In order to recover the Burgers equation from the LBE, the 
following assumptions are considered 

2

2

eq

eq

eq
i j ij

f u

u
f e

f e e u




 


  


 

 






 










 

      (20) 

The macroscopic quantity u and conservative condition are defined in the same way as presented in the 
former section. The LBE without the out-force term is the one to be used in the present case, which is 
equation (6) without the out-force term, the last term. 

By using second order Taylor expansion and multiple expansion technology, it is obtained  
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(1) 2 (2)

2

2

1

eqf f f f

t t

    





   

 


 
  

      (21) 

The equation to the first order of  is given as: 

1 (1)
1

1
: 0eqe f f

t
  


  




      (22) 

The equation to the second order of , 2 takes the form: 

2 (1) 2 (2)
1 1

2

1
: ( ) 0

2
eq eqt

f e f e f f
t t

     


 
     

 

 
     (23) 

When introducing equation (22) into equation (23), the following equation is obtained 

2 (2)
1

2

1
(0.5 )( ) 0eq eqf t e f f

t t
   




     

 


     (24) 

Performing the following operation   equation (22) + 2  equation (24), the next equation is reached 

(1) 2 2
1(0.5 )( ) 0eq eq eqf e f f t e f

t t
     


 




       

 

 
     (25) 

Summarizing equation (25), it is obtained the following equation given by 

2
2(0.5 ) 0

2

u u
t u

t
 


     


      (26) 

Then, the Burgers equation has been recovered and given by 

2 0
u

u u u
t




    


      (27) 

where (0.5 ) t     and  is the single relaxation time. 
In the same way, it is assumed that the equilibrium distribution function has the form given by equation 

(14). Again, the following two equations are some empirical manmade conditions required to close the system 
of equations.  

1 2 3 4

5 6 7 8

1 5

0 0 0 0

0 0 0 0

0 4 0

C C C C

C C C C

C C

  


  
 

      (28) 
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1 2 3 4

5 6 7 8

1 5

1 1 1 1

1 1 1 1

1 4 1

C C C C

C C C C

C C

    


    
 

      (29) 

Introducing equation (20), (28) and (29) into equation (14), the equilibrium distribution function is 
addressed as follows 

0 2

2

1,2 2

2

3,4 2

2

5,6 2

2

7,8 2

5
(1 )

6

106

106

4024

4024

eq

eq

eq

eq

eq

f u
c

u
f u

cc

u
f u

cc

u
f u

cc

u
f u

cc












 



  




 


  




 


      (30) 

It is to be highlighted that equation (30) is different from the equilibrium distribution function presented in 
reference [32], where the equilibrium distribution function was written in the following form. 

3

0 2 2

2 3

1,2 2 2

2 3

3,4 2 2

2 2
(1 )

3

42 6

42 6

eq

eq

eq

u
f u

c c

u u u
f

cc c

u u u
f

cc c








  





  


   



      (31) 

For 1D case, the model presented in [30] was addressed as: 

2

1 2

2

2 2

42

42

eq

eq

u u
f

cc

u u
f

cc


 





 


      (32) 

3.3. Wave Equations 

Here is the last application presented in this paper. The target equation is written as  
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2
2

2
 ( )

u
u f u

t



  


      (33) 

where ( )f u is called the source function because in practice it describes the effects of the sources of waves on 

the medium carrying them and  is a parameter of wave equation to be determined. When ( )f u  equals zero, 

the target equation becomes the wave equation we are familiar with. Otherwise, this equation is called 
inhomogeneous wave equation.  Following the same procedure previously described, it is defined the 

macroscopic quantity u

t




as [27] 

u
f

t








       (34) 

The conservative condition is the same as that of equation (3). In order to recover the wave equation from 
LBE, the same assumptions as the ones described by equation (5) were used. Introducing the LBE with out-
force term and using the second order Taylor expansion and multiple scale expansion, it is reached  

(1) 2 (2)

(2)

1

2

1 2

eqf f f f
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t t t
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
    

  

      (35) 

The first order equation of  takes the form: 

1 (1)
1

1

1
: ( ) 0eqe f f

t t
  




   

 

       (36) 

The second order equation of  , named 2 is given as: 

2 (1) 2 (2) (2)
1 1

2 1 1

1
: ( ) ( )

2
eq eqt

f e f e f f F
t t t t

      


   
       

   

     (37) 

Introducing equation (36) into equation (37), the following equation is obtained. 

2 (2) (2)
1

2 1

1
(0.5 )( )eq eqf t e f f F

t t t
    



 
      

  


     (38) 

Building the following operation   equation (36) + 2  equation (38), it is reached. 

2( ) (0.5 ) equ
t f e e F

t t
   




 

    
 

       (39) 

Hence, the wave equation has been recovered as 
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2
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 ( )

u
u f u

t



  


      (40) 

where ( 0.5) t     and ( )F f u  . 

As already done in the two previous target equations, it is assumed that the equilibrium distribution 
function has the form given by equation (14). In order to close the system, some artificial conditions are 
introduced and written as equation (15). For Wave equations, the assumption defined in equation (5) is now 
modified as the following equation. 
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      (41) 

Introducing equation (41) and equation (15) into equation (14), it is obtained: 
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      (42) 

Comparing the present case with the model presented in Yan’s work [27], where the equilibrium 
distribution function was addressed as equation (43), it can clearly be seen that the distribution functions are 
different from the previous ones presented in this paper. 
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      (43) 

For the wave equations, the conservative condition is given as: 

equ
f f

t
 

 


 


        (44) 

After each evolution of lattice Boltzmann equation, the new value of u

t




is obtained. In order to solve u for 

next time step, the fourth order Runge-Kutta scheme was used. The scheme is written as: 
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      (45) 

where 0t is the initial time, 0tu is u  for the present time step, 0t tu  is u for the next time step and 1,2,3,4k are 

parameters in fourth order Runge-Kutta scheme. 

4. Boundary Conditions  

The treatment of boundary conditions is very important to numerical simulations of computational fluid 
mechanics, and it has a big influence on computational results.  In this section, the treatment of boundary 
conditions involved in this paper is presented. 

4.1. Straight Wall Boundary Condition 

The non-equilibrium extrapolation scheme presented in [45] is employed to treat the straight wall boundary 
condition in the current numerical simulations. The general idea of this scheme is that the distribution 
function of each direction can be classified into two parts, known as the non-equilibrium part and the 
equilibrium part.  

Figure 2 is presenting the boundary condition for straight boundaries involved in the present numerical 
cases, it has to be noticed that points A, B, C characterize the flow points, while points D, E, F, define the 
wall boundaries. 

 

Fig. 2 introduces the straight wall boundary condition, where points A, B and C are flow points, while points D, E and F are wall 

boundary points. 

Taking the point E for example, the distribution functions of each direction are written as   
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( , ) ( , ) ( , )eq neqf E t f E t f E t          (46) 

With the non-equilibrium extrapolation scheme, Eq. (46) becomes 

1
( , ) ( , ) (1 )[ ( , ) ( , )]eq eqf E t f E t f B t f B t   


          (47) 

4.2. Curved Wall Boundary Condition 

For curved wall boundaries, figure 3, the unknown parts of distribution functions can be determined 
through a special linear interpolation. 

 

Fig. 3 presents the straight wall boundary condition, point ff and point f belong to flow points, while point w is a wall boundary point and 
point b is an internal wall point (virtual point). 

Taking the point f for example, only the distribution function of direction 6 (shown in Fig.1), addressed 

as 6f , is unknown after the first evolution process. In Chen et al paper [46], they presented an accurate curved 

boundary treatment, which is also used in the present paper. Taking the point b for example, after each 
evolution, the equilibrium distribution function of point f along direction 6 is unknown and constructed as 

6 6 6 6( , ) ( , ) [ ( , ) ( , )]
1

e
f w ff w

e

f r t t f r t t f r t t f r t t


          
 

   
     (48) 

where: 
f w

e

f b

r r

r r


 



 

  .  

However, the distribution function of point w along direction 6 is also unknown. According to the non-slip 
condition, it is obtained the following form to address the distribution function of point w along direction 6. 

6 8( , ) ( , )w wf r t t f r t t    
 

      (49) 

The distribution function of point w along direction 8 (shown in Fig.1) is obtained through a linear 
interpolation and written as the following form 
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8 8 8 8( , ) ( , ) [ ( , ) ( , )]w f e b ff r t t f r t t f r t t f r t t           
         (50) 

Introducing equations (49) and (50) into (48), the distribution functions of the point b along direction 6 is 
obtained. As a result of this development, the streaming operation, from the point b to the point f, can be 
smoothly finished. In the present research, Mei et al scheme [47] and Guo et al scheme [48] were also 
evaluated, it turned out they all work well with the curved wall boundaries. 

5. Test Cases 

In this section different numerical cases will be evaluated, the 9-bit model proposed in this paper will be 
tested and compared with the previous models or with the analytical solutions. The benefits of the present 
model will be highlighted, indicating why this model should be seen as an advanced one for the cases studied. 

Case 1. 
In this case the 2D Laplace equation is simulated in a square zone, the test equation is written as 

2 0 (0 1,  0 1)

( ,0) 0,  ( ,1) sin( )

(0, ) (1, ) 0

u x y

u x u x x

u y u y



     


 
  

      (51) 

The exact solution presented in Zhang’s work [28], is sin( )sinh( )
( , )

sinh( )

x y
u x y

 


 , where they also presented a 

5-bit model for 2D Laplace equation. 

Figure 4 introduces the comparison between the 9-bit model presented in this paper and the exact solution 
already presented in Zhang’s work. The figure on the left, represents the variable u  obtained via numerical 
prediction of the present 9-bit model by using a 100 100 mesh size, with constants designed as c =1.0, 

 =1.5, and  =0.5.  Notice that the agreement is good.  
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Fig. 4. Compares 3D view of the numerical prediction of the present 9-bit model, left hand side, with the exact solution of 2D Laplace 
equation, right hand side. Mesh size was 100  100, c =1.0,  =1.5,  =0.5 and contour number is 15. 
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Fig. 5. Comparison between the prediction of this paper, numerical result of Zhang et al [28] model and exact solution. Mesh size was 

100  100, c =1.0,  =1.5,  =0.5 and contour number is 15. 

Since figure 4 is just giving an overall view of the comparison, to further evaluate the model performance, 
it is required a 2D projected view between the analytical results, Zhang’s et al ones [28] and the 9-bit model 
introduced in the present paper, such view is presented in figure 5. The solid purple line represents the 
analytic solution, the dashed green line is the result of Zhang’s et al model [28] and the dotted red line is the 
prediction of the present research. Notice that the three results are almost identical, the small maximum 
differences are presented in table 2.  

In the present case, three different mesh sizes were evaluated, 50 50, 100 100 and 200 200, for the 
three cases, the parameters c =1.0,  =1.5,  =0.5 and contour number = 15, were kept constant. 

Table 1 presents the comparison between the computational time required for the present model and Zhang 
et al model. Comparison is being made for three different grid sizes. Notice that independently of the grid size 
used, the 9-bit model introduced in this paper, is converging faster. The ratio (t1/t2) is the computational time 
between reference [28] model and the present 9-bit model. Table 2 introduces the maximum error obtained 
when comparing the exact solution with the one obtained by Zhang’s et al model and the present 9-bit model, 
regardless of the grid size used, the actual model is producing a smaller error than the Zhang’s et al one. At 
this point, it is important to clarify that to obtain all tables presented in all different cases evaluated, except 
table 7, the models developed by previous researchers as well as the 9-bit model introduced in this paper, 
were programmed and computed on the same computer, being the boundary conditions identical, therefore the 
results obtained are fully comparable and just depend on the model itself. The results presented in table 7, 
were taken directly from the data given by previous researchers. 

Table 1. t1 is the time that consumed by 5-bit model [28], t2 is the counterpart that of 9-bit model presented in this paper. 

Mesh size Data source Convergence 
condition 

Ratio 
(t1/t2) 

(50,50) Present paper 10(-6) 2.174 
Ref.28(5-bit) 10(-6) 

(100,100) Present paper 10(-6) 2.115 
Ref.28(5-bit) 10(-6) 

(200,200) Present paper 10(-6) 2.019 
Ref.28(5-bit) 10(-6) 
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Table 2. The comparison of maximum value of error with different resolutions between 9-bit model and Zhang et al model [28]. 

Mesh size Data source Maximum 
error 

Convergence 
condition 

(50,50) Ref.28(5-bit) 0.00037896 10(-6) 
Present paper 0.0002135 10(-6) 

(100,100) Ref.28(5-bit) 0.000247 10(-6) 
Present paper 0.000136 10(-6) 

(200,200) Ref.28(5-bit) 0.001035 10(-6) 
Present paper 0.0010153 10(-6) 

As a conclusion from tables 1 and 2, it can be said that the 9-bit model is computationally efficient and 
accurate. 

Case 2. 
In this case the 2D Laplace equation is simulated in a curved zone, the aim of this case is to prove that the 

9-bit model presented in this paper is capable of solving the 2D Laplace equation with curved boundaries, the 
test equation is written as 

2

2 2

0

( , ) sin( )cos( )

( , ) 1

u

u x y y x

x y x y

 

 



   

      (52) 
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Fig. 6. 3D view of 2D Laplace equation in case 2. The variable u at the left side is calculated by using 9-bit model presented in this 
paper. The variable Z at the right side is numerical solution calculated by finite-difference methods (FDM). 

Considering the target equation (52), it is difficult to get the analytic solution. Hence, the numerical 
solution, calculated by finite-difference method, with convergence condition 10(-10) is introduced to 
substitute the analytic solution. For simplicity, the numerical solution calculated by FDM will be addressed as 
analytic solution in this case. Figure 6 presents the 3D view of 2D Laplace equation obtained using the actual 
9-bit model, left hand side, the comparison with numerical solution calculated by finite-difference method, is 
presented on the right hand side. Both figures show exactly the same results. Figure 7 introduces the 2D plain 
view plot of figure 6. The solid green line represents the analytic solution and the dotted red line is the 
prediction of this paper. As can be seen from figure 7, the numerical result shows a very good agreement with 
the analytic solution. 
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Fig. 7. Comparison between the prediction of this paper and exact solution. 

The mesh used was a non-uniform Cartesian grid, having 8649 cells. The parameters were c =1.0,  =1.2, 

 =1/2 and the contour number was 15. The disk diameter employed was 1. 
Table 3 introduces the comparison between the computational time obtained by Zhang et al [28] model and 

the present model, it also presents the maximum error generated by these two models when compared with the 
exact solution. Results show that the present 9-bit model is computationally efficient and accurate when 
solving 2D Laplace equation with curved boundary.  

Table 3. The comparison between 9-bit model and Zhang’s 5-bit model. t1 is the time that consumed by 5-bit model [28], t2 is the 

counterpart that of 9-bit model presented in this paper. 

Model Mesh 
size 

Maximum 
error 

Convergence 
condition 

t1/t2 

5-bit Zhang [28] 8649 0.003977 10(-6) 1.58 
9-bit 8649 0.001408 10(-6) 

Case 3. 
In this case the 2D Poisson equation is simulated in a square zone, the test equation is written as 

2 22 cos( ) sin( )

0 1,0 1

( ,0) ( ,1) 0

(0, ) sin( ),  (1, ) sin( )

u x y

x y

u x u x

u y y u y y

  

 

  


   


 
   

      (53) 

The analytic solution is ( , ) cos( )sin( )u x y x y  . 

Figure 8, left hand side, presents the 3D view of 2D Poisson equation obtained using the present 9-bit 
model, for comparison, the analytic solution is to be found on the right hand side. The figure shows that the 
numerical prediction and the analytical solution are almost identical. Nevertheless, in order to closely 
compare these results, figure 9 is presented.  
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Fig. 8. 3D view of 2D Poisson equation in case 3. The variable u at the left side is calculated by using 9-bit model presented in this 
paper. The variable Z at the right side is the exact solution. Mesh size was 100  100, c =1.0,  =1.1,  =0.5 and contour number is 15. 
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Fig. 9. Comparison between the prediction of this paper and exact solution. Mesh size was 100  100, c =1.0,  =1.1,  =0.5 and contour 

number is 15. 

Figure 9 introduces the 2D plain view plot of figure 8. The solid red line represents the analytic solution 
and the dotted blue line is the prediction from this paper. In order to show the advantage of the actual 9-bit 
model, the Zhang’s et al 5-bit model was further developed in this paper to deal with Poisson equation, 
because the original one could only be applied to solve the Laplace equation. Table 4 presents the comparison 
between the computational time obtained by the 5-bit modified model from Zhang’s et al. and the current 
model. Table 5 presents the maximum error generated by the current model and the 5-bit modified Zhang’s et 
al. model, when compared with the exact solution. In both tables, the comparisons were done for three 
different mesh sizes. 

Table 4. t1 is the time that consumed by 5-bit model, t2 is the counterpart that of 9-bit model presented in this paper. 

Mesh size Data source Convergence 
condition 

Ratio 
(t1/t2) 

(50,50) 9-bit 10(-6) 1.413 
5-bit 10(-6) 

(100,100) 9-bit 10(-6) 1.399 
5-bit 10(-6) 
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(200,200) 9-bit 10(-6) 1.380 
5-bit 10(-6) 

Table 5. The comparison of maximum value of error with different resolutions between 9-bit model and 5-bit model 

Mesh size Data source Maximum 
error 

(50,50) Modified Zhang’s 5-bit 0.000315 
Present 9-bit 0.000337 

(100,100) Modified Zhang’s 5-bit 0.000255 
Present 9-bit 0.000128 

(200,200) Modified Zhang’s 5-bit 0.000755 
Present 9-bit 0.000534 

From tables 4 and 5, it can be seen that the 9-bit model is computationally efficient and accurate when 
solving the 2D Poisson equation, yet, a small particularity was found when evaluating the (50, 50) resolution. 
For this particular case, the modified Zhang’s 5-bit model, presented a slightly smaller error than the 9-bit 
model one.  The authors believe that the reason behind this mismatch, could be connected with the fact that a 
9-bit model is a very accurate one, and the (50, 50) resolution grid is too coarse to show any advantage of the 
present model over a lower level model.   

Case 4. 
In this case, the 2D wave equation will be simulated, the test equation is written as 

2
2

2
 ( , , )

( , ) (0,1) (0,1),  0

u
u f x y t

t

x y t




  


   

      (54) 

where 1  . The boundary and initial conditions are 

(0, , ) (1, , ) 0

( ,0, ) ( ,1, ) 0

( , ,0) (1 ) (1 )

( , ,0) 0

u y t u y t

u x t u x t

u x y x x y y

u
x y

t

 
  

  

 
 

      (55) 

and the source term is given as the following equation 

2 2 2 2 2 2( , , ) (2 2 2 2 )cos( )f x y t x x y xy x y y xy x y t             (56) 

For this case, the analytical solution is taking the following form: 

( , , ) (1 ) (1 ) cos( )u x y t x x y y t         (57) 

Figure 10, on the left hand side, presents the 3D view of the solution of equation (54) at time equals 0.2, 
calculated by the current 9-bit model, the right hand side shows the analytical solution for the same time. 
Figure 11 is the projected view of figure 10, the solid red line represents the analytical solution and the dotted 
black line represents the prediction of this paper, it shows that the prediction presented in this paper has a 
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good agreement with the exact solution, indicating that the 9-bit model proposed in this paper is able to 
accurately solve the 2D Wave equation. 

 

Fig. 10. Calculated u in 3D view at time t=0.2.  Mesh size was 100  100, c =5.0,  =1.2,  =1.0 and contour number is 15. Actual 9-bit 

model, left hand side, and analytical solution, right hand side. 
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Fig. 11. Comparison between the prediction of this paper and exact solution at time t=0.2.  Mesh size was 100  100, c =5.0,  =1.2, 

 =1.0 and contour number is 15. 

In order to further compare the accuracy of the present model, Yan’s models [27], were programmed to 
solve this particular case. Table 6 introduces the maximum error generated by the current model and Yan’s 
[27] 5-bit and 9-bit models when compared with the exact solution. It is noticed from table 6 that the 9-bit 
model presented in this paper produces smaller errors than these two models. 

Table 6. The comparison of maximum value of error with different resolutions between present 9-bit model and Yan’s 5-bit and 9-bit 
model [27]. 

Mesh size Data source Maximum 
error 

Convergence 
condition 

 
(100,100) 

Present 9-bit model 0.000086 10(-6) 
Yan’s 9-bit model 0.007712 10(-6) 
Yan’s 5-bit model 0.000090 10(-6) 
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Case 5. 
For the present case, the 1D Burgers equation is to be evaluated, case 5 is designed to compare the lattice 

Boltzmann model presented in this paper with other traditional (CFD) methods [49] and [50]. The 1D Burgers 
equation was chosen due to its simplicity to implement it computationally.  

The test equation is written as 

2

2

u u u
u

t x x


  
 

  
      (58) 

According to [49, 50], 0.01/   and the boundary and initial conditions are 

( ,0) sin( )

1 1

( 1, ) (1, ) 0

u x x

x

u t u t

 

  
   

      (59) 

Figure 12 presents the solution of equation (58) for different time, as expected, the slope of the curve 
increases as time increases. The left side of figure 12 introduces the results calculated based on the model 
presented in this paper, and the right side presents the numerical results obtained in Vassilis’s work [49]. 
From figure 12, it can be seen that the two results are almost the same, especially when considering the 
tendency of the slope with time increase. In order to compare the present results with the ones obtained by 
[49] and [50], it is typically used the curve slope at time equals 0.5. From Vassilis [49] and Macaraeg and 
Streett work [50], the values of the slope at time 0.5t   were respectively 152.0052 and 152.0049. In the 
present work and for the same time, it is found that the value of the slope is 152.0067. As a conclusion it can 
be stated that the present lattice Boltzmann model is able to solve 1D Burgers equation. 
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Fig. 12. The lines represent the numerical prediction at different time. The mesh size is 100, c =5.0,  =1.5. 

Case 6. 
For the present case, the 1D modified Burgers equation is to be evaluated, the test equation is written as 

2
2

2

u u u
u

t x x


  
 

  
      (60) 
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According to [30], 0.01  and the boundary and initial conditions are 

( ,0) sin( )

0 1

(0, ) (1, ) 0

u x x

x

u t u t

 


 
  

      (61) 

Figure 13 introduces the solution of equation (60) when using the present model for different non-
dimensional times, ranging from 0.5 to 2.5. The left hand side of figure 13 presents the numerical prediction 
of this paper and the right hand side of figure 13 introduces the results computed in reference [30]. It can be 
seen from figure 13 that the two results are nearly the same. 
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Fig. 13. Shows the value of u calculated in this paper at different time. 

Table 7. Comparison of the value of u at different position along coordinate x at t=2.0. 

Coordinate x Present 
paper 

Ref.20 Ref.35 

0.10 0.11179 0.11194772 0.11013979 
0.20 0.20683 0.20710153 0.20614825 
0.30 0.28477 0.28512152 0.28477813 
0.40 0.34997 0.35038171 0.35045112 
0.50 0.40619 0.40665374 0.40700602 
0.60 0.45598 0.45649486 0.45704614 
0.70 0.50092 0.50155303 0.50224419 
0.80 0.54138 0.54199420 0.54265295 
0.90 0.534529 0.53547356 0.53225529 

In order to further validate the results obtained from the previous simulations, table 7 was created. It can be 
seen that the comparison has been made between the results calculated by present model, the results proposed 
in reference [30] and the results presented in reference [51], where the collocation method with quantic 
splines was applied. It is found that the present model is capable of solving the 1D modified Burgers equation 
and the numerical results are acceptable when compared with the two other computed results. 

6. Conclusions 

In this paper, a lattice Boltzmann method 9-bit model is presented, and applied to a series of 1D and 2D 
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mathematical-physical equations. Several test cases are presented to compare the 9-bit model and numerical 
predictions generated in this paper, with the work undertaken by previous researchers or with analytic 
solutions. In all cases studied, the 9-bit model performed well. Some main conclusions are summarized 
below. 
 New equilibrium distribution functions were derived for the present 9-bit model to solve each target 

equation, see equations, 16, 30 and 42.   
 To match with the discrete velocities lattice, the artificial constrains were chosen, they were the same for 

all cases evaluated and different from previous researchers work.  
 It turns out that the present 9-bit model is numerically more effective and accurate in solving the studied 

target equations than the previous models evaluated. 
 Numerical results show that the 9-bit model is capable of solving 2D problems with both straight and 

curved geometries. It also solves 1D problems. 
 This 9-bit model can solve the Laplace-Poisson and wave equation, which are recovered from LBE, in a 

general way, by introducing the out-force term. The relation between the out-force term and the source 
term is to be seen as different versus the previous existing ones.  
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