6,489 research outputs found

    Verifying message-passing programs with dependent behavioural types

    Get PDF
    Concurrent and distributed programming is notoriously hard. Modern languages and toolkits ease this difficulty by offering message-passing abstractions, such as actors (e.g., Erlang, Akka, Orleans) or processes (e.g., Go): they allow for simpler reasoning w.r.t. shared-memory concurrency, but do not ensure that a program implements a given specification. To address this challenge, it would be desirable to specify and verify the intended behaviour of message-passing applications using types, and ensure that, if a program type-checks and compiles, then it will run and communicate as desired. We develop this idea in theory and practice. We formalise a concurrent functional language λπ ⩽, with a new blend of behavioural types (from π-calculus theory), and dependent function types (from the Dotty programming language, a.k.a. the future Scala 3). Our theory yields four main payoffs: (1) it verifies safety and liveness properties of programs via type– level model checking; (2) unlike previous work, it accurately verifies channel-passing (covering a typical pattern of actor programs) and higher-order interaction (i.e., sending/receiving mobile code); (3) it is directly embedded in Dotty, as a toolkit called Effpi, offering a simplified actor-based API; (4) it enables an efficient runtime system for Effpi, for highly concurrent programs with millions of processes/actors

    Surgical clip closure of the left atrial appendage

    Get PDF
    Atrial fibrillation (AF) is the most common atrial arrhythmia, but it is not a benign disease. AF is an important risk factor for thromboembolic events, causing significant morbidity and mortality. The left atrial appendage (LAA) plays an important role in thrombus formation, but the ideal management of the LAA remains a topic of debate. The increasing popularity of surgical epicardial ablation and hybrid endoepicardial ablation approaches, especially in patients with a more advanced diseased substrate, has increased interest in epicardial LAA management. Minimally invasive treatment options for the LAA offer a unique opportunity to close the LAA with a clip device. This review highlights morphologic, electrophysiologic, and surgical aspects of the LAA with regard to AF surgery, and aims to illustrate the importance of surgical clip closure of the LAA

    Performance of Optically Readout GEM-based TPC with a 55Fe source

    Full text link
    Optical readout of large Time Projection Chambers (TPCs) with multiple Gas Electron Multipliers (GEMs) amplification stages has shown to provide very interesting performances for high energy particle tracking. Proposed applications for low-energy and rare event studies, such as Dark Matter search, ask for demanding performance in the keV energy range. The performance of such a readout was studied in details as a function of the electric field configuration and GEM gain by using a 55^{55}Fe source within a 7 litre sensitive volume detector developed as a part of the R\&D for the CYGNUS project. Results reported in this paper show that the low noise level of the sensor allows to operate with a 2~keV threshold while keeping a rate of fake-events lesser than 10 per year. In this configuration, a detection efficiency well above 95\% along with an energy resolution (σ\sigma) of 18\% is obtained for the 5.9 keV photons, demonstrating the very promising capabilities of this technique

    Variability and predictors of response to continuous theta burst stimulation: a TMS-EEG study

    Get PDF
    Continuous theta-burst stimulation (cTBS) is a repetitive transcranial magnetic stimulation paradigm reported to decrease the excitability of the stimulated cortical area and which is thought to reflect a form of inhibitory synaptic plasticity. However, since its introduction, the effect of cTBS has shown a remarkable variability in its effects, which are often quantified by measuring the amplitude of motor evoked potentials (MEPs). Part of this inconsistency in experimental results might be due to an intrinsic variability of TMS effects caused by genetic or neurophysiologic factors. However, it is also possible that MEP only reflect the excitability of a sub-population of output neurons; resting EEG power and measures combining TMS and electroencephalography (TMS-EEG) might represent a more thorough reflection of cortical excitability. The aim of the present study was to verify the robustness of several predictors of cTBS response, such as I wave recruitment and baseline MEP amplitude, and to test cTBS after-effects on multiple neurophysiologic measurements such as MEP, resting EEG power, local mean field power (LMFP), TMS-related spectral perturbation (TRSP), and inter-trial phase clustering (ITPC). As a result, we were not able to confirm either the expected decrease of MEP amplitude after cTBS or the ability of I wave recruitment and MEP amplitude to predict the response to cTBS. Resting EEG power, LMFP, TRSP, and ITPC showed a more consistent trend toward a decrease after cTBS. Overall, our data suggest that the effect of cTBS on corticospinal excitability is variable and difficult to predict with common electrophysiologic markers, while its effect might be clearer when probed with combined TMS and EEG

    A 1 m3^3 Gas Time Projection Chamber with Optical Readout for Directional Dark Matter Searches: the CYGNO Experiment

    Full text link
    The aim of the CYGNO project is the construction and operation of a 1~m3^3 gas TPC for directional dark matter searches and coherent neutrino scattering measurements, as a prototype toward the 100-1000~m3^3 (0.15-1.5 tons) CYGNUS network of underground experiments. In such a TPC, electrons produced by dark-matter- or neutrino-induced nuclear recoils will drift toward and will be multiplied by a three-layer GEM structure, and the light produced in the avalanche processes will be readout by a sCMOS camera, providing a 2D image of the event with a resolution of a few hundred micrometers. Photomultipliers will also provide a simultaneous fast readout of the time profile of the light production, giving information about the third coordinate and hence allowing a 3D reconstruction of the event, from which the direction of the nuclear recoil and consequently the direction of the incoming particle can be inferred. Such a detailed reconstruction of the event topology will also allow a pure and efficient signal to background discrimination. These two features are the key to reach and overcome the solar neutrino background that will ultimately limit non-directional dark matter searches.Comment: 5 page, 7 figures, contribution to the Conference Records of 2018 IEEE NSS/MI

    The A(Kstop,π±Σ)AA(K^-_{stop},\pi^\pm\Sigma^\mp)A' reaction on p-shell nuclei

    Get PDF
    This letter is concerned with the study of the KstopAπ±ΣAK^-_{stop}A\rightarrow \pi^\pm\Sigma^\mp A' reaction in p-shell nuclei, i.e., 6,7Li^{6,7}Li, 9Be^9Be, 13C^{13}C and 16O^{16}O. The π±Σ/Kstop\pi^\pm\Sigma^\mp / K^-_{stop} emission rates are reported as a function of AA. These rates are discussed in comparison with previous findings. The ratio πΣ+/π+Σ\pi^-\Sigma^+/\pi^+\Sigma^- in p-shell nuclei is found to depart largely from that on hydrogen, which provides support for large in-medium effects possibly generated by the sub-threshold Λ(1405)\Lambda(1405). The continuum momentum spectra of prompt pions and free sigmas are also discussed as well as the π±Σ\pi^\pm\Sigma^\mp missing mass behavior and the link with the reaction mechanism. The apparatus used for the investigation is the FINUDA spectrometer operating at the DAΦ\PhiNE ϕ\phi-factory (LNF-INFN, Italy).Comment: 14 pages, 5 figures, accepted for publication in Phys. Lett.

    The geometrical nature of optical resonances : from a sphere to fused dimer nanoparticles

    Get PDF
    We study the electromagnetic response of smooth gold nanoparticles with shapes varying from a single sphere to two ellipsoids joined smoothly at their vertices. We show that the plasmonic resonance visible in the extinction and absorption cross sections shifts to longer wavelengths and eventually disappears as the mid-plane waist of the composite particle becomes narrower. This process corresponds to an increase of the numbers of internal and scattering modes that are mainly confined to the surface and coupled to the incident field. These modes strongly affect the near field, and therefore are of great importance in surface spectroscopy, but are almost undetectable in the far field

    A Novel Approach for an Integrated Straw tube-Microstrip Detector

    Full text link
    We report on a novel concept of silicon microstrips and straw tubes detector, where integration is accomplished by a straw module with straws not subjected to mechanical tension in a Rohacell ®^{\circledR} lattice and carbon fiber reinforced plastic shell. Results on mechanical and test beam performances are reported on as well.Comment: Accepted by Transactions on Nuclear Science (2005). 11 pages, 9 figures, uses lnfprep.st
    corecore