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Abstract
Concurrent and distributed programming is notoriously hard.

Modern languages and toolkits ease this difficulty by offering

message-passing abstractions, such as actors (e.g., Erlang,

Akka, Orleans) or processes (e.g., Go): they allow for simpler

reasoning w.r.t. shared-memory concurrency, but do not

ensure that a program implements a given specification.

To address this challenge, it would be desirable to specify

and verify the intended behaviour of message-passing applica-

tions using types, and ensure that, if a program type-checks

and compiles, then it will run and communicate as desired.

We develop this idea in theory and practice. We formalise

a concurrent functional language λπ⩽ , with a new blend of

behavioural types (from π -calculus theory), and dependent

function types (from the Dotty programming language, a.k.a.

the future Scala 3). Our theory yields four main payoffs: (1) it

verifies safety and liveness properties of programs via type–

level model checking; (2) unlike previous work, it accurately

verifies channel-passing (covering a typical pattern of actor

programs) and higher-order interaction (i.e., sending/receiv-

ing mobile code); (3) it is directly embedded in Dotty, as a

toolkit called Effpi, offering a simplified actor-based API;

(4) it enables an efficient runtime system for Effpi, for highly
concurrent programs with millions of processes/actors.

CCS Concepts • Theory of computation → Process cal-

culi; Type structures; Verification by model checking; • Soft-
ware and its engineering→ Concurrent programming lan-

guages.

Keywords behavioural types, dependent types, processes,

actors, Dotty, Scala, temporal logic, model checking
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1 Introduction
Consider this specification for a payment service with audit-

ing (from a use case for the Akka Typed toolkit [42, 50]):

1 def payment(aud: ActorRef[Audit[_]]): Actor[Pay, _] =

2 forever {

3 read { pay: Pay =>

4 if (pay.amount > 42000) {

5 send(pay.replyTo, Rejected("Too high!"))

6 } else {

7 send(aud, Audit(pay)) >>

8 send(pay.replyTo, Accepted)

9 } } }

Figure 1. Implemention of the payment service specification

(§1). Although similar to Akka Typed [50], it is written in

Dotty and Effpi, described in §5; “>>” (l.7) means “and then.”

1. the service waits for Paymessages, carrying an amount;

2. the service can decide to either:

a. reject the payment, by sending Rejected to the payer;

b. accept the payment. Then, it must report it to an audit-

ing service, and send Accepted to the payer;

3. then, the service loops to 1, to handle new Payments.

This can be implemented using various languages and tools

for concurrent and distributed programming. E.g., using

Scala and Akka Typed [50], a developer can write a solution

similar to Fig. 1: payment is an actor, receiving messages of

type Pay (line 1); aud is the actor reference of the auditor,

used to send messages of type Audit; whenever a pay mes-

sage is received (line 3), payment checks the amount (line 4),

and uses the pay.replyTo field to answer either Accepted
or Rejected — notifying the auditor in the first case.

The typed actor references in Fig. 1 guarantee type safety:

e.g., writing send(aud, "Hi") causes a compilation error.

However, the payment service specification is not enforced:

e.g., if the developer forgets to write line 7, the code still com-

piles, but accepted payments are not audited. This is a typical

concurrency bug: a missing or out-of-order communication

can cause protocol violations, deadlocks, or livelocks. Such

bugs are often spotted late, during software testing or main-

tenance — when they are more difficult to find and fix, and

harmful: e.g., what if unaudited payments violate fiscal rules?

These issues were considered during the design of Akka

Typed, with the idea of using types for specifying protocols

https://doi.org/10.1145/3314221.3322484
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[46], and produce compilation errors when a program viol-

ates a desired protocol. However, the resulting experiments

[41] had no rigorous grounding: although inspired by the

session types theory [3, 26], the approach was informal, and

the kind of assurances that it could provide are unclear. Still,

the idea has intriguing potential: if realised, it would allow

to check the payment specification above at compile-time.

Our proposal is a new take on specifying and statically

verifying the behaviour of concurrent programs, in two steps.

Step 1: enforcing protocols at compile-time We develop

Effpi [64], a toolkit for message-passing programming in

Dotty (a.k.a. Scala 3), that allows to verify the code in Fig. 1

against its specification, at compile time. This is achieved by

replacing the rightmost “_” (line 1) with a behavioural type:

Forever[ In[Pay, (p: Pay) => // Dependent function type [16]

Out[p.replyTo.type, Rejected]

| ( Out[aud.type, Audit[p.type]] >>:

Out[p.replyTo.type, Accepted] ) ] ]

With this type annotation, the code in Fig. 1 still type-checks

and compiles; but if, e.g., line 7 is forgotten, or changed in a

way that does not audit properly (e.g., writing null instead

of aud), then a compilation error ensues. The type above

formalises the payment service specification by capturing the

desired behaviour of its implementation, and tracking which

ActorReferences are used for interacting, and when. Type

“In” (provided by Effpi) requires to wait for a message p of

type Pay, and then either (| means “or” ) send Rejected on
p.replyTo, or send an audit, and then (>>:) send Accepted.
Notably, p is bound by a dependent function type [16].

Effpi is built upon a concurrent functional calculus for

channel-based interaction, called λπ⩽ ; its novelty is a blend

of behavioural types (inspired by π -calculus literature) with
dependent function types (inspired by Dotty’s foundation D<:

[2]), achieving unique specification and verification capab-

ilities. Effpi implements λπ⩽ as an internal DSL in Dotty —

plus syntactic sugar for an actor-based API (cf. Fig. 1).

Step 2: verification of safety / liveness properties In Step

1, we establish the correspondence between protocols and

programs, via syntax-driven typing rules. But this is not

enough: programs may be expected to have safety properties

(“unwanted events never happen”) or liveness properties

(“desired events will happen”) [43]. E.g., in our example, we

want each accepted payment to be audited; but in principle,

an auditor’s implementation might be based on a type like:

In[ Audit[_], (a: Audit[_]) => End ]

(i.e., receive one Audit message a, and terminate). This im-

plementation, in isolation, may be deemed correct by mere

type checking; however, if such an auditor is composed with

the payment service above (receiving messages sent on aud),

B = {tt,ff} C = {a, b, c, . . .} X = {x, y, z, . . .}

terms T ∋ t, t ′, . . . F X
�� V �� ¬t

�� if t then t1 else t2
let x = t in t ′

�� t t ′ �� chan()
�� P

values V ∋ u,v, . . . F B
�� C �� λx .t �� ()

�� err
processes P ∋ p,q, . . . F end

�� send(t, t ′, t ′′)
�� recv(t, t ′)

�� t || t ′
Figure 2. Syntax of λπ⩽ terms. The set C (highlighted) con-

tains channel instances, that are part of the run-time syntax.

the resulting application would not satisfy the desired prop-

erty: only one accepted payment is audited. With complex

protocols, similar problems become more difficult to spot.

The issue is that types in λπ⩽ and Effpi can specify rich

protocols — but when such protocols (and their implementa-

tions) are composed, they might yield undesired behaviours.

Hence, we develop a method to: (1) compose types/protocols,

and decide whether they enjoy safety / liveness properties;

(2) transfer behavioural properties of types to programs.

Contribution We present a new method to develop mes-

sage-passing programs with verified safety/liveness prop-

erties, via type-level model checking. The key insight is: we

use variables in types, to track inputs/outputs in programs,

through a novel blend of behavioural+dependent function

types. Unlike previous work, our theory can track channels

across transmissions, and verify mobile code, covering import-

ant features of modern message-passing programs.

Outline. §2 formalises the λπ⩽ calculus, at the basis of

Effpi. §3 presents type system of λπ⩽ . §4 shows the cor-

respondence between type / process transitions (Thm. 4.4,

4.5), and how to transfer temporal logic judgements on types

(that are decidable, by Lemma 4.7) to processes. This yields

Thm. 4.10: our new method to verify safety / liveness proper-

ties of programs. §5 explains how the design of λπ⩽ naturally

leads Effpi’s implementation (i.e., the paper’s companion

artifact), and evaluates: (1) its run-time performance and

memory use (compared with Akka Typed); (2) the speed of

type-level model checking. §6 discusses related work.

The technical report [70] contains proofs and more material.

2 The λπ⩽-Calculus
The theoretical basis of our work is a λ-calculus extended
with channels, input/output, and parallel composition, called

λπ⩽ . The “π” denotes both: (1) its use of dependent function

types, that, together with subtyping ⩽, are cornerstones

of its typing system (§3); and (2) its connection with the

π -calculus [54, 55, 63]. Indeed, λπ⩽ is a monadic-style encod-

ing of the higher-order π -calculus(cf. Ex. 2.6): continuations
are λ-terms, and this will be helpful for typing (§3) and im-

plementation (§5).

Definition 2.1. The syntax of λπ⩽ is in Fig. 2. Elements of

C are run-time syntax. Free/bound variables fv(t)/bv(t) are
defined as usual.We adopt the Barendregt convention: bound
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variables are syntactically distinct from each other, and from

free variables. We write λ_.t for λx .t , when x < fv(t).

The set of values V includes booleans B, channel instances
C, function abstraction, the unit (), and error. The terms

(in T) can be variables (from X), values (from V), various
standard constructs (negation ¬t , if/then/else, let binding,
function application), and also channel creationchan(), and
process terms (from P). The primitive chan() evaluates by
returning a fresh channel instance from C—whose elements

are part of the run-time syntax, and cannot be written by

programmers. Process terms include the terminated process

end, the output primitive send(t, t ′, t ′′) (meaning: send t ′

through t , and continue as t ′′), the input primitive recv(t, t ′)
(meaning: receive a value from t , and continue as t ′), and the
parallel composition t ||t ′ (meaning: t and t ′ run concurrently,
and can interact). λπ⩽ can be routinely extended with, e.g.,

integers, strings, records, variants: we use them in examples.

Example 2.2. A ping-pong system in λπ⩽ is written as:

let pinger = λself .λpongc .(
send(pongc, self , λ_.(

recv(self , λreply .(
end )))))

let ponger = λself .(
recv(self , λreplyTo .(
send(replyTo, "Hi!", λ_.(
end )))))

let sys = λy′ .λz′ .
(
pinger y

′
z
′ || ponger z′

)
let main = λ_.let y =chan() in let z =chan() in sys y z

• pinger is an abstract process that takes two channels: self

(its own input channel), and pongc. It uses pongc to send

self , then uses self to receive a response, and ends;
• ponger takes a channel self , uses it to receive replyTo, then

uses replyTo to send "Hi!", and ends;
• sys takes channels y

′
, z

′
, and uses them to instantiate

pinger and ponger in parallel;

• invoking main () instantiates syswith y and z (containing

channel instances): this lets pinger and ponger interact.

Note that in pinger and ponger , and also in Ex. 2.4 below,

the last argument of send/recv is always an abstract pro-

cess term: this is expected by the semantics (Def. 2.5), and

enforced via typing (§3).

Remark 2.3. In Ex. 2.2, pinger / ponger use channel passing

to realise a typical pattern of actor programs: they have their

own “mailbox” (self ), and interact by exchanging their own

“reference” (again, self ). We will leverage this intuition in §5.

Example 2.4. This example instantiates and interconnects

three parallel processes (we shorten “let...” by omitting “in”):

let sender = λy .send(y, "Hello", λ_.end)
let receiver = λz .recv(z, λx ′.end)
let fwd = λi .λo .recv(i, λz′.send(o, z′, λ_.fwd i o))
let sys = λy′ .λz′ .

(
sender y

′ || fwd y′ z′ || receiver z′
)

let main = λ_.let y =chan() in let z =chan() in sys y z

• sender is an abstract process that takes a channel y,

uses it to send "Hello", and ends;

• receiver takes a channel z, uses it to receive a value x
′
,

and terminates;

• fwd takes two channels i and o, recursively reads a

message from z
′
from i, and writes it in o;

• sys takes channels y
′
, z

′
, and uses them to instantiate

sender , fwd and receiver in parallel;

• in the last line, invoking main() instantiates sys with

y and z, that contain channel instances.

Definition 2.5 (Semantics of λπ⩽). Evaluation contexts E

and reduction→ are illustrated in Fig. 3, where congruence

≡ is defined as: t1 || t2 ≡ t2 || t1 and end || end ≡ end, plus
α-conversion. We write→∗

for the reflexive and transitive

closure of→. We say “t has an error” iff t =E[err] (for some

E). We say “t is safe” iff ∀t ′ : t →∗ t ′ implies t ′ has no error.

Def. 2.5 is a standard call-by-value semantics, with two

rules for concurrency. [R-chan()] says that chan() returns a
fresh channel instance; [R-Comm] says that the parallel com-

position send(a,u,v1) ||recv(a,v2), where both sides operate

on a same channel instance a, transfers the value u on the

receiver side, yielding v1 () || v2 u: hence, if v1 and v2 are

function values, the process keeps running by applying v1 ()

and v2 u — i.e. the sent value is substituted inside v2. The

error rules say how terms can “go wrong:” they include usual

type mismatches (e.g., it is an error to apply a non-function

value u to any v), and three rules for concurrency: it is an er-

ror to receive/send data using a value u that is not a channel,

and it is an error to put a value in a parallel composition (i.e.,

only processes from P in Fig. 2 are safely composed by ||).

Example 2.6 (Higher-order π -calculus [79]). HOπ is easily

encoded in λπ⩽ : we render replication ∗u?(y).P by spawning

a replica z∗ () at every input. The rest is straightforward.

[[x]] = x [[a]] = a P1 P2 = [[P1]] [[P2]] [[λx .P]] = λ[[x]].[[P]]
[[P1 || P2]] = [[P1]] || [[P2]] [[(νx)P]] = let [[x]] =chan() in [[P]]

[[u!⟨v⟩ .P]] = send([[u]], [[v]], λ_.[[P]])
[[u?(x).P]] = recv([[u]], λ[[x]].[[P]])

[[∗u?(y).P]] = let z∗ = λ_.recv([[u]], λ[[y]].([[P]] || z∗ ())) in z∗()

3 Type System
We now introduce the type system of λπ⩽ . Its design is re-

miniscent of the simply-typed λ-calculus, except that (1) we
include union types and equi-recursive types, (2) we add

types for channels and processes, and (3) we allow types to

contain variables from the term syntax (inspired by D<:, the

calculus behind Dotty [2]). The syntax of types is in Def. 3.1.

Notably, points (1) and (3) establish a similarity between

λπ⩽ and F<: (System F with subtyping [8])
1
equipped with

equi-recursive types [32]. Indeed, point (3)means that a type

T is only valid if its variables exist in the typing environ-

ment — which, in turn, must contain valid types. Similarly, in

F<:, polymorphic types can depend on type variables in the

environment; hence, we use mutually-defined judgements,

1
Except that we do not include polymorphism: it is orthogonal to our aims.
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E F [ ]
�� ¬E

�� if E then t1 else t2
�� let x = E in t

�� let x = w in E
�� E t

�� w E

send(E, t, t ′)
�� send(w, E, t ′)

�� send(w,w ′, E)
�� recv(E, t)

�� recv(w, E)
�� E || t (where w,w ′ ∈ V∪X)

t ′
1
≡ t1 t1 → t2 t2 ≡ t ′

2

t ′
1
→ t ′

2

[R-≡]
t → t ′

E[t] → E[t ′]
[R-E]

¬tt → ff [R-¬tt]

¬ff → tt [R-¬ff]
(λx .t)v → t{v/x} [R-λ]

if tt then t1 else t2 → t1 [R-if-tt]

if ff then t1 else t2 → t2 [R-if-ff]

w ∈ V ∪ X
let x = w in E[x] → let x = w in E[w]

[R-let]
x < fv(t)

let x = w in t → t
[R-letgc] a fresh

chan() → a
[R-chan()]

send(a,u,v1) || recv(a,v2) → v1 () || v2 u
[R-Comm]

v < B
¬v → err

u < {λx .t | x ∈X, t ∈T}
uv → err

v < B

if v then t ′ else t ′′ → err
u < C

recv(u,v) → err
u < C

send(u,v1,v2) → err
t ∈ V

t || t ′ → err

Figure 3. Semantics of λπ⩽ : evaluation contexts E (top), reduction rules (middle), and error rules (last row).

akin to those of F<:, to assess the validity of environments,

types, subtyping, and typed terms (Def. 3.2).

Definition 3.1 (Syntax of types). Types, ranged over by

S,T ,U , . . ., are inductively defined by the productions:

bool

�� ()
�� ⊤

�� ⊥
�� T ∨U

�� Π(x:U )T
�� µx .T

��
x

c
io[T ]

��
c

i[T ]
��

c
o[T ]

proc
�� nil

�� o[S,T ,U ]
�� i[S,T ]

�� p[T ,U ]

Free/bound variables are defined as usual.WewriteU {S/x}

for the type obtained fromU by replacing its free occurrences

of x with S . If T =Π(x:U ′)U , then T S stands for U {S/x}.

We write Π()T for Π(x:())T if x < fv(T ), and distinguish

recursion variables as t, t′, ... (i.e., we write µt.T ). We write

T̃ for an n-tuple T1, ...,Tn , and T ∈U if T occurs inU .

The relation ≡ is the smallest congruence such that:

T ∨U ≡ U ∨T S ∨ (T ∨U ) ≡ (S ∨T ) ∨U µt.T ≡ T {µt.T/t}
p[T ,U ] ≡ p[U ,T ] p[S, p[T ,U ]] ≡ p[p[S,T ],U ] p[T , nil] ≡ T

The first row of productions in Def. 3.1 includes booleans,

the unit type (), top/bottom types ⊤/⊥, the union type T ∨U ,

the dependent function type Π(x:U )T and the recursive type

µx .T (they both bind x with scope T ), and variables x (from

the setX in Def. 2.1): the underlining is a visual clue to better

distinguish x used in a type, from x used in a λπ⩽ term.

The second row of Def. 3.1 formalises channel types: c
io[T ]

denotes a channel allowing to input or output values of type

T ; instead, c
i[T ] only allows for input, and c

o[T ] for output.
The third row of Def. 3.1 formalises process types. The gen-

eric process type proc denotes any process term; nil denotes a
terminated process; the output type o[S,T ,U ] denotes a pro-

cess that sends a T -typed value on an S-typed channel, and

continues asU ; the input type i[S,T ] denotes a process that

receives a value from an S-typed channel and continues as

T ; the parallel type p[T ,U ] denotes the parallel composition

of two processes (of types T andU ).

Definition 3.2. These judgements are formalised in Fig. 4:

⊢ Γ env Γ is a valid typing environment

Γ ⊢ T type T is a valid type in Γ

Γ ⊢ T̃ type holds iff ∀U ∈T̃ : Γ ⊢ U type

Γ ⊢ T π -type T is a valid process type in Γ

Γ ⊢ T̃ π -type holds iff ∀U ∈T̃ : Γ ⊢ U π -type

Γ ⊢ T̃ *-type holds if Γ ⊢ T̃ type or Γ ⊢ T̃ π -type

Γ ⊢ T ⩽ U T is subtype ofU in Γ, if Γ ⊢ T ,U *-type

Γ ⊢ t : T t has type T in Γ

A typing environment Γmaps variables (fromX in Def. 2.1)

to types; the order of the entries of Γ is immaterial. All

judgements in Fig. 4 are inductive, except subtyping, that is

coinductive (hence the double inference lines). Crucially, in

Fig. 4 we have two valid type judgements, for two kinds of

types: Γ ⊢ T type and Γ ⊢ T π -type. The former is standard

(except for rule [T -c], for valid channel types); the latter distin-

guishes process types. Note that subtyping only relates types

of the same kind. Importantly, a typing environment Γ can

map a variable to a type (rule [Γ-x]), but not to a π -type; this
also means that function arguments cannot be π -typed. Still,
in a function type Π(x:T )U , the return type U can be a π -
type (rule [T π -Π]): i.e., it is possible to define abstract process

types (cf. Ex. 3.4 and 3.5 later). Rules [T -µ] and [π -µ] are based

on [32, §2], and require recursive types to be contractive:

e.g., µt1 .µt2 . ...µtn .(t1∨U ) is not a type; clause “x < fv
–(T )”

means that variable x is not bound in negative position in

T , as in F<: (details: §A). Recursion is handled by [t -let]: in

let x = t in t ′, term t can refer to x. Rule [⩽-Π], based on [9],

ensures decidability of subtyping [32, §1]: it is often needed

in practice, and we use it in Def. 4.2, Lemma 4.7. The rest of

Fig. 4 is standard; we discuss the main judgements.

Variables, types, subtyping, and dependencies The en-

vironment Γ=x:T assigns type T to variable x. Hence, by

rule [T -x], the type x is valid in Γ; and indeed, by rule [t -x], we

can infer Γ ⊢ x : x, i.e., the term x has type x. Intuitively,

this means that x is the “most precise” type for term x; this

is formally supported by the subtyping rule [t -x], that says:

as Γ maps term x to T , type x is smaller than T . To retrieve

from Γ the information that term x has (also) type T , we use
subtyping and subsumption (rule [t -⩽]), as shown here. Since
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⊢ Γ env
⊢ ∅ env

[Γ-∅]
Γ ⊢ T type x < dom(Γ)

⊢ Γ, x:T env

[Γ-x]

Γ ⊢ T type

⊢ Γ env T ∈ {bool, (),⊤,⊥}

Γ ⊢ T type

[T -base]

⊢ Γ env x ∈ dom(Γ)

Γ ⊢ x type

[T -x]

Γ, x:T ⊢ U type

Γ ⊢ Π(x:T )U type

[T -Π]

Γ, x:⊤ ⊢ T type x < fv
–(T )

T < {U | ∃U ′, z ∈X : U ≡ U ′ ∨ z}

Γ ⊢ µx .T type

[T -µ]
Γ ⊢ T type Γ ⊢ U type

Γ ⊢ T ∨U type

[T -∨]

Γ ⊢ T type

Γ ⊢c
io[T ] type Γ ⊢c

i[T ] type Γ ⊢c
o[T ] type

[T -c]

Γ ⊢ T π -type

⊢ Γ env T ∈ {nil, proc}
Γ ⊢ T π -type

[π -base]
Γ ⊢ S ⩽ c

o[To] Γ ⊢ T ⩽ To Γ ⊢ U π -type

Γ ⊢ o[S,T ,Π()U ] π -type

[π -o]

Γ ⊢ S ⩽ c
i[Ti ] Γ ⊢ Ti ⩽ T

Γ, x:T ⊢ U π -type

Γ ⊢ i
[
S,Π(x:T )U

]
π -type

[π -i]

Γ ⊢ T π -type Γ ⊢ U π -type

Γ ⊢ p[T ,U ] π -type

[π -p]
Γ, x:T ⊢ U π -type

Γ ⊢ Π(x:T )U type

[T π -Π]

Γ, x:⊤ ⊢ T π -type x < fv
–(T )

T < {U | ∃U ′, z ∈X : U ≡ U ′ ∨ z}

Γ ⊢ µx .T π -type

[π -µ]

Γ ⊢ T π -type

Γ ⊢ U π -type

Γ ⊢ T ∨U π -type

[π -∨]

Γ ⊢ T ⩽ U

Γ ⊢ T ⩽ ⊤
[⩽-⊤]

Γ ⊢ ⊥ ⩽ T
[⩽-⊥]

T ≡ T ′

Γ ⊢ T ⩽ T ′
[⩽-refl]

Γ ⊢ T ⩽ S Γ ⊢ U ⩽ S

Γ ⊢ T ∨U ⩽ S
[⩽-∨L]

Γ ⊢ S ⩽ T

Γ ⊢ S ⩽ T ∨U
[⩽-∨R]

Γ ⊢ Γ(x) ⩽ T

Γ ⊢ x ⩽ T
[⩽-x]

Γ, x:T ⊢ U ⩽ U ′

Γ ⊢ Π(x:T )U ⩽ Π(x:T )U ′
[⩽-Π]

Γ ⊢ T ⩽ T ′

Γ ⊢ c
io[T ] ⩽ c

i[T ′] Γ ⊢ c
i[T ] ⩽ c

i[T ′] Γ ⊢ c
io[T ′] ⩽ c

o[T ] Γ ⊢ c
o[T ′] ⩽ c

o[T ]
[⩽-c]

Γ ⊢ T ⩽ proc
[⩽-proc]

Γ ⊢ S ⩽ S ′ Γ ⊢ T ⩽ T ′ Γ ⊢ U ⩽ U ′

Γ ⊢ o[S,T ,U ] ⩽ o[S ′,T ′,U ′]
[⩽-o]

Γ ⊢ T ⩽ T ′ Γ ⊢ U ⩽ U ′

Γ ⊢ i[T ,U ] ⩽ i[T ′,U ′]
[⩽-i]

Γ ⊢ T ⩽ T ′ Γ ⊢ U ⩽ U ′

Γ ⊢ p[T ,U ] ⩽ p[T ′,U ′]
[⩽-p]

Γ ⊢ t : T

⊢ Γ, x:T env

Γ, x:T ⊢ x : x

[t -x]
⊢ Γ env v ∈ B
Γ ⊢ v : bool

[t -B] ⊢ Γ env

Γ ⊢ () : ()
[t -()] Γ ⊢ t : bool

Γ ⊢ ¬t : bool

[t -¬]

Γ, x:U ⊢ t : T

Γ ⊢ λxU .t : Π(x:U )T
[t -λ] Γ ⊢ t : T Γ ⊢ T ⩽ U

Γ ⊢ t : U
[t -⩽]

Γ ⊢ T ∨U *-type Γ ⊢ t : bool Γ ⊢ t1 : T Γ ⊢ t2 : U

Γ ⊢ if t then t1 else t2 : T ∨U
[t -if]

Γ ⊢ t1 : Π(x:U )T Γ ⊢ t2 : U ′ Γ ⊢ U ′ ⩽ U

Γ ⊢ t1 t2 : T {U ′
/x}

[t -app]
Γ, x:U ⊢ t : U ′ Γ, x:U ⊢ t ′ : T Γ ⊢ U ′ ⩽ U

Γ ⊢ let xU = t in t ′ : T {U ′
/x}

[t -let]

Γ ⊢ c
io[T ] type

Γ ⊢ aT : c
io[T ]

[t -C]
Γ ⊢ c

io[T ] type

Γ ⊢ chan()T : c
io[T ]

[t -chan] ⊢ Γ env

Γ ⊢ end : nil
[t -end]

Γ ⊢ p[T ,U ] π -type Γ ⊢ t1 : T Γ ⊢ t2 : U

Γ ⊢ t1 || t2 : p[T ,U ]
[t - ||]

Γ ⊢ o[S,T ,U ] π -type Γ ⊢ t1 : S Γ ⊢ t2 : T Γ ⊢ t3 : U

Γ ⊢ send(t1, t2, t3) : o[S,T ,U ]
[t -send]

Γ ⊢ i[S,T ] π -type Γ ⊢ t1 : S Γ ⊢ t2 : T

Γ ⊢ recv(t1, t2) : i[S,T ]
[t -recv]

Figure 4. Judgements of the λπ⩽ type system (Def. 3.2). The main concurrency-related rules are highlighted.

⊢ Γ env

Γ ⊢ x : x

[t -x]

Γ(x) ≡ T

Γ ⊢ Γ(x) ⩽ T
[⩽-refl]

Γ ⊢ x ⩽ T
[⩽-x]

Γ ⊢ x : T
[t -⩽]

x is the smallest type

for term x, the judge-

ment Γ ⊢ t : x conveys

that t should be “some-

thing that evaluates to x,” e.g., t =x or t = if tt then x else x;
similarly, the dependent function type Π(x:bool)x is in-

habited by terms like λx .x or λx .(λy .y) x. Thus, we can
roughly say: if x occurs inT , thenT -typed terms correspond-

ingly use x. This insight will be crucial for our results.

Channels, processes, and their types By [t -chan], a (type-

annotated) term chan()T has type c
io[T ]. Rule [t -C] is similar,

for channel instances. By [t -end], process end has type nil.
By [t - ||], both sub-terms of t1 || t2 are π -typed.
By [t -send], send(t1, t2, t3) has type o[S,T ,U ], under the

validity constraints of rule [π -o]. Hence, t1 has a channel

type for sending values of type T , and t2 (the term being

sent) must have typeT ; also, t3’s type must beU =Π()U ′
(for

a π -typeU ′
): i.e., t3 is a process thunk, run by applying t3 ().

By [t -recv], recv(t1, t2) has type i[S,T ], which is well-formed

under rule [π -i]. Hence, the sub-term t1 must have a channel

type with input U , while t2 must be an abstract process of

type T =Π(x:U ′)T ′
, with T ′ π -type. Crucially, by rule [π -i],

we have Γ ⊢U ⩽U ′
: hence, it is safe to receive a value v from

t1, and apply t2v to get a continuation process that uses v .
We explain subtyping in Fig. 4 later, after a few examples.

Example 3.3. In Ex. 2.4, we have the type assignments:
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sender : Tsnd = Π(y:c
o[str]) o

[
y, str,Π()nil

]
receiver : Trcv = Π(z:c

i[str]) i
[
z,Π(x ′:str)nil

]
fwd : Tfwd = Π(i:ci[str])Π(o:c

o[str])

µt.i
[
i,Π(z′:str)o

[
o, z′,Π()t

] ]
sys : Tsys = Π(y′:ci[str])Π(z′:co[str])

p
[
p
[
(Tsnd y

′), (Tfwd y
′
z
′)

]
, (Trcv z

′)

]
Hence, by expanding the type instantiations in Tsys , we get:

Tsys = Π(y′:ci[str])Π(z′:co[str])

p


p

o
[
y
′, str,Π()nil

]
,

µt.i
[
y
′,Π(x:str)o

[
z
′, x,Π()t

] ],
i
[
z
′,Π(x ′:str)nil

]


where we can observe how y
′
and z

′
are used, and how x is

received from y
′
, and sent on z

′
.

Example 3.4. In Ex. 2.2, we have the type assignments:

pinger :Tping =Π(self :c
io[str])Π(pongc:co[co[str]])

o
[
pongc, self , i

[
self ,Π(reply:str)nil

] ]
ponger :Tpong =Π(self :c

io[co[str]])

i
[
self , Π(replyTo:c

o[str]) o
[
replyTo, str,Π()nil

] ]
sys :Tpp =Π(y:c

io[str])Π(z:c
io[co[str]]) p

[
Tping y z ,Tpong z

]
Notice how Tpp captures the ping/pong composition of sys,

preserving its channel topology: the type-level applications

Tping y z and Tpong z (yielded by rule [t -app], Fig. 4) substi-

tute y and z in Tping and Tpong’s bodies (by Def. 3.1). This is

obtained by leveraging dependent function types, and is key

for combining types/protocols and verifying them (§4).

Example 3.5 (Mobile code). Modern languages and toolkits

for message-passing programs support sending/receiving

mobile code (e.g., [18, 49, 52]). Consider this scenario: a data

analysis server lets its clients send custom code, for on-the-

fly data filtering. In λπ⩽ , the intended behaviour of custom

code can be formalised by a type like Tm below: it describes

an abstract process, taking two input channels i1 / i2, and an

output channel o; it must use i1 / i2 to input integers x / y,

and then it must send one of them along o, recursively.

Tm = Π(i1:c
i[int])Π(i2:c

i[int])Π(o:c
o[int])

µt.i
[
i1,Π(x:int)i

[
i2,Π(y:int)o

[
o, (x ∨ y),Π()t

] ] ]
By inspecting Tm, we infer that, e.g., Tm-typed terms can-

not be forkbombs; also, “x ∨ y” does not allow to send on

out a value not coming from i1 / i2 (we will formalise these

intuitions in Ex. 4.12). The terms below implement Tm: m1

always sends x received from i1, then recursively calls itself,

swapping i1 / i2; m2 sends the maximum between x and y.

let m1 = λi1 .λi2 .λo .
recv(i1, λx .recv(i2, λ_.send(o, x, λ_.m1 i2 i1 o)))

let m2 = λi1 .λi2 .λo .
recv(i1, λx .recv(i2, λy .)

send(o, (if x >y then x else y), λ_.m2 i1 i2 o))

Below, srv is a data processing server. It takes two chan-

nels: cm and out; it creates two private channels z1 and z2,

uses cm to receive an abstract process p, and runs it, in paral-

lel with two producers (omitted) that send values on z1 / z2:

let srv = λcm.λout .
let z1 =chan() in let z2 =chan() in

recv(cm, λp .
(
p z1 z2 out || prod

1
z1 || prod

2
z2

)
)

The system works correctly if the received code p is m1 or

m2 above — or any instance of Tm. To ensure that srv can

only receive a Tm-typed term on cm, we check its type:

∅ ⊢ srv : Tsrv = Π(cm:c
i[Tm])Π(out:c

o[int]) proc
and this guarantees that, e.g., the parallel composition

send(x, t, λ_.end) || srv x out (client sends t to server, via x)

is typable in Γ only if Γ ⊢ x : c
io[Tm], implying Γ ⊢ t : Tm.

We can replace proc with a more precise type. If U1/U2 are

types of prod
1
/prod

2
, the recv(...) sub-term of srv has type:

T ′
srv
= i

[
cm , Π(p:Tm)p

[
p
[
Tm z1 z2 out , U1 z1

]
, U2 z2

] ]
i.e., the server uses cm to receive aTm-typed abstract process
p, and then behaves as Tm (applied to z1, z2, out) composed

in parallel withU1/U2 (applied to z1/z2).

Example 3.6 (Channel passing). Tp describes an abstract

process that uses channel x to receive a channel y, then

either replies on y (sending a string), or forwards y via z:

Tp = Π(x:c
i[co[str]])Π(z:c

o[co[str]])

i
[
x, Π(y:c

o[str]) o
[
y, str,Π()nil

]
∨ o

[
z, y,Π()nil

] ]
Two Tp -typed terms are:

t1 = λx .λz .recv(x, λy .send(z, y, λ_.end)) (just forwards)

t2 = λx .λ_.recv(x, λy .send(y, "Hi", λ_.end)) (just replies)

Their types can be narrower, hence more precise:

t1 : Tp1 = Π(x:c
i[co[str]])Π(z:c

o[co[str]])

i
[
x, Π(y:c

o[str]) o
[
z, y,Π()nil

] ]
⩽ Tp

t2 : Tp2 = Π(x:c
i[co[str]])Π(z:c

o[co[str]])

i
[
x, Π(y:c

o[str]) o
[
y, str,Π()nil

] ]
⩽ Tp

If a term t12 interconnects instances of t1 and t2, then
its type Tp12 can capture the interconnection. E.g., if we let

t12 = t1 x z || t2 z z, then we have:

x:c
io[co[str]] , z:c

io[co[str]] ⊢ t12 : p
[
Tp1 x z ,Tp2 z z

]
Subtyping, subsumption, and private channels The sub-

typing rules in Fig. 4 are standard (based on F<: [8, 32]) except

the highlighted ones. By rule [⩽-c], subtyping for channel

types is covariant for inputs, and contravariant for outputs,

as expected [61]: intuitively, channels with smaller types can

be used more liberally. Rule [⩽-proc] says that proc is the top
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type for π -types. Rules [⩽-o]/[⩽-i]/[⩽-p] say that types for in-

put/output/parallel processes are covariant in all parameters.

As usual, supertyping / subsumption (rule [t -⩽]) caters for

Liskov & Wing’s substitution principle [51]: a smaller object

can replace a larger one. Crucially, in our theory, supertyping

also allows to drop information when typing private channels.

This is shown in Ex. 3.7: via supertyping, we do not precisely

track how private (i.e., bound) channels are used. This in-

formation loss is key to type Turing-powerful λπ⩽ terms with

a non-Turing-complete type language, for the results in §4.

Example 3.7 (Subtyping, binding, and precision loss). Let:
t1 = send(x, 42, λ_.end) || recv(x, λ_.end)
t2 =

(
let z =chan() in send(z, 42, λ_.end)

)
|| recv(x, λ_.end)

T1 = p
[
o
[
x, int,Π()nil

]
, i

[
x,Π(y:int)nil

] ]
T2 = p

[
o
[
c

io[int], int,Π()nil
]
, i

[
x,Π(y:int)nil

] ]
Letting Γ = x:c

io[int], we have Γ ⊢ x ⩽ c
io[int] and Γ ⊢

T1 ⩽ T2. For t1, we have both Γ ⊢ t1 : T1 and Γ ⊢ t1 : T2

(by [t -⩽]): in the first judgement, T1 precisely captures that

x is used to send/receive an integer; instead, in the second

judgement, T2 is less accurate, and says that some term with

type c
io[int] is used to send, while x is used to receive.

We also have Γ ⊢ t2 : T2; and notably, since z is bound in

the “let...” subterm of t2, it cannot appear in the type: i.e.,

we cannot write a more accurate type for t2. This is due to
rule [t -let] (Fig. 4): since z is bound by let..., its occurrence
in send(...) is typed by a supertype of z that is suitable for

both z and chan() — in this case, c
io[int]. Specifically:

Γ ⊢ c
io[int] ⩽ c

io[int] Γ, z:c
io[int] ⊢ chan() : c

io[int]

Γ, z:c
io[int] ⊢ send(z, 42, λ_.end) : o

[
z, int,Π()nil

]
[t -let]

Γ ⊢ let z =chan() in send(z, 42, λ_.end) : o
[
z, int,Π()nil

] {
c

io[int]/z
}

Typing guarantees that well-typed terms never go wrong.

Theorem 3.8 (Type safety). If Γ ⊢ t : T , then t is safe.

Thm. 3.8 follows by: Γ ⊢ t : T and t → t ′ implies ∃T ′

such that Γ ⊢ t ′ : T ′
— i.e., typed terms only reduce to typed

terms, without (untypable) err subterms. This is expected,

as we combine System F<:-style typing rules, and typed I/O

channels. In §4, we study howT andT ′
are related, and how

they constraint t ’s behaviour.

4 Type-Level Model Checking
Our typing discipline guarantees conformance between pro-

cesses and types (Fig. 4), and absence of run-time errors

(Thm. 3.8). However, as seen in §1, our types can describe a

wide range of behaviours, from desirable ones (e.g., formal-

ising a specification), to undesirable ones (e.g., deadlocks);

moreover, complex (and potentially unwanted) behaviours

can arise when λπ⩽ terms are allowed to interact.

To avoid this issue, we might want to check whether a pro-

cess t (possibly consisting of multiple parallel sub-processes)

satisfies a property ϕ in some temporal logic [73]: ϕ could

be, e.g., a safety property □(¬ϕ ′) (“ϕ ′
is never true while

t runs”) or a liveness property ♢ϕ ′
(“t will eventually sat-

isfy ϕ ′
”). However, this problem is undecidable (unless ϕ is

trivial), since λπ⩽ is Turing-powerful even in its productive

fragment (due to recursion and channel creation [7]).

Luckily, our theory allows to: (1) mimic the parallel com-

position of terms by composing their types (as shown in

Ex. 3.4), and (2) mimic the behaviour of processes by giving

a semantics to types (as we show in this section). This means

that we can ensure that a (composition of) typed process(es)

t has a desired safety/liveness property, by model-checking

its type T (that is not Turing-powerful). Moreover, we do

not need to know how t is implemented: we only need to

know that it has typeT . We now illustrate the approach, and

its preconditions (roughly: for the verification of liveness

properties, we need productivity, and use of open variables).

Outline First, we need to surmount a typical obstacle for

behavioural type systems. Ex. 3.7 shows that accurate types

require open terms in their typing environment — but Def. 2.5

works on closed terms; so, observing howT1 in Ex. 3.7 uses x,

we sense that t1 should interact via x — but by Def. 2.5, t1 is
stuck. To trigger communication, we may bind x in t1 with a

channel instance, e.g., t ′
1
= let x =chan() in t1 —but t ′

1
’s type

cannot mention x, hence cannot convey which channel(s) t ′
1

uses. Thus, we develop a type-based analysis in four steps:

(1)we define an over-approximating LTS semantics for typed

λπ⩽ terms with free variables (Def. 4.1); (2) we define an LTS

semantics for types (Def. 4.2); (3) we prove subject transition

and type fidelity (Thm. 4.4, 4.5); (4) using them, we show how

temporal logic judgements on types transfer to processes.

Definition 4.1 (Labelled semantics of open typed terms).
When Γ ⊢ t : T (for any Γ, t,T ), the judgements Γ ⊢ t α

−⇁ t ′

and Γ ⊢ t τ •

−−⇁∗ t ′ are inductively defined in Fig. 5.

Unlike Def. 2.5, Def. 4.1 lets an open term like ¬x re-

duce, by non-deterministically instantiating x to tt or ff;
the assumption Γ ⊢ ¬x : T ensures that x is a boolean.

Rule [SR-→] inherits “concrete” reductions from Def. 2.5: if

t → t ′ is induced by base rule [r], the transition label is

τ [r]. Rules [SR-send]/[SR-recv] send/receive a value/variable w ′

using a (channel-typed) value/variable w . Note that in [SR-

recv], w ′
is any value/variable of type Ti , which is the in-

put type of x (in π -calculus jargon, it is an early semantics

[63]). Rule [SR-Comm] lets processes exchange a payload w ′

via a channel/variablew , recordingw in the transition label.

Rule [SR-x()] “applies” x by instantiating it with any suitably-

typed λy .v (i.e., λy .v must be a function that, when applied

to w , yields a term v{w/y} of type T ); it also records x in

the transition label. Rule [SR-λ()] applies a function to a vari-

able x, with the expected substitution. Rule [SR-E] propagates

transitions through contexts, unless labels refer to bound

variables. Finally, Γ ⊢ t τ •

−−⇁∗ t ′ holds when t reaches t ′ via a
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t → t ′ by base rule [r]

Γ ⊢ t
τ [r]
−−−⇁ t ′

[SR-→]
Γ ⊢ ¬x

τ [¬x]
−−−−⇁ tt

Γ ⊢ ¬x
τ [¬x]
−−−−⇁ ff

Γ ⊢ if x then t else t ′ τ [if x]
−−−−−⇁ t

Γ ⊢ if x then t else t ′ τ [if x]
−−−−−⇁ t ′

w,w ′,w ′′ ∈ X∪V

Γ ⊢ send(w,w ′,w ′′)
w ⟨w ′⟩
−−−−−⇁ w ′′ ()

[SR-send]

w,w ′,w ′′ ∈ X∪V Γ ⊢ w : c
i[T ] Γ ⊢ w ′

: T

Γ ⊢ recv(w,w ′′)
w (w ′)
−−−−−⇁ w ′′w ′

[SR-recv] Γ ⊢ t
w ⟨w ′⟩
−−−−−⇁ t ′ Γ ⊢ t ′′

w (w ′)
−−−−−⇁ t ′′′

Γ ⊢ t || t ′′
τ [w ]
−−−−⇁ t ′ || t ′′′

[SR-Comm]

Γ ⊢ xw : T w ∈ X∪V Γ ⊢ v{w/y} : T

Γ ⊢ xw
τ [x()]
−−−−⇁ v{w/y}

[SR-x()]

Γ ⊢ (λy .t) x
τ [λ()]
−−−−⇁ t{x/y}

[SR-λ()] Γ ⊢ t ′ α
−⇁ t ′′ fv(α)∩bv(E)=∅

Γ ⊢ E[t] α
−⇁ E[t ′]

[SR-E]

Γ ⊢ t τ •

−−⇁∗ t

Γ ⊢ t τ •

−−⇁∗ t ′ Γ ⊢ t ′ α
−⇁ t ′′ τ •(α)

Γ ⊢ t τ •

−−⇁∗ t ′′ where τ •(α) holds iff α ∈ {τ [¬x], τ [if x], τ [x()], τ [λ()], τ [r] | x ∈X, [r], [R-Comm]}

Figure 5. Over-approximating labelled semantics of λπ⩽ terms. We will sometimes use label τ to denote any τ [·]-label above.

finite sequence of internal moves excluding interaction: i.e.,

labelsw(w ′),w ⟨w ′⟩, τ [w], and τ [R-Comm] are forbidden.
Using Def. 4.1 on t1 from Ex. 3.7, we get the transition

Γ ⊢t1
τ [x]
−−−⇁ end || end, and we observe the use of x, as desired.

Type semantics We now equip our types with labelled

transition semantics (Def. 4.2): this is not unusual for behavi-

oural type systems in π -calculus literature [3, 30] — but our

novel use of type variables, and dependent function types,

yields new capabilities, and requires some sophistication.

The type transitions should mimic the semantics of typed

processes. Hence, take T1 and t1 from Ex. 3.7: we want T1 to

reduce, simulating the term reduction Γ ⊢ t1
τ [x]
−−−⇁ end || end.

This suggests that a type like p
[
o
[
x, ...

]
, i

[
x, ...

] ]
should

reducewith a communication on x. But considerT2 in Ex. 3.7:

T2 also types t1, hence it should also simulate t1’s reduction —
i.e., a type like p

[
o
[
c

io[int], ...
]
, i

[
x, ...

] ]
should reduce, too.

In general, we want p[o[S, ...], i[T , ...]] to reduce if S andT
“might interact”, i.e., they could type a same channel/variable:

we formalise this idea as Γ ⊢ S ▷◁ T in Def. 4.2.

Definition 4.2 (Type semantics). Let S⊓ΓT be the greatest

subtype of S and T in Γ, up-to ≡ (Def. 3.1). The judgement

Γ ⊢S ▷◁T (read “S and T might interact in Γ”) is:
Γ ⊬ S ⊓Γ T ⩽ ⊥

Γ ⊢ S ▷◁ T
[▷◁-c]

A type reduction context E is inductively defined as:

[ ]
�� o[E,T ,U ]

�� o[S, E,U ]
�� o[S,T , E] �� i[E,T ] �� i[S, E] �� p[E,T ]

Judgements Γ ⊢ T
α
−→ T ′

and Γ ⊢ T
τ [∨]
−−−→∗ T ′

are in Fig. 6.

By Def. 4.2, Γ ⊢ S ▷◁ S ′ holds when S and S ′ have a com-

mon subtype besides ⊥, i.e., they might type a same term

in Γ, via rule [t -⩽]. The simplest case is when either S or S ′

is a variable x: then, the judgement holds when the other

is a supertype. When S and S ′ are channel types, rule [▷◁-c]

amounts to checking whether S, S ′ have a common valid

channel subtype (cf. rule [⩽-c], Fig. 4); if such a type exists,

then communication might occur, via rules [R-Comm]/[SR-Comm].

E.g., the types S =c
i[int] and S ′=c

o[real] cannot interact. To

see why, assume (by contradiction) that S, S ′ have a common

subtype that is not ⊥: by [⩽-c], such a subtype be of the form

c
io[T0], for some T0 such that Γ ⊢ T0 ⩽ int and Γ ⊢ real ⩽ T0;

but for T0 to exist, we must have Γ ⊢ real ⩽ int — contra-

diction. Instead, if we take S =c
i[real] and S ′=c

o[int], then

Γ ⊢ S ▷◁ S ′ holds: in fact, by [⩽-c], a common subtype for both

S and S ′ is c
io[int]. The judgement Γ ⊢ T

α
−→ T ′

says that

T∨U can reduce to T or U , firing label τ [∨] ; type contexts

E allow, e.g., S =S1∨S2 to reduce inside p[S,U ], exposing the

prefixes needed by other rules; reductions are up-to congru-

ence ≡, that can swap ∨ branches, and reorganise p[..., ...] as
a commutative monoid, with unit nil. Rule [T→o] reduces an

output type, recording the used channel type S and payload

T in the transition label. Rule [T→i] is similar for input types,

recording the payload T ′
; but since T ′

is not syntactically

part of the type, the rule uses Γ to “guess” it, by accepting:

(a) T ′ = T , where T is taken from the continuation type

Π(x:T )U ; or

(b) T ′ = z, for any z ∈X. In this case, clause Γ ⊢T ′⩽T re-

quires type z to be compatible with the argument type

of the continuation; moreover, it implicitly ensures

that z ∈dom(Γ).

When the rule fires, T ′
is substituted in the continuation

type; hence, case (a) gives a (safe) approximation for the

continuation, while case (b) faithfully propagates z through

the dependent function type Π(x:T )U . Crucially, (a) and (b)

imply that rule [T→i] is finite-branching (unlike rule [SR-recv]

in Def. 4.1). We have two communication rules:

• [T→iox] fires when, in p[U ,U ′], there might be an in-

teraction with a type variable x as payload. More pre-

cisely, the rule fires when we have Γ ⊢ U
S ⟨x ⟩
−−−→ U ′

and

Γ ⊢ U ′′
S ′(x)
−−−→ U ′′′

, and S, S ′ might interact. In this case,

the type reduces to p[U ′,U ′′′]. Note that, by [T→i], the x

sent by U is substituted in U ′′′
, hence it can appear in

its future transitions. The rule yields a transition label

τ [S, S ′], recording which channel types were used;

• [T→io] is similar, but fires if the payloadT is not a variable.

Note that clause Γ ⊢S ▷◁S ′ ensures that U ′′
has a S ′(T ′)-

transition with Γ ⊢T ⩽ T ′
, and the rule fires it.

Note that if a type reduces with label τ [S, S ′], then it enables

either [T→iox] or [T→io], but not both. Finally, Γ ⊢T
τ [∨]
−−−→∗T ′
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Γ ⊢ T ∨U
τ [∨]
−−−→ T

Γ ⊢ T
α
−→ T ′

Γ ⊢ E[T ]
α
−→ E[T ′]

T ′ ≡ T Γ ⊢ T
α
−→ U U ≡ U ′

Γ ⊢ T ′ α
−→ U ′ Γ ⊢ o[S,T ,Π()U ]

S ⟨T ⟩
−−−−→ U

[T→o]

Γ ⊢ T ′ ⩽ T T ′=T or T ′∈X

Γ ⊢ i
[
S,Π(x:T )U

] S (T ′)
−−−−→ U {T

′
/x}

[T→i] Γ ⊢ U
S ⟨x ⟩
−−−→ U ′ Γ ⊢ U ′′

S ′(x)
−−−→ U ′′′ Γ ⊢ S ▷◁ S ′

Γ ⊢ p[U ,U ′′]
τ [S ,S ′]
−−−−−→ p[U ′,U ′′′]

[T→iox]

Γ ⊢ U
S ⟨T ⟩
−−−−→ U ′ Γ ⊢ U ′′

S ′(T ′)
−−−−→ U ′′′ Γ ⊢ S ▷◁ S ′ Γ ⊢ T ⩽ T ′ T <X

Γ ⊢ p[U ,U ′′]
τ [S ,S ′]
−−−−−→ p[U ′,U ′′′]

[T→io]

Γ ⊢ T
τ [∨]
−−−→∗ T

Γ ⊢ T
τ [∨]
−−−→∗ T ′ Γ ⊢ T ′

τ [∨]
−−−→ T ′′

Γ ⊢ T
τ [∨]
−−−→∗ T ′′

Figure 6. Semantics of λπ⩽ types. We will sometimes use label τ to denote either τ [∨] or τ [S, S ′] (for some S, S ′).

holds ifT reachesT ′
via a finite sequence of internal choices

τ [∨], that exclude interaction.

Example 4.3. Take sys from Ex. 2.2, Tpp from Ex. 3.4. Let:

Γ = y:c
io[str] , z:c

io[co[str]]

t = sys y z

T = Tpp y z = p

o
[
z, y, i

[
y,Π(reply:str)nil

] ]
,

i
[
z, Π(replyTo:c

o[str]) o
[
replyTo, str,Π()nil

] ]
By Def. 3.2, we have Γ ⊢ t : T . By Def. 4.1, we have:

Γ ⊢ t
τ [z]
−−−⇁ τ •

−−⇁∗

(
recv(y, ...) ||

send(y, "Hi!", ...)

)
τ [y]
−−−−⇁ τ •

−−⇁∗

(
end ||
end

)
By Def. 4.2, applying rule [T→iox] twice, we get:

Γ ⊢ T
τ [z,z]
−−−−−→ p


i
[
y,Π(reply:str)nil

]
,

o
[
replyTo, str,Π()nil

] {
y/replyTo

}
τ [y,y]
−−−−−→ p

[
nil,
nil

]
Observe thatT closely mimicks the transitions of t : the type-
level substitution of y in place of replyTo allows to track the

usage of y after its transmission, capturing ponger’s reply to

pinger . This realises our insight: tracking inputs/outputs of

programs, by using variables in their types. Technically, it is

achieved via the dependent function type inside i[..., ...].

Subject transition and type fidelity With the semantics

of Def. 4.1, we prove a result yielding Thm. 3.8 as a corollary.

Theorem 4.4 (Subject transition). Assume Γ ⊢ t : T . If

Γ ⊢ T type, then Γ ⊢ t α
−⇁ t ′ implies Γ ⊢ t ′ : T . Otherwise,

when Γ ⊢ T π -type, we have:

1. Γ ⊢t α
−⇁t ′ with τ •(α) (Fig. 5) implies Γ ⊢t ′ :T ;

2. Γ ⊢t α
−⇁t ′ and α ∈ {x⟨w⟩, x(w), τ [x], τ [R-Comm]} implies one:

a. Γ ⊢ t ′ : T and proc ∈ T ;
b. α = x⟨w⟩ and ∃S,U ,T ′

: Γ ⊢ x : S,w :U , t ′ : T ′
and

Γ ⊢ T
τ [∨]
−−−→∗

S ⟨U ⟩
−−−−→ T ′

;

c. α = x(w) and ∃S,U ,T ′
: Γ ⊢ x : S,w : U , t ′ : T ′

and

Γ ⊢ T
τ [∨]
−−−→∗

S (U )
−−−→ T ′

;

d. α = τ [x] and ∃S, S ′,T ′
: Γ ⊢ x : S, x : S ′, t ′ : T ′

and

Γ ⊢ T
τ [∨]
−−−→∗

τ [S ,S ′]
−−−−−→ T ′

;

e. α = τ [R-Comm] and ∃S, S ′,T ′
: {S, S ′} ⊈X, Γ ⊢ t ′ : T ′

and Γ ⊢ T
τ [∨]
−−−→∗

τ [S ,S ′]
−−−−−→ T ′

.

Assume Γ ⊢ t : T , with t reducing to t ′: Thm 4.4 says that

when the reduction is caused by the functional fragment of

λπ⩽ (hypothesis Γ ⊢ T type, or case 1), then t ′ has the same

type T . Instead, if the reduction is caused by input, output

or interaction events (which means that t is a process term,

and Γ ⊢ T π -type), then we observe a corresponding la-

belled transition in the type, possibly after some τ [∨] moves

(cases 2b–2e); the exception is case 2a: if t ′ keeps typeT , then
that T syntactically contains proc, which types a reducing

sub-term of t before and after its reduction (via rule [t -⩽]).

We can also prove the opposite direction of Thm. 4.4: if

typeT interacts, then a typed term t interacts accordingly. This
intuition holds under two conditions, leading to Thm. 4.5:

(c1) we only use productive λπ⩽ terms, i.e., all functions

must be total (always return a value or process when

applied). This means that, e.g., if Γ ⊢ t : o
[
x, int,T ′

]
,

then t will output on x; this excludes cases like t =
if ω then send(x, 42, t ′) else send(x, 43, t ′′) (with ω=
(λy .y y) (λz .z z)). Productivity is obtained with many

methods from literature (e.g., [21, 72]);

(c2) the subjects of input/output/interaction transitions of

T must be type variables: this allows to precisely relate

them to occurrences of (open) variables in t .

Theorem 4.5 (Type fidelity). Within productive λπ⩽ , assume

Γ ⊢ t : T and Γ ⊢ T π -type. Then:

1. Γ ⊢ T
x ⟨U ⟩
−−−−→ T ′

implies ∃w, t ′ : Γ ⊢ w :U , t ′ :T ′
and

Γ ⊢ t τ •

−−⇁∗ x ⟨w ⟩
−−−−⇁ t ′;

2. Γ ⊢ T
x(U )
−−−→ T ′

implies ∀w : if Γ ⊢ w : U , then ∃t ′ :

Γ ⊢ t ′ : T ′
and Γ ⊢ t τ •

−−⇁∗ x(w )
−−−⇁ t ′;

3. Γ ⊢ T
τ [x,x]
−−−−→ T ′

implies ∃t ′ such that Γ ⊢ t ′ : T ′
and

Γ ⊢ t τ •

−−⇁∗ τ [x]
−−−⇁ t ′;

4. Γ ⊢ T
τ [∨]
−−−→ implies either: (a) ∃T ′

: Γ ⊢T
τ [∨]
−−−→T ′

and

Γ ⊢ t : T ′
; or, (b) ∃t ′ : Γ ⊢t α

−⇁t ′ with τ •(α) (Fig. 5) and

Γ ⊢ t ′ : T ; or, (c) ∃T ′
: Γ ⊢T

α
−→T ′

with α , τ [∨].

Items 1–3 of Thm. 4.5 say that if T can input/output/in-

teract, then t can do the same, possibly after a sequence of

τ -steps (without communication, cf. Def. 4.1); the τ -sequence
is finite, since t is productive by hypothesis. By item 4, if T
can make a choice (∨), then t could have already chosen one

option (case (a)), or could choose later (cases (b) or (c)); note

that the sequences of τ -steps yielded by iterations of case (b)

must be finite, by the productivity hypothesis.
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Process verification via type verification By exploiting

the correspondence between process / type reductions in

Thm. 4.4 and 4.5, we can transfer (decidable) verification

results from types to processes. To this purpose, we analyse

the labelled transition systems (LTSs) of types and processes

using the linear-time µ-calculus [20, §3]. We chose it for two

reasons: (1) the open term / type semantics (Def. 4.1 / 4.2) are

over-approximating, and a linear-time logic is a natural tool

to ensure that all possible executions (“real” or approximated)

satisfy a formula; and (2) linear-time µ-calculus is decidable
for our types, with minimal restrictions (Lemma 4.7).

Definition 4.6 (Linear-time µ-calculus). Given a set of ac-

tions Act ranged over by α , the linear-time µ-calculus formu-

las are defined as follows (where A is a subset of Act):

Basic formulas: ϕ F Z
�� ¬ϕ

�� ϕ1 ∧ ϕ2

�� (α)ϕ
�� νZ.ϕ

Derived

formulas

{
⊤

�� ⊥
�� ϕ1 ∨ ϕ2

�� ϕ1 ⇒ ϕ2

�� µZ.ϕ
(A)ϕ

�� (−A)ϕ
�� ϕ1 U ϕ2

�� □ϕ �� ♢ϕ
In Def. 4.6, ϕ describes accepted sequences of actions; ϕ

can be a variable Z, negation, conjunction, prefixing (α)ϕ
(“accept a sequence if it starts with α , and then ϕ holds”), or

greatest fixed point νZ.ϕ. Basic formulas are enough [6, 73]

to derive true/false (accept any/no sequence of actions), dis-

junction, implication, least fixed points µZ.ϕ; (A)ϕ accepts

sequences that start with any α ∈A, then satisfy ϕ; dually,
(−A)ϕ requires α ∈Act\A. We also derive usual temporal

formulas ϕ1 U ϕ2 (“ϕ1 holds, until ϕ2 eventually holds”), □ϕ
(“ϕ is always true”), and ♢ϕ (“ϕ is eventually true”). Given

a process p with LTS of labels Act, a run of p is a finite or

infinite sequence of labels fired along a complete execution

of p; we write p |= ϕ if ϕ accepts all runs of p. (Details: §B)
We can decideϕ on a guarded typeT , as shown in Lemma 4.7.

Here, we instantiate Act (Def. 4.6) as AΓ(T ), which is the set

of labels fired along T ’s transitions in Γ, (Def. 4.2); notably,
AΓ(T ) is finite and syntactically determined. (Details: §B.2)

Lemma 4.7. Given Γ, we say that T is guarded iff, for all

π -type subterms µt.U of T , t can occur inU only as subterm

of i[...] or o[...]; then, if T is guarded, T |= ϕ is decidable.

Lemma 4.7 holds since guarded π -types are encodable in
CCS without restriction [53], then in Petri nets [22, §4.1],

for which linear-time µ-calculus is decidable [20]. Notably,
Lemma 4.7 covers infinite-state types (with p[..., ...] under
µt. ...), that type λπ⩽ terms with unbounded parallel subterms.

Now, assuming Γ ⊢ t : T , we can ensure that ϕ holds for

t , by deciding a related formula ϕ ′
onT . We need to take into

account that type semantics approximate process semantics:

(i1) if we do not want t to perform an action on channel x,

we check that T never potentially uses type variable x;

(i2) if we want t to eventually perform an action on chan-

nel x, we need t productive, and check that T eventu-

ally uses x — without doing “imprecise” actions before.

We formalise such intuitions in various cases, in Thm. 4.10;

but first, we need the tools of Def. 4.8 and 4.9.

Definition 4.8. The input / output uses of x by T in Γ are:

input uses: Ui
Γ,T(x) = {S ′(U ′) ∈ AΓ(T ) | Γ ⊢ x ⩽ S ′}

output uses: Uo
Γ,T(x) = {S ′⟨U ′⟩ ∈ AΓ(T ) | Γ ⊢ x ⩽ S ′}

Definition 4.9. Given a set of type (resp. term) variables Y,
the Y-limited transitions of T (resp. t ) in Γ are:

Γ ⊢ T
α
−→ T ′ ∀S,U : α ∈ {S(U ), S ⟨U ⟩} implies S ∈Y

T ↑Γ Y
α
−→ T ′ ↑Γ Y

Γ ⊢ t α
−⇁ t ′ ∀w,w ′

: α ∈ {w(w ′),w ⟨w ′⟩} impliesw ∈Y

t ↑Γ Y
α
−⇁ t ′ ↑Γ Y

Theorem4.10. Within productive λπ⩽ , assume Γ ⊢ t : T , with

Γ ⊢ T π -type, proc < T . Also assume, for all i[S,Π(x:U )U ′]

occurring in T , that there is y such that Γ ⊢ y : U holds.
2

For µ-calculus judgements on T , let Act = AΓ(T ), and Aτ ={
τ [S, S ′] ∈AΓ(T )

�� {S, S ′}⊈dom(Γ)
}
. Then, the implications in

Fig. 7 hold.

Assume Γ ⊢ t : T . The sets Ui
Γ,T(x) /U

o
Γ,T(x) in Def. 4.8

contain all transition labels that might be fired by T , when
x is used for input/output by t . The operator ↑Γ {xi }i ∈1..n
(Def. 4.9) limits the observable inputs/outputs ofT /t to those
occurring on channel xi — while other (open) channels can

only reduce by communicating, via τ -actions; i.e., x1, ..., xn
are interfaces to other types/processes, and are “probed” for

verification (this is common in model checking tools).

Example 4.11. Consider the type:

T = i
 x , Π(y:int) p


µt.o

[
z, y,Π()t

]
,

µt′ .i
[
z,Π(y′:int)o

[
x, int,Π()t′

] ] 


It types processes that receive an integer y on channel x, then

spawn two threads that recursively exchange y on channel

z, and at each loop, send an integer on channel x. We have

Γ ⊢ T π -type, with Γ = x:c
io[int], z:c

io[int]. By Def. 4.2,

Γ has the transitions in Fig. 8 (top), i.e., T can receive an

integer on x and move to T ′
, where it could perform either

an output on z, an input on z, or a synchronisation on z; in

the last two cases, the type performs an output on x, and

loops back to T ′
.

When analysing the behaviour of T , we might be inter-

ested in verifying that an initial input on x is eventually

followed by an output on x, without need of further external

interactions. To this purpose, we want to focus our analysis

on the inputs/outputs on x, and let T reduce autonomously

on any other channel (in this case, the only other channel is

z): this amounts to pruning the input/output transitions not

occurring on channel x, while keeping all synchronisation

2
This implicitly requires Γ ⊢ U type, hence fv(U ) ∩ bv(T ) = ∅: this

assumption could be relaxed (with a more complicated clause), but offers a

compromise between simplicity and generality, that is sufficient to verify

our examples. Besides this, the existence of y such that Γ ⊢ y : U can

be assumed w.l.o.g.: if Γ ⊢ t : T but ∄y such that Γ ⊢ y : U , we can pick

y
′<dom(Γ), extend Γ as Γ′=Γ, y′:U , and get Γ′ ⊢ y′ : U and Γ′ ⊢ t : T .
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(1) Non-usage of x1, . . . , xn : none of x1, . . . , xn is used for output while t runs. (Simple variation: never use x1, . . . , xn for input)

t ↑Γ {xi }i∈1. .n |= □(¬(
∨
i∈1. .n (xi ⟨w ⟩)⊤)) T ↑Γ {xi }i∈1. .n

|= □
(
¬

(∨
i∈1. .n (Uo

Γ,T(xi ))⊤
))

(2) Deadlock-freedom modulo x1, . . . , xn : t might only use channels x1, . . . , xn to interact with other processes, and never gets stuck.

t ↑Γ {xi }i∈1. .n |= □
(
(τ )⊤ ∨

∨
i∈1. .n (xi (w ) ∪ xi ⟨w ⟩)⊤

)
T ↑Γ {xi }i∈1. .n

|= □(−Aτ )⊤ ∧□
(
(τ )⊤ ∨

∨
i∈1. .n ({xi (U ′), xi ⟨U ′⟩ | any U ′ })⊤

)
(3) Eventual usage of x1, . . . , xn : some xi (i ∈1..n) is used for output, while t runs. (Simple variations: use some xi for input or communication)

t ↑Γ {xi }i∈1. .n |= ♢(
∨
i∈1. .n (xi ⟨w ⟩)⊤) T ↑Γ {xi }i∈1. .n

|= (−Aτ )⊤ U
(∨

i∈1. .n ({xi ⟨U ′⟩ | any U ′ })⊤
)

(4) Forwarding from x to y: whenever some z is received from x, it is eventually forwarded via y, before x is used for input again.

t ↑Γ {x, y } |= □
(
(x(z))⊤⇒

(
(−x(w ))⊤ U (y ⟨z⟩)⊤

) )
T ↑Γ {x, y } |= □

(
({S (z) |S (z) ∈Ui

Γ,T(x)})⊤⇒

(
(−(Aτ ∪U

i
Γ,T(x)))⊤ U (y ⟨z⟩)⊤

))
(5) Reactiveness on x: t runs forever, and is always eventually able to receive inputs from x (possibly after a finite number of τ -steps).

t ↑Γ {x } |= □
(
(τ )⊤ U (x(w ))⊤

)
T ↑Γ {xi } |= □(−Aτ )⊤ ∧□

(
(τ )⊤ ∨ ({x(U ′) | any U ′ })⊤

)
(6) Responsiveness on x: whenever some z is received from x, it is eventually used to send a response, before x is used for input again.

t ↑Γ {x } |= □
(
(x(z))⊤⇒

(
(−x(w ))⊤ U (z ⟨w ⟩)⊤

) )
T ↑Γ {x } |= □

(
({S (z) |S (z) ∈Ui

Γ,T(x)})⊤⇒

(
(−(Aτ ∪U

i
Γ,T(x)))⊤ U ({z ⟨U ′⟩ | any U ′ })⊤

))
Figure 7. Process verification (Thm. 4.10): the judgement on the left is implied by the companion judgement on the right.

Here,w ranges over V∪X, and we write x⟨w⟩ as shorthand for the (infinite) set of labels {x⟨w⟩ |w ∈V∪X} (and similarly for

x(w)). For brevity, in (4) and (6) we write (α)⊤⇒ ϕ instead of (α)⊤⇒ (α)ϕ (i.e., if we observe α , then ϕ holds afterwards).

transitions. This is achieved by observing the

{
x

}
-limited

transitions of T , i.e., T ↑Γ {x} (Def. 4.9), that yields the LTS

in Fig. 8 (bottom). The same reasoning can be applied on

the transitions of λπ⩽ terms: by observing the transitions of

t ↑Γ {x}, we only focus on the inputs/ouptuts of t channel x,
while other channels are only used for synchronisation.

In Thm. 4.10, item (1) can be seen as a case of intuition (i1)
above: if T never fires a label (□(¬...)) that is a potential

output use of xi (i ∈ 1..n), then t never uses xi for output.

The “potential output use”, by Def. 4.8, is any label S ′⟨U ′⟩

fired by T where S ′ is a supertype of x: this accounts for

“imprecise typing”, discussed in Ex. 3.7. Item (3) of Thm. 4.10

is a case of intuition (i2): to ensure that t eventually outputs

on xi (i ∈ 1..n), we check that T eventually fires a label

x⟨U ⟩; moreover, we check T does not fire any label in Aτ ,
until (U) the output x⟨U ⟩ occurs. The set Aτ contains all

“imprecise” synchronisation labels τ [S, S ′] where either S
or S ′ is not a type variable: we exclude them because, if T
fires one, then we cannot use Thm. 4.5(3) to ensure that t
reduces accordingly; i.e., if we do not exclude Aτ , then t
might deadlock and never perform xi ⟨w⟩ (for anyw). Finally,

item (4) combines the intuitions of both previous cases: we

want to ensure that whenever t receives z on channel x,

then it eventually forwards z through channel y, without

doing other inputs on x before; to this purpose, we check

that whenever T inputs z on a channel S (representing a

potential use of x), then T eventually fires y⟨z⟩ — without

doing potential inputs on x, nor firing any label inAτ , before.

Example 4.12. Take Γ, t ,T in Ex. 4.3. To ensure that t even-

tually uses y to output a message, we check T ↑Γ

{
y

}
|= ϕ,

with ϕ in Fig. 7(3) (right).

Take ponger (Ex. 2.2),Tpong (Ex. 3.4), and Γ = z:c
io[co[str]].

To ensure that the term ponger z is responsive on z, we

check (Tpong z) ↑Γ {z} |= ϕ, with ϕ in Fig. 7(6) (right).

Take T ′
srv

(Ex. 3.5). With an easy adaptation of properties

(5) and (4) in Fig. 7 (right), we can verify that: in all imple-

mentations srv
′
of T ′

srv
, whenever srv

′
receives any mobile

code p (of type Tm) from channel cm, srv
′
becomes reactive

on z1 and z2, picking one input and forwarding it on out.

Example 4.13. We can use Thm. 4.10 to verify that a typed

function implements a desired behaviour. TakeTfwd (Ex. 3.3):

letting Γ= i:ci[str], o:c
o[str], z:str, we apply Thm. 4.10((4)) to:

(1) verify that Tfwd ’s body, T =µt.i
[
i,Π(z′:str)o

[
o, z′,Π()t

] ]
,

forwards z through o, when received on i; and (2) conclude

that all functions of type Tfwd yield a T -typed process with

the desired forwarding behaviour; one such functions is fwd

in Ex. 2.4. Also, with small variations of the formulas of

Thm. 4.10((4)), we can decide that all Tm-typed functions

(§1, Ex. 3.5) yield processes that eventually forward “with a

choice”; hence, all typed mobile code received via channel

cm has this property. Similarly, in Ex. 3.6 we can prove that

any Tp12-typed term (including t12) eventually outputs on a

channel z
′
, after z

′
is received via x.

Example 4.14 (Channel aliasing). The verification approach

above assumes that distinct channel-typed variables represent

distinct channel instances. E.g., assume Γ ⊢ t : T with t =

send(x, 42, t1) || recv(y, t2) and T = p
[
o
[
x, int,T1

]
, i

[
y,T2

] ]
:

Def. 4.1 and 4.2 do not let t and T reduce by synchronising,

since x , y; hence, the µ-calculus analysis of t and T does

not “see” any communication. However, in the well-typed

term t ′ = (let y = x in t), term t does communicate, be-

cause y becomes an alias of x. Still, we can correctly analyse

t ′, because t and t ′ have different types: the latter has type
T ′ = p

[
o
[
x, int,T ′

]
, i

[
x,T ′′

] ]
. This is because rule [t -let] re-

flects aliasing through the type-level substitutionT ′=T
{
x/y

}
(seen in Ex. 3.7): hence, we correctly detect the communica-

tion in t ′ and T ′
. The same type-level substitution occurs in

rule [t -app], i.e., terms tf x x and tf x y have different types;
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T
x(int)
−−−−→ T ′

z ⟨int⟩
−−−−→ T ′

z(int)
−−−−→ p

[
µt.o

[
z, int,Π()t

]
, o

[
x, int,Π()T ′′

] ] x ⟨int⟩
−−−−→ T ′

τ [z,z]
−−−−→ p

[
µt.o

[
z, int,Π()t

]
, o

[
x, int,Π()T ′′

] ] x ⟨int⟩
−−−−→ T ′

where:

T ′ = p
[
µt.o

[
z, int,Π()t

]
,T ′′

]
T ′′ = µt′ .i

[
z,Π(y′:int)o

[
x, int,Π()t′

] ]
T↑Γ{x}

x(int)
−−−−→ T ′↑Γ{x}

τ [z,z]
−−−−→ p

[
µt.o

[
z, int,Π()t

]
, o

[
x, int,Π()T ′′

] ] x ⟨int⟩
−−−−→ T ′↑Γ{x}

Figure 8. Example 4.11: full transitions of T (top), and pruned transitions (bottom). The latter can either be τ , or involve x.

and the same mechanism tracks aliased channels across com-

munications (since send(z, x, ...) / send(z, y, ...) have differ-
ent types, and x/y are substituted in the receiver’s type).

5 Implementation and Evaluation
We designed λπ⩽ to leverage subtyping and dependent func-

tion types, with a formulation close to (a fragment of) Dotty

(a.k.a. the future Scala 3 programming language), and its

foundation D<: [2]. This naturally leads to a three-step im-

plementation strategy: (1) internal embedding of λπ⩽ ; (2) act-

or-based APIs, via syntactic sugar; and (3) compiler plugin

for type-level model checking. The result is a software toolkit

called Effpi, available at: https://alcestes.github.io/effpi

5.1 Implementation
A payoff of the λπ⩽ design is that we can implement it as an

internal embedded domain-specific language (EDSL) in Dotty:

i.e., we can reuse Dotty’s syntax and type system, to define:

(1) typed communication channels, (2) dedicated methods to

render the λπ⩽ concurrency primitives (send, recv, ||, end),
and (3) dedicated classes to render their types (o[...], i[...],
p[...], nil), including the well-formedness and subtyping con-

straints illustrated in Fig. 4. As usual for internal language

embeddings, the Effpi DSL does not directly cause side-

effects: e.g., calling receive(c) {x => P} does not cause an

input from channel c. Instead, the receive method returns

an object of type In[...] (corresponding to i[...] in Def. 3.1),
which describes the act of using c to receive a value v, and
continue as P{v/x}. Such objects are executed by the Effpi
interpreter, according to the λπ⩽ semantics (Def. 2.5).

Effpi programs look like

the code on the right (which is

ponger from Ex. 2.2): they fol-

low the λπ⩽ syntax. Also, types

def ponger(self: T): T1 = {
receive(self) { replyTo =>
send(replyTo, "Hi!") >>
end } }

are rendered isomorphically: the type “x” in λπ⩽ is rendered

as “x.type” in Dotty, and dependent function types become:

Π(x:T )o
[
y, x,T ′

]
⇝ (x:T) => Out[y.type, x.type, T’]

Thus, the Scala compiler can check the program syntax

(§2) and perform type checking (§3), ensuring type safety

(Thm. 3.8). Dotty also supports (local) type inference.

For better usability, Effpi also provides some extensions

over λπ⩽ , like buffered channels, and a sequencing operator

“>>” (see above, and in Fig. 1). Moreover, Effpi simplifies the

definition and composition of types-as-protocols by lever-

aging Dotty’s type aliases. E.g., the type of two parallel

processes sending an Integer on a same channel can be

defined as U (right): no-
tice how T is reused,

passing U’s parameter.

type T[X <: Chan[Int]] = Out[X, Int]
type U[Y <: Chan[Int]] = Par[ T[Y], T[Y] ]
def f(x: OChan[Int]): U[x.type] = ...

Also notice how the type of f’s argument (x.type) is passed
to U, and then to T: consequently, the type of f expands into

Par[ Out[x.type, Int], Out[x.type, Int] ].
To guide Effpi’s design, we implemented the full “pay-

ment with audit” use case from the experimental “session”

extension for Akka Typed [41] (cf. §1, code snippet in Fig. 1).

An efficient Effpi interpreter For performance and scalab-

ility reasons, many distributed programming toolkits (such

as Go, Erlang, and Akka) schedule a (potentially very high)

number of logical processes on a limited number of executor

threads (e.g., one per CPU core). We follow a similar ap-

proach for the Effpi interpreter, leveraging the fact that,

in Effpi programs as in λπ⩽ , input/output actions and their

continuations are represented by λ-terms (closures), that can

be easily stored away (e.g., when waiting for an input from a

channel), and executed later (e.g., when the desired input be-

comes available). Thus, we implemented a non-preemptive

scheduling system partly inspired by Akka dispatchers [47],

with a notable difference: in Effpi, processes yield control

(and can be suspended) both when waiting for inputs (as in

Akka), and also when sending outputs; this feature requires

some sophistication in the scheduling system.

Actor-based API On top of the λπ⩽ EDSL, Effpi provides

a simplified actor-based API [25], in a flavour similar to

Akka Typed [49, 50] (i.e., actors have typed mailboxes and

ActorReferences): see Fig. 1. This API models an actor A

with mailbox of type T , with the intuition in Remark 2.3:

• A is a process with a unique, implicit input channel

m, of type c
i[T ] (Def. 3.1). Hence, A can only use m to

receive messages of type T — i.e., m is A’s mailbox;

https://alcestes.github.io/effpi
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• A receives T -typed messages by calling read — which

is syntactic sugar for recv(m, . . .) (see Fig. 1, and notice
that the input channel m is left implicit);

• other processes/actors can sendmessages toA through

its ActorReference r — which is just the output end-

point of its channel/mailbox m. The type of r is c
o[T ]

(Def. 3.1): it only allows to send messages of type T .

To this purpose, Effpi uses Dotty’s implicit function types

[57]: i.e., type Actor[...] in Fig. 1 hides an input channel.

Type-level model checking The implementation details

discussed thus far cover the λπ⩽ syntax, semantics, and typing

— i.e., §2 and §3. The type-level analysis presented in §4 goes

beyond the capabilities of the Dotty compiler; hence, we

implement it as a Dotty compiler plugin (i.e., a compiler phase

[59]) accessing the typed program AST. The plugin looks for

methods annotated with “@effpi.verifier.verify”:

@effpi.verifier.verify(ϕ)

def f(x: ..., y: ...): T = ...

Such annotations ask to check if a program of type T satisfies
ϕ, which is a conjunction/disjunctions of the properties from

Fig. 7 (left). Note that T can refer to the parameters x,y,... of
f, and it can be either written by programmers, or inferred

by Dotty. Then, the plugin:

1. tries to convert T into a λπ⩽ type T , as per Def. 3.1;

2. checks if T |= ϕ ′
holds — where ϕ ′

is the companion

formula of ϕ in Fig. 7 (right). This step uses the mCRL2

model checker [23]: we encode T into an mCRL2 pro-

cess,
3
and check if ϕ ′

holds;

3. returns an error (located at the code annotation) if

steps 1 or 2 fail. Otherwise, the compilation proceeds.

When compilation succeeds, any program of return type T
(including f above) enjoys the property ϕ at run-time, by

Thm. 4.10. This works both when f is implemented, and

when it is an unimplemented stub (i.e., when f is defined as

“???” inDotty). This allows to compose the types/protocols of

multiple services, and verify their interactions, even without

their full implementation. E.g., consider Ex. 2.2, 3.4, and 4.12:

a programmer implementing ponger (code above) in Effpi
can (a) annotate the method ponger to verify that it is re-

sponsive (Fig. 7(6)), and/or (b) annotate an unimplemented

stub def f’(...): T’ = ??? with type T’ matching

Tpp (Ex. 3.4), to verify that if ponger interacts with any im-

plementation of type Tping , then ponger’s self channel is

used for output (Fig. 7(3)). Also, a programmer can annotate

payment (Fig. 1) to verify that it is reactive and responsive on
its (implicit) mailbox, and Accepts payments after notifying

on aud (with a variation of properties (5), (4) in Fig. 7, right).

Known limitations The implementation of our verifica-

tion approach, outlined above, has three main limitations.

3
To obtain an mCRL2 encoding ofT with semantics adhering to Def. 4.2, we

use the encoding into CCS (without restriction) mentioned after Lemma 4.7.
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Figure 9. Effpi: mean execution time vs. size (left column,

10 runs, low is better), andmemory vs. size (right). Some plots

end early (e.g., chameneos+Akka) due to out-of-memory

crashes; memory use is plotted when GC runs at least once.

(4×Intel i7@3.6GHz, Dotty 0.9.0-RC1, Scala 2.12.7, Akka 2.5.17, 4GB max heap)
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states deadlock-free ev-usage forwarding non-usage reactive responsive

Pay & audit + 8 clients 3328 true (0.05± 1.38%) true (0.11± 0.92%) false (6.26± 4.16%) false (0.02± 2.66%) true (1.01± 3.95%) true (15.40± 6.57%)

Pay & audit + 10 clients 13312 true (0.06± 1.65%) true (0.19± 1.07%) false (21.90± 11.19%) false (0.02± 5.55%) true (0.96± 13.22%) true (73.37± 8.28%)

Pay & audit + 12 clients 53248 true (0.07± 1.17%) true (0.23± 1.05%) false (98.72± 12.28%) false (0.02± 2.78%) true (0.99± 2.89%) true (345.22± 8.72%)

Dining philos. (4, deadlock) 4096 false (0.16± 1.41%) true (0.02± 2.02%) false (1.04± 9.84%) false (0.02± 3.55%) false (2.01± 4.79%) false (1.06± 19.65%)

Dining philos. (4, no deadlock) 4096 true (0.16± 0.70%) true (0.02± 2.33%) false (1.19± 28.13%) false (0.02± 1.47%) false (1.91± 14.08%) false (1.07± 19.19%)

Dining philos. (5, deadlock) 32768 false (0.54± 0.80%) true (0.03± 2.46%) false (4.58± 10.54%) false (0.02± 3.55%) false (5.10± 5.78%) false (3.05± 5.11%)

Dining philos. (5, no deadlock) 32768 true (0.55± 1.85%) true (0.03± 1.58%) false (3.05± 4.85%) false (0.02± 3.04%) false (4.21± 8.29%) false (3.01± 1.19%)

Dining philos. (6, deadlock) 262144 false (2.35± 0.51%) true (0.03± 0.87%) false (13.61± 14.39%) false (0.03± 4.22%) false (16.58± 8.22%) false (10.72± 3.88%)

Dining philos. (6, no deadlock) 262144 true (2.37± 0.61%) true (0.03± 2.93%) false (9.20± 5.63%) false (0.03± 3.76%) false (17.28± 6.11%) false (6.36± 6.25%)

Ping-pong (6 pairs) 4096 true (0.05± 1.68%) true (0.01± 3.92%) false (0.95± 14.43%) false (0.01± 16.42%) false (0.98± 6.02%) false (0.98± 5.34%)

Ping-pong (6 pairs, responsive) 46656 true (0.26± 2.65%) true (0.02± 1.70%) false (1.05± 13.51%) false (0.02± 1.39%) false (1.00± 5.47%) true (1.98± 5.09%)

Ping-pong (8 pairs) 65536 true (0.23± 0.82%) true (0.01± 3.07%) false (2.00± 1.25%) false (0.01± 3.27%) false (2.01± 2.48%) false (1.53± 30.27%)

Ping-pong (8 pairs, responsive) 1679616 true (1.60± 1.90%) true (0.03± 2.43%) false (6.89± 3.14%) false (0.03± 5.62%) false (4.58± 9.96%) true (9.39± 6.48%)

Ping-pong (10 pairs) 1048576 true (2.40± 1.63%) true (0.02± 2.35%) false (8.63± 13.49%) false (0.01± 1.69%) false (9.53± 10.27%) false (1.99± 2.69%)

Ping-pong (10 pairs, responsive) >2×10
6

true (8.74± 10.83%) true (0.04± 2.66%) false (17.00± 1.62%) false (0.03± 1.39%) false (23.49± 4.76%) true (50.97± 5.80%)

Ring (10 elements) 2048 true (0.01± 3.58%) true (0.01± 3.82%) true (11.34± 1.48%) false (0.01± 2.44%) true (7.81± 0.35%) false (1.00± 1.10%)

Ring (15 elements) 65536 true (0.02± 1.57%) true (0.02± 1.56%) true (562.48± 4.72%) false (0.01± 1.79%) true (407.47± 7.13%) false (108.61± 3.10%)

Ring (10 elements, 3 tokens) 4096 true (0.06± 3.14%) true (0.01± 1.72%) true (23.79± 9.10%) false (0.01± 4.07%) true (15.53± 0.38%) false (1.99± 8.18%)

Ring (15 elements, 3 tokens) 131072 true (0.39± 0.60%) true (0.01± 1.44%) true (1146.57± 2.11%) false (0.01± 2.19%) true (827.58± 1.00%) false (2.01± 7.92%)

Figure 10. Behavioural property verification: outcome (true/false) and average time (seconds± std. dev.). The number of states

is approximated “>2×10
6
” when the LTS is too big to fit in memory. (4×Intel i7@ 3.60GHz, 16 GB RAM, mCRL2 201808.0, 30 runs)

1. It does not check productivity of annotated code: such

checks are unsupported in Dotty, and in most program-

ming languages. Hence, programmers must ensure

that all functions invoked from their Effpi code even-
tually return a value — otherwise, liveness properties

might not hold at run-time (cf. condition (c1) in §4).

2. It does not verify processes with unbounded parallel

components (i.e., with parallel composition under re-

cursion);
4
hence, it rejects types having p[..., ...] under

µt. .... This does not impact the examples in this paper.

3. It uses iso-recursive types [60, Ch. 21] because, unlike

λπ⩽ (Def. 3.2), Dotty does not have equi-recursive types.

Limitations 1 and 3 might be avoided by implementing λπ⩽
as a new programming language. However, our Dotty em-

bedding is simpler, and lets Effpi programs access methods

and data from any library on the JVM: e.g., Effpi actors/pro-
cesses can communicate over a network (via Akka Remoting

[48]), and with Akka Typed actors.

5.2 Evaluation
From §5.1, two factors can hamper Effpi: (1) the run-time

impact of its interpreter (speed and memory usage); (2) the

verification time of the properties in Fig. 7. We evaluate both.

Run-time benchmarks We adopted a set of benchmarks

from the Savina suite [31], with diverse interaction patterns:

• chameneos: n actors (“chameneos”) connect to a central

broker, who picks pairs and sends them their respective

ActorReferences, so they can interact peer-to-peer [34];

• counting: actor A sends n numbers to B, who adds them;

4
This is because mCRL2 checks formulas of the branching-time µ-calculus,
on finite-state systems. We are not aware of model checkers focused on the

linear-time µ-calculus, and supporting infinite-state systems.

• fork-join — creation (FJ-C): creation of n new actors, who

signal their readiness to interact;

• fork-join — throughput (FJ-T): creation of n new actors,

and transmission of a sequence of messages to each.

• ping-pong: n pairs of actors exchange requests-responses;

• ring: n actors, connected in a ring, pass each other a token;

• streaming ring: similar to ring, but passingm tokens con-

secutively (i.e., at mostm actors can be active at once).

For all benchmarks, we performed two measurements:

• performance vs. size: how long it takes for the benchmark

to complete, depending on the size (i.e., the number of

actors, or the number of messages being sent/received);

• memory vs. size: how many times the JVM garbage col-

lector runs, depending on the size of the benchmark —

and also the maximum memory used before collection.

The results are in Fig. 9: we compare two instances of

the Effpi runtime (with two scheduling policies: “default”

and “channel FSM” ) against Akka, with default setup. Our

approach appears viable: Effpi is a research prototype, and

still, its performance is not too far from Akka. The negative

exception is “chameneos” (Effpi is ∼2× slower); the positive

exceptions are fork-join throughput (Effpi is ∼2× faster),

and the ring variants (Akka has exponential slowdown).

Model checking benchmarks We evaluated the “extreme

cases”: the time needed to verify formulas in Fig. 7 on pro-

tocols with a large number of states — obtained, e.g., by

enlarging the examples in the paper (e.g., composing many

parallel ping-pong pairs), aiming at state space explosion.

The results are in Fig. 10. Our model checking approach

appears viable: it can provide (quasi)real-time verification

results, suitable for interactive error reporting on an IDE.

Still, model checking performance depends on the size of the

model, and on the formula being verified. As expected, our
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measurements show that verification becomes slower when

models are expanded by adding more parallel components,

and thus enlarging the state space; they also highlighting

that some properties (e.g., our mCRL2 translations of ‘for-

warding” and “responsive”) are particularly sensitive to the

model size.

6 Conclusion and Related Work
Wepresented a new approach to developingmessage-passing

programs, and verifying their run-time properties. Its corner-

stone is a new blend of behavioural+dependent function types,

enabling program verification via type-level model checking.

Behavioural types with LTS semantics have been studied

in many works [3]: the idea dates back to [56] (for Concur-

rent ML); type-based verification of temporal logic properties

was addressed in [29, 30] (for the π -calculus); recent applic-
ations include, e.g., the verification of Go programs [44, 45].

Our key insight is to infuse dependent function types, in

order to (1) connect a type variable x to a process variable

x, and (2) gain a form of type-level substitution (Def. 3.1).

Item (2), in particular, is not present in previous work; we

take advantage of it to compose protocols (Ex. 3.4) and pre-

cisely track channel passing and use (Ex. 4.3). Thus, we can

verify safety and liveness properties (Fig. 7) while supporting:

(1) channel passing, thus covering a core pattern of actor–

based programming (Ex. 2.2, Remark 2.3, Ex. 4.12, Fig. 1), and

(2) higher-order processes that send/receive mobile code,

thus covering an important feature of modern programming

toolkits (Ex. 3.5, 4.12). Further, our theory is designed for

language embedding: we implemented it in Dotty, and our

evaluation supports the viability of the approach (§5).

A form of type/channel dependency related to ours is in

[24, 78, 80]: their types depend on process channels, and they

check if a process might use a channel x — but cannot say if,

when or how x is used, nor verify behavioural properties.

Various π -calculus type systems specialise on accurate

(dead)lock-freedom analysis, e.g., [36–39, 58]. [13] type-checks

actors with unordered mailboxes, carrying messages of dif-

ferent types; it ensures deadlock-freedom, and (assuming

termination) message consumption. Unlike ours, the works

above do not support an extensible set of µ-calculus proper-
ties (Fig. 7), nor address higher-order processes. Although

our actors are similar to Akka Typed (with single-type mail-

boxes), we conjecture that our types also support actors like

[13], with decidable verification (by Lemma. 4.7): the intu-

ition is that, by using infinite-state types with unbounded

parallel sub-terms (i.e., with p[..., ...] under µt. ...), we could
model any number of unordered pending messages wait-

ing to be received. In practice, this requires a linear-time

µ-calculus model checker that supports the resulting infinite-

state systems, and we are not currently aware of any such

tool (see footnote 4).

Our protocols-as-types are related to session types [11,

26, 27, 69], and their combination with value-dependent

and indexed types [10, 14, 75–77]; session types have in-

spired various implementations [3], also in Scala [65–68].

Our theory has a different design, yielding different fea-

tures. On the one hand, we do not have an explicit external

choice construct (we plan to integrate it via match types

[17], but leave it as future work); on the other hand, we

can verify liveness properties across interleaved use of mul-

tiple channels (more liberally than session types [12]), and

we are not limited to linear/confluent protocols: e.g., T =

p
[
p
[
o
[
x, y,T

]
, o

[
x, z,T ′

] ]
, i

[
x,Π(z′:cio[int])U

] ]
types parallel pro-

cesses with a race on channel x; we can verify such processes,

capturing that either y or z may replace z
′
in the U -typed

continuation. This covers locking/mutex protocols, allow-

ing, e.g., to implement and verify Dijkstra’s dining philo-

sopher problem (mentioned in Fig. 10). [4] extends linear

logic-based session types with shared channels: it adds non-

determinism, weakening deadlock-freedom guarantees.

Outside the realm of process calculi, various works tackle

the problem of protocol-aware verification, e.g., [40, 71, 74].

We share similar goals, although we adopt a different the-

ory and design, leading to different tradeoffs: crucially, the

works above develop new languages, or build upon a power-

ful dependently-typed host language (Coq) with interactive

proofs, to support rich representations of protocol state. We,

instead, aim at Dotty embedding (with limited type depend-

encies) and automated verification of process properties (via

type-level model checking); hence, our protocols and logic

are action-based, to ensure decidability (Lemma 4.7). Our ap-

proach covers many stateful protocols (e.g., locking/mutex,

mentioned above); but beyond this, a finer type-level rep-

resentation of state may make model checking undecidable

[19], thus requiring decidability conditions, or novel heurist-

ic/interactive proof techniques. This topic can foster exciting

future work, and a cross-pollination of results between the

realms of protocol-aware verification, and process calculi.

Future work We will study λπ⩽ embeddings in other pro-

gramming languages — although only Dotty provides both

subtyping and dependent function types. We will extend the

supported properties in Fig. 7, and study how to improve

their verification, along three directions: 1. increase speed,

trying more mCRL2 options, and tools like LTSmin [35];

2. support infinite-state systems, trying tools like Bfc [33]

(that does not cover the linear-time µ-calculus in Def. 4.6,

but is used e.g. in [15] to verify safety properties of actor pro-

grams); 3. introduce assume-guarantee reasoning for type–

level model checking, inspired by [62]. The Effpi runtime

system can be optimised: we will attempt its integration with

Akka Dispatchers [47], and explore other (non-preemptive)

scheduling strategies, e.g., work stealing [1, 5].
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A λπ⩽-Calculus and Type System
The definition below is reprised from [32, §2].

Definition A.1 (Positive/negative position of a type variable). We define the polarised free variables of T , written fv
+(T ) and

fv
–(T ), as follows:

fv
±(⊤) = ∅

fv
±(⊥) = ∅

fv
±(bool) = ∅

fv
±(()) = ∅

fv
±
(
c

i[T ]
)
= fv

±(co[T ]) = fv
±
(
c

io[T ]
)
= fv

±(T )
fv

±(nil) = ∅

fv
±(i[S,T ]) = fv

±(S) ∪ fv
±(T )

fv
±(o[S,T ,U ]) = fv

±(S) ∪ fv
±(T ) ∪ fv

±(U )

fv
±(p[T ,U ]) = fv

±(T ) ∪ fv
±(U )

fv
±(T ∨U ) = fv

±(T ) ∪ fv
±(U )

fv
±
(
Π(x:T )U

)
= fv

∓(T ) ∪ (fv±(U ) \ x)

fv
±
(
µx .T

)
= fv

±(T ) \ x
fv
+
(
x

)
=

{
x

}
fv
–
(
x

)
= ∅

B Linear-time µ-calculus and type/process verification
This appendix contains additional definitions complementing §4.

B.1 Linear-time µ-calculus
The definitions and notation below are mainly reprised from [20, §3], and [6, 73].

Definition B.1 (Words over a set). Given a set Y, we define Y∗
and Yω as the sets of finite and infinite words over Y,

respectively; we also define Y∞ = Y∗ ∪ Yω . Given a word σ = α1α2α3 . . . ∈ Y
∞
, we define hd(σ ) = α1, and tl(σ ) = α2α3 . . .;

we denote the empty word as ϵ , and leave hd(ϵ) and tl(ϵ) undefined.

Definition B.2 (Semantics). Given a set of actions Act, a valuationV is a partial mapping from propositional variables to

sets of words over Act — i.e., if Z ∈ dom(V), thenV(Z) ⊆ Act
∞
; given a set of wordsW ⊆ Act

∞
, letV{W/Z} be the valuation

such that V{W/Z}(Z) = W and V{W/Z′}(Z′) = V(Z′) (when Z′ , Z). The denotation of a linear-time µ-calculus formula ϕ
under valuation V , written ∥ϕ∥V , is the set of words of Act

∞
inductively defined as:

∥Z∥V = V(Z)
∥¬ϕ∥V = Act

∞ \ ∥ϕ∥V
∥ϕ1 ∧ ϕ2∥V = ∥ϕ1∥V ∩ ∥ϕ2∥V

∥(α)ϕ∥V =
{
σ ∈ Act

∞
�� hd(σ ) = α and tl(σ ) ∈ ∥ϕ∥V

}
∥νZ.ϕ∥V =

⋃ {
W ⊆ Act

∞
���W ⊆ ∥ϕ∥V{W/Z}

}
Given a labelled transition system T with initial state s0 and labels in Act, we say that T satisfies ϕ, written T |= ϕ, iff every

run
5
of T belongs to ∥ϕ∥∅.

Definition B.3 (Extended constructs). Using the basic linear-time µ-calculus productions (left-hand side of Def. 4.6), we

define the following extended formulas (right-hand side of Def. 4.6),

5
A run of T is a (finite or infinite) sequence of transition labels obtained by starting from the initial state s0, until a state without outgoing transitions is

reached.
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Formula Definition Description
⊤ νZ.Z true (denotation is Act

∞
)

⊥ ¬⊤ false (denotation is ∅)

ϕ1 ∨ ϕ2 ¬(¬ϕ1 ∧ ¬ϕ2) ϕ1 holds, or ϕ2 holds

ϕ1 ⇒ ϕ2 ¬ϕ1 ∨ ϕ2 if ϕ1 holds, then ϕ2 holds

µZ.ϕ ¬νZ.¬ϕ{¬Z/Z} least fixed point (denotation is a set of words of finite length)

(A)ϕ
∨

α ∈A (α)ϕ after some action α in A, ϕ holds

(−A)ϕ
∨

α ∈(Act\A) (α)ϕ after some action α not in A, ϕ holds

ϕ1 U ϕ2 µZ.ϕ2 ∨ (ϕ1 ∧ (Act)Z) ϕ1 holds (for a finite number of actions), until ϕ2 holds

♢ϕ ⊤ U ϕ ϕ eventually holds, after a finite number of actions

□ϕ ¬♢(¬ϕ) ϕ always holds

B.2 Actions of a type
The following is the definition of the set of actions AΓ(T ), that completes Def. 4.8.

Definition B.4 (Actions of a π -type). The basic actions of a π -type in Γ are defined as:

BΓ(nil) = BΓ(t) = ∅ BΓ(µt.T ) = BΓ(T ) BΓ(p[T ,U ]) = BΓ(T ) ∪ BΓ(U )

BΓ(T ∨U ) = {τ [∨]} ∪ BΓ(T ) ∪ BΓ(U ) BΓ(o[S,T ,Π()U ]) = {S ⟨T ⟩} ∪ BΓ(U )

BΓ

(
i
[
S,Π(x:T )U

] )
= {S(T ′) | T ′∈Y} ∪ {BΓ(U {T

′
/x}) | T ′∈Y} where Y =

{
T ′

���� Γ ⊢ T ′ ⩽ T and

(T ′=T or T ′∈X)

}
The (complete) actions of a π -type in Γ are defined as:

AΓ(T ) = BΓ(T ) ∪
{
τ [S, S ′]

��� S ⟨U ⟩ ∈ BΓ(T ) and S ′(U ′) ∈ BΓ(T ) and Γ ⊢ S ▷◁ S ′
}

The input and output uses of S by π -type T in Γ, written Ui
Γ,T(S) and U

o
Γ,T(S), are:

Ui
Γ,T(S) = {S ′(U ′) ∈ AΓ(T ) | Γ ⊢ S ⩽ S ′} Uo

Γ,T(S) = {S ′⟨U ′⟩ ∈ AΓ(T ) | Γ ⊢ S ⩽ S ′}

Given a set of type (resp. term) variables Y, the Y-limited transitions of T (resp. t ) in Γ are:

Γ ⊢ T
α
−→ T ′ (α =x(U ) or α =x⟨U ⟩) implies x ∈ Y

T ↑Γ Y
α
−→ T ′ ↑Γ Y

Γ ⊢ t α
−⇁ t ′ (α =x(w) or α =x⟨w⟩) implies x ∈ Y

t ↑Γ Y
α
−⇁ t ′ ↑Γ Y

Intuitively, Def. B.4 computes the possible actions of a π -type T in two steps:

1. first, it computes the set of basic actions BΓ(T ), by performing a simple syntactic traversal of T . Some care is required to

compute the actions of an input type Tin = i
[
S,Π(x:T )U

]
, that by Def. 4.2, could take different paths by firing different

actions S(T ′) for various payload types T ′
. For this reason,

a. all possible payload types T ′
, according to the premises of rule [T→i], are collected in the set Y. Note that Y is always

finite: it can contain at most T and all variables in Γ;
b. then, for each T ′ ∈ Y, the action S(T ′) is added to BΓ(Tin), together with the basic actions of the continuationU {T ′

/x};

2. then, it computes the (complete) set of actions AΓ(T ) by combining:

a. BΓ(T ), and
b. all possible communication actions τ [S, S ′] obtainined by pairing the actions in BΓ(T ), whenever they involve channel

types that might communicate (“Γ ⊢ S ▷◁ S ′”, Def. 4.2).

Notably, to compute AΓ(T ) we need to compare types via subtyping, and thus, we need the judgement Γ ⊢ U ⩽ U ′
to be

decidable (hence the remark about rule [⩽-Π] in §3).

C Type system properties
C.1 λπ⩽ as a specialisation of F<:

The judgements in Fig. 4 can be reconnected to those of F<: [8] under an intuition based on the following encoding from λπ⩽ to

F<::
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Environments [[∅]]F<:

= ∅

[[x:T , Γ]]F<:

= Xx⩽[[T ]]F<:

, x:Xx, [[Γ]]F<:

Types

[[
Π(x:T )U

]]
F<:

= ∀(Xx⩽[[T ]]F<:

)Xx → [[U ]]F<:[[
x

]]
F<:

= Xx

. . .

Terms

[[
λxT .t

]]
F<:

= λ(Xx⩽[[T ]]F<:

).λxXx.[[t]]F<:

. . .

The idea is that:

1. a typing environment entry x:T ∈ Γ in λπ⩽ corresponds to two typing environment entries in F<:: a type variable Xx with

bound [[T ]]F<:

, and a term variable x with type Xx ;

2. a dependent function type Π(x:T )U corresponds to a (non-dependent) function type Xx → [[U ]]F<:

, under the bounded

quantification ∀(Xx⩽[[T ]]F<:

). . .;

3. an occurrence of x in a λπ⩽ type T corresponds to an occurrence of Xx in the encoded F<: type [[T ]]F<:

;

4. an abstraction λxT .t in λπ⩽ corresponds to two consecutive abstractions in F<:: a bounded type function with a type

variable Xx bounded by [[T ]]F<:

, abstracting a function whose argument x has type Xx ;

Under the correspondence above, we can notice that:

• the typing rule [t -x] in Fig. 4, that infers Γ ⊢ x : x, is an instance of rule (Val x) in [8], that infers [[Γ]]F<:

⊢ x : Xx ;

• the subtyping rule [⩽-x] in Fig. 4, that infers Γ ⊢ x ⩽ T , is an instance of rule (Sub X) in [8], that infers [[Γ]]F<:

⊢ Xx ⩽ [[T ]]F<:

.

Indeed, all judgements in Fig. 4 (except for the highlighted, concurrency-related ones) are developed from those in [8] by

following the correspondence above. For example, the λπ⩽ typing rule

Γ ⊢ t1 : Π(x:U )T Γ ⊢ t2 : U ′ Γ ⊢ U ′ ⩽ U

Γ ⊢ t1 t2 : T {U ′
/x}

[t -app]

is obtained as an instance of (Val appl) and (Val appl2) in [8]:

[[Γ]]F<:

⊢ [[t1]]F<:

:

[[
Π(x:U )T

]]
F<:

[[Γ]]F<:

⊢ [[U ′]]F<:

⩽ [[U ]]F<:

[[Γ]]F<:

⊢ [[t1]]F<:

([[U ′]]F<:

) : [[U ′]]F<:

→ [[T ]]F<:

{[[U
′]]F<:/Xx}

[Val appl2]

[[Γ]]F<:

⊢ [[t2]]F<:

: [[U ′]]F<:

[[Γ]]F<:

⊢ [[t1 t2]]F<:

: [[T {U ′
/x}]]F<:

[Val appl]

i.e., the typing of a dependent function application t1 t2 in λπ⩽ (via rule [t -app]) corresponds, in F<:, to typing an application of

bounded quantification (rule (Val appl2), term [[t1]]F<:

([[U ′]]F<:

)), which in turn is applied to [[t2]]F<:

(rule (Val appl)). Note, in

particular, that the application of bounded quantification if F<: is responsible for the type-level substitution [[T ]]F<:

{[[U
′]]F<:/Xx},

that corresponds, to T {U ′
/x} in λπ⩽ .

The above correspondence also guides in adapting the results and proofs from F<: to λ
π
⩽ , leading to the results in §C.2.

C.2 Properties
Lemma C.1. ⩽ is a preorder, i.e.:

1. if Γ ⊢ T *-type, then: Γ ⊢ T ⩽ T ;
2. if Γ ⊢ S,T ,U *-type, then: Γ ⊢ S ⩽ T and Γ ⊢ T ⩽ U implies Γ ⊢ S ⩽ U .

Proof. Item 1 is immediate. For item 2, given Γ, we build a relation

R = { (S,U ) | Γ ⊢ S ⩽ T and Γ ⊢ T ⩽ U }

and by inspecting each pair (S,U ) ∈ R, we prove that the judgement Γ ⊢ S ⩽ U by some rule in Fig. 4. In most cases, this

holds similarly to [32, Prop. 2 and 3], (cf. §C.1); the remaining cases are union types, channel types, and π -types: they are all

easy. □

Proposition C.2. Assume Γ ⊢ t : T . Then, fv(t) ∈ dom(Γ).

Proof. By induction on the typing derivation. □

Proposition C.3. If ⊢ Γ env and Γ(x) = T , then x < fv(T ).



Verifying Message-Passing Programs with Dependent Behavioural Types (tech. report)

Proof. Assuming Γ(x) = T , we have Γ = Γ′, x:T (for some Γ′). Therefore, assuming ⊢ Γ env and by inversion of [T -x], we must

have Γ′ ⊢ T type and x < dom(Γ′). Then, by induction on the derivation of Γ′ ⊢ T type, we prove x < fv(T ). □

Proposition C.4. If ⊢ Γ env and Γ(x) = T , then Γ ⊢ x : T .

Proof.

⊢ Γ env

Γ ⊢ x : x

[t -x]
Γ ⊢ Γ(x) ⩽ T

[⩽-refl]

Γ ⊢ x ⩽ T
[⩽-x]

Γ ⊢ x : T
[t -⩽]

□

Proposition C.5. If Γ ⊬ T ⩽ ⊥, then Γ ⊢ T ⩽ z implies Γ ⊢ z ⩽ T .

Proof. Observe that the premise Γ ⊢ T ⩽ z can only hold under a derivation composed by rules [⩽-refl] and [⩽-∨L]; then, we can

prove Γ ⊢ z ⩽ T with a symmetric derivation, where each instance of [⩽-∨L] is replaced with [⩽-∨R]. □

Lemma C.6 (Typing inversion). Assume Γ ⊢ t : T with Γ ⊢ T type. Then, one of the following cases holds:

1. t = x, and either:

a. Γ ⊢ T ⩽ x; or

b. Γ ⊢ Γ(x) ⩽ T .
2. t = v ∈ B, and Γ ⊢ bool ⩽ T ;
3. t = (), and Γ ⊢ () ⩽ T ;
4. t = ¬t ′ with Γ ⊢ t ′ : bool, and Γ ⊢ bool ⩽ T ;
5. t = λxU .t with Γ ⊢ U type, and for some T ′

such that Γ, x:U ⊢ T ′
*-type, we have Γ, x:U ⊢ t : T ′

and Γ ⊢ Π(x:U )T ′ ⩽ T ;
6. t = if t ′ then t1 else t2, and for some T1,T2 such that Γ ⊢ T1,T2 type, we have Γ ⊢ t ′ : bool and Γ ⊢ t1 : T1 and Γ ⊢ t2 : T2

and Γ ⊢ T1 ∨T2 ⩽ T ;
7. t = t1 t2, and for some U ,U ′,T ′

such that Γ ⊢ U ,U ′,T ′
type, we have Γ ⊢ t1 : Π(x:U )T ′

and Γ ⊢ t2 : U ′
and Γ ⊢ U ′ ⩽ U

and Γ ⊢ T ′{U ′
/x} ⩽ T ;

8. t = let xU = t1 in t2 with Γ ⊢ U type, and for some U ′,T ′
such that Γ ⊢ U ′,T ′

type, we have Γ, x:U ⊢ t1 : U ′
and

Γ, x:U ⊢ t2 : T ′
and Γ ⊢ U ′ ⩽ U and Γ ⊢ T ′{U

′
/x} ⩽ T ;

9. t = aT
′

with Γ ⊢ T ′
type, and Γ ⊢ c

io[T ′] ⩽ T ;
10. t =chan()T

′

with Γ ⊢ T ′
type, and Γ ⊢ c

io[T ′] ⩽ T .

Proof. First, observe that the assumption implies T . ⊥ (otherwise, we would not have a typed term t ).
Item 1. Assume Γ ⊢ x : T . Then, for some finite n ≥ 0, lettingT0 = x andTn = T , the judgement can only be the conclusion

of a derivation of the following form (where P denotes the premises of a judgement):

⊢ Γ env

Γ ⊢ x : T0

[t -x]
P1

Γ ⊢ x ⩽ T1

[?1]

Γ ⊢ x : T1

[t -⩽]

P2

Γ ⊢ T1 ⩽ T2

[?2]

...

[t -⩽] Pn−1

Γ ⊢ Tn−2 ⩽ Tn−1

[?n − 1]

Γ ⊢ x : Tn−1

[t -⩽]

Pn

Γ ⊢ Tn−1 ⩽ Tn
[?n]

Γ ⊢ x : Tn
[t -⩽]

This is because:

• the instance of [t -x] on the top left is the only possible base case for a judgement of the form Γ ⊢ x : U ;

• the i-th application of rule [t -⩽] requires an application of some subtyping rule [?i] with (coinductive) premises Pi ,

allowing to get Γ ⊢ x ⩽ Ti .

We now prove that:

∀i ∈ 1..n : Γ ⊢ Ti ⩽ x or Γ ⊢ Γ(x) ⩽ Ti (1)

We proceed by induction on i:

• base case i = 0. Then, we have Ti ≡ x, and conclude Γ ⊢ Ti ⩽ x by [⩽-refl] (Fig. 4);

• inductive case i = j + 1. Then, we must have Γ ⊢ Tj ⩽ Ti for some subtyping rule [?i]. We have two possibilities:

1. [?i] = [⩽-x]. This implies Tj = x and Pi = Γ ⊢ Γ(x) ⩽ Ti . Hence, we conclude Γ ⊢ Γ(x) ⩽ Ti ;
2. [?i] , [⩽-x]. By the induction hypothesis, we have either:
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a. Γ ⊢ Tj ⩽ x. Observe that, from the premise of the i-th application of rule [t -⩽], we have Γ ⊢ x ⩽ Ti . Therefore, by
Prop. C.5, we conclude Γ ⊢ Ti ⩽ x;

b. Γ ⊢ Γ(x) ⩽ Tj . Then, by Lemma C.1(2) (subtyping transitivity) we have Γ ⊢ x ⩽ Ti ; thus, we conclude Γ ⊢ Γ(x) ⩽ Ti .

Now, having proved (1), and remindingTn = T , we obtain that either Γ ⊢ T ⩽ x or Γ ⊢ Γ(x) ⩽ T holds — which is the thesis.

Items 2–10. By cases on the rule concluding Γ ⊢ t : T . □

Lemma C.7 (Typing inversion for π -types). Assume Γ ⊢ t : T with Γ ⊢ T π -type. Then, one of the following cases holds:

1. t = end, and Γ ⊢ nil ⩽ T ;
2. t = send(t1, t2, λx ().t3) and for some S ′,Ti ,To,T

′,U ′
such that Γ ⊢ S ′ ⩽ c

o[To] and Γ ⊢ T ′
type and Γ ⊢ T ′ ⩽ To and

Γ ⊢ U ′ π -type, we have Γ ⊢ t1 : S ′ and Γ ⊢ t2 : T ′
and Γ ⊢ t3 : U ′

and Γ ⊢ o[S ′,T ′,Π()U ′] ⩽ T ;
3. t = recv(t1, λxT

′

.t2) with Γ ⊢ T ′
type, and for some S ′,Ti ,To,U

′
such that Γ ⊢ S ′ ⩽ c

i[Ti ] and Γ ⊢ Ti ⩽ T ′
and

Γ, x:T ′ ⊢ U ′ π -type, we have Γ ⊢ t1 : S ′ and Γ, x:T ′ ⊢ t2 : U ′
and Γ ⊢ i

[
S ′,Π(x:T ′)U ′

]
⩽ T ;

4. t = t1 || t2, and for some T1,T2 such that Γ ⊢ T1,T2 π -type, we have Γ ⊢ t1 : T1 and Γ ⊢ t2 : T2 and Γ ⊢ p[T1,T2] ⩽ T ;
5. t = if t ′ then t1 else t2, and for some T1,T2 such that Γ ⊢ T1,T2 π -type, we have Γ ⊢ t ′ : bool and Γ ⊢ t1 : T1 and Γ ⊢ t2 : T2

and Γ ⊢ T1 ∨T2 ⩽ T ;
6. t = t1 t2, and for someU ,U ′,T ′

such that Γ ⊢ U ,U ′
type and Γ ⊢ T ′ π -type, we have Γ ⊢ t1 : Π(x:U )T ′

and Γ ⊢ t2 : U ′
and

Γ ⊢ U ′ ⩽ U and Γ ⊢ T ′{U ′
/x} ⩽ T ;

7. t = let xU = t1 in t2 with Γ ⊢ U type, and for someU ′,T ′
such that Γ ⊢ U ′

type and Γ ⊢ T ′ π -type, we have Γ, x:U ⊢ t1 : U ′

and Γ, x:U ⊢ t2 : T ′
and Γ ⊢ U ′ ⩽ U and Γ ⊢ T ′{U ′

/x} ⩽ T .

Proof. By cases on the rule concluding Γ ⊢ t : T . □

Proposition C.8. Assume Γ ⊢ x : T . Then, Γ ⊢ x ⩽ T .

Proof. By Lemma C.6(1), we have two cases:

• Γ ⊢ T ⩽ x. Then, we conclude by Prop. C.5;

• Γ ⊢ Γ(x) ⩽ T . Then, we conclude by

Γ ⊢ Γ(x) ⩽ T

Γ ⊢ x ⩽ T
[⩽-x]

.

□

Proposition C.9. Assume Γ ⊢ E[t] : T with Γ ⊢ T type. Then, ∃Γ′,T ′
such that Γ ⊆ Γ′ and Γ′ ⊢ t : T ′

.

Proof. By induction on E and the derivation of Γ ⊢ E[t] : T , using Lemma C.6. □

Proposition C.10. Assume Γ ⊢ E[t] : T , with t = send(t1, t2, t3) or t = recv(t1, t2) or t = t1 || t2, and Γ ⊢ T π -type. Then,

∃E ′,T ′
such that Γ ⊢ T ′ π -type, Γ ⊢ E[t] : E ′[T ′], Γ ⊢ E ′[T ′] ⩽ T , and Γ′ ⊢ t : T ′

.

Proof. By induction on E and the derivation of Γ ⊢ E[t] : T , using Lemma C.7(4). □

Lemma C.11 (Substitution). Assume Γ, x:U ⊢ t : T and Γ ⊢ w : U (withw ∈V∪X). Then, Γ ⊢ t{w/x} : T {U/x}.

Proof. By induction on the derivation of Γ, x:U ⊢ t : T . □

Proposition C.12. For all t,T ,T ′,T ′′
such that Γ ⊢ T π -type, Γ ⊢ T ′ π -type and Γ ⊢ T ′′ π -type, if Γ ⊢ t : T and T ′ ≡ proc∨T ′′

,

then Γ ⊢ t : T ′
.

Proof.

Γ ⊢ t : T Γ ⊢ T ⩽ proc
[⩽-proc]

Γ ⊢ t : proc
[t -⩽]

by [⩽-refl] and Lemma C.1(2)

Γ ⊢ proc ⩽ T ′

Γ ⊢ t : T ′
[t -⩽]

□
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D Subject transition (Thm. 4.4)
Proposition D.1. Assume Γ ⊢ E[t] : T , and

Γ ⊢ t α
−⇁ t ′ with α ∈

(
{[R-λ], [R-let], [R-chan()], [R-¬tt], [R-¬ff], [R-if-tt], [R-if-ff]}
∪ {τ [¬x], τ [if x], τ [x()], τ [λ()] | x ∈X}

)
Then, Γ ⊢ E[t] α

−⇁ E[t ′] and Γ ⊢ E[t ′] : T .

Proof. By rule [SR-E] in Def. 4.1, we obtain Γ ⊢ E[t] α
−⇁ E[t ′].

We now prove Γ ⊢ E[t ′] : T . We have two possibilities:

1. Γ ⊢ T type. First, using Prop. C.9, we show that there are Γ′,T ′
such that Γ ⊆ Γ′ and Γ′ ⊢ t : T ′

. Then, by induction on

the derivation of Γ ⊢ t α
−⇁ t ′ using Lemma C.6 (inversion of typing), we prove Γ′ ⊢ t ′ : T ′

. Finally, using Lemma C.11, we

conclude Γ ⊢ E[t ′] : T .
2. Γ ⊢ T π -type. Then, E = P for some P (Def. E.1), and thus, t occurs within send(−,−,−) or recv(−,−), possibly inside

some instances of ||. Hence, using Prop. C.10, we show that there are E ′′,T ′′
such that Γ ⊢ T ′′

type, Γ ⊢ E ′′[T ′′] ⩽ T
and Γ ⊢ P[t] : E ′′[T ′′] and Γ ⊢ t : T ′′

. Then, we proceed as in case 1 above to show that, after t reduces to t ′, we have
Γ ⊢ t ′ : T ′′

. Finally, using Lemma C.11 again, we conclude Γ ⊢ E[t ′] : T .

□

Proposition D.2. Assume Γ ⊢ t : T with Γ ⊢ T π -type. Then, Γ ⊢ t
x ⟨w ⟩
−−−−⇁ t ′ implies either:

1. Γ ⊢ t ′ : T and proc ∈ T ; or

2. ∃S,U ,T ′
: Γ ⊢ x : S,w :U , t ′ :T ′

and Γ ⊢ T
τ [∨]
−−−→∗

S ⟨U ⟩
−−−−→ T ′

.

Proof. Assume Γ ⊢ t
x ⟨w ⟩
−−−−⇁ t ′: by inversion of the derivation of the transition, we have t = E[send(x,w, t ′′)], for some E, t ′′. By

Prop. C.10, ∃E ′,T0 such that Γ ⊢ E ′[T0] ⩽ T , Γ ⊢ t : E ′[T0] and Γ ⊢ send(x,w, t ′′) : T0. By Lemma C.7(2), t ′′ = λx ().t ′′′, hence
we know that t ′ = E

[
λx ().t ′′′ ()

]
; moreover, again by Lemma C.7(2), for some S ′′,Ti ,To,T

′′,U ′′
, such that Γ ⊢ S ′′ ⩽ c

o[To]
and Γ ⊢ U ′′

type and Γ ⊢ U ′′ ⩽ To and Γ ⊢ T ′′ π -type, we have Γ ⊢ x : S ′′ and Γ ⊢ w : U ′′
and Γ ⊢ t ′′′ : T ′′

and

Γ ⊢ o[S ′′,U ′′,Π()T ′′] ⩽ T0. We now have two possibilities:

• if T0 ≡ o[S1,U1,Π()T1] ∨ T ′
1
with Γ ⊢ S ′′ ⩽ S1,U

′′ ⩽U1,T
′′ ⩽ T1, we have Γ ⊢ E ′[T0]

S1 ⟨U1 ⟩
−−−−−→ E ′[T1], and two more

sub-cases:

– if T ≡ o[S2,U2,Π()T2] ∨T ′
2
with Γ ⊢ S1 ⩽ S2,U1 ⩽U2,T1 ⩽T2, then by letting S = S2, U = U2 and T

′ = T2, we get

Γ ⊢ x : S,w :U , t ′ :T ′
(by [t -⩽]) and Γ ⊢ T

τ [∨]
−−−→∗

S ⟨U ⟩
−−−−→ T ′

, and we conclude by obtaining item 2;

– otherwise, we have T ≡ proc ∨ T ′
2
. In this case, we get Γ ⊢ t : T (by Prop. C.12) and proc ∈ T , and conclude by

obtaining item 2.

• otherwise, we have T0 ≡ proc ∨T ′
1
. In this case, we get Γ ⊢ t ′′ : T0 (by Prop. C.12), and thus, Γ ⊢ t ′ : E ′[T0]; hence, since

Γ ⊢ E ′[T0] ⩽ T , we must have proc ∈ T . Therefore, we conclude by obtaining item 2.

□

Proposition D.3. Assume Γ ⊢ t : T with Γ ⊢ T π -type. Then, Γ ⊢ t
x(w )
−−−⇁ t ′ implies either:

1. Γ ⊢ t ′ : T and proc ∈ T ; or

2. ∃S,U ,T ′
: Γ ⊢ x : S,w :U , t ′ :T ′

and Γ ⊢ T
τ [∨]
−−−→∗

S (U )
−−−→ T ′

.

Proof. Similar to the proof of Prop. D.2, but using Lemma C.7(3). □

Proposition D.4. Assume Γ ⊢ t : T with Γ ⊢ T π -type. Then, Γ ⊢ t
τ [x]
−−−⇁ t ′ implies either:

1. Γ ⊢ t ′ : T and proc ∈ T ; or

2. ∃S, S ′,T ′
: Γ ⊢ x : S, x : S ′, t ′ :T ′

and Γ ⊢ T
τ [∨]
−−−→∗

τ [S ,S ′]
−−−−−→ T ′

.

Proof. Similar to the proof of Prop. D.2, but using Lemma C.7(4). □

Proposition D.5. Assume Γ ⊢ t : T with Γ ⊢ T π -type. Then, Γ ⊢ t
τ [R-Comm]
−−−−−−−−⇁ t ′ implies either:

1. Γ ⊢ t ′ : T and proc ∈ T ; or

2. ∃S, S ′,T ′
: S, S ′,x, Γ ⊢ t ′ : T ′

and Γ ⊢ T
τ [∨]
−−−→∗

τ [S ,S ′]
−−−−−→ T ′

.

Proof. Similar to the proof of Prop. D.4. □
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D.1 Proof of subject transition (Thm. 4.4)
Proof. Assume Γ ⊢ t : T . If Γ ⊢ T type, then Γ ⊢ t α

−⇁ t ′ follows by Prop. D.1.

Now, assume Γ ⊢ T π -type.

Item 1. Follows by Prop. D.1.

Item 2. By cases on α , the result follows by either Prop. D.2, D.3, D.4, or D.5. □

E Type Fidelity (Thm. 4.5)
Definition E.1 (Process evaluation context). A process evaluation context P is a restricted case of evaluation context E

(Def. 2.5):

P F [ ]
�� send(P, t, t ′)

�� send(w,P, t ′)
�� send(w,w ′,P)

�� recv(P, t)
�� recv(w,P)

�� P || t (w,w ′ ∈ V∪X)

E.1 Proof of type fidelity (Thm. 4.5)

Proof. Assume Γ ⊢ T
α
−→ T ′′

for some α matching one of items 1–4, and for some T ′′
. By Def. 4.2 and inversion of the the

transition, for some E,T0 we have T = E[T0], and Γ ⊢ T0

α
−→ T ′

0
. Moreover, since Γ ⊢ t : E[T0], for some t0,P (Def. E.1) we have

t = P[t0] and Γ ⊢ t0 : T0. Then, we have the following possibilities:

Item 1 (α = x⟨U ⟩). Then, in the statement we have T ′ = E
[
T ′

0

]
. By inversion of the transition Γ ⊢ T0

x ⟨U ⟩
−−−−→ T ′

0
, , we have

T0 = o
[
x,U ,Π()T ′

0

]
. Therefore, by the productivity hypothesis, Γ ⊢ t0

τ •

−−⇁∗ t ′′ ̸τ−⇁; by Thm. 4.4, we get Γ ⊢ t ′′ : T0; hence, we

have the following possibilities:

• t ′′ ∈ V. Impossible, because it would imply Γ ⊬ t ′′ : T0, leading to the contradiction Γ ⊬ t : T ;
• t ′′ = z ∈ X. Impossible, because it would require z:T ′

0
∈ Γ for some T1 such that Γ ⊢ T1 ⩽ T0; but then, since

Γ ⊢ T0 π -type, we would also have Γ ⊢ T1 π -type, that would imply ⊬ Γ env, leading to the contradiction Γ ⊬ t : T ;
• t ′′ ∈ P. Then, by Lamma C.7, we must have t ′′ = send(x,w,w ′), with Γ ⊢ w : U , and Γ ⊢ w ′

: Π()T ′
0
. Moreover, since

Γ ⊢ U type and Γ ⊢ Π()T ′
0

type (by [π -o]), we also have w,w ′ ∈ V ∪ X (otherwise, we would contradict t ′′ ̸τ−⇁); hence,

by rule [SR-send] (Def. 4.1), Γ ⊢ t ′′
x ⟨w ⟩
−−−−⇁ w ′ (), and by Thm. D.4(2b), Γ ⊢ w ′ () : T ′

0
. Hence, we get t ′ = P[w ′ ()] and

Γ ⊢ t ′ : E
[
T ′

0

]
= T ′

, which concludes the proof;

Item 2 (α = x(U )). Similar to the proof for item 1 above, but concluding via Thm. D.4(2c);

Item 3 (α = τ [x, x]). Similar to the proofs for items 1 and 2 above, but concluding via Thm. D.4(2d);

Item 4 (α = τ [∨]). Then, T0 ≡ T1 ∨T2, and for some i ∈ {1, 2}, Γ ⊢ T1 ∨T2

τ [∨]
−−−→ Ti and and T ′′ = E[Ti ]. We now have two

possibilities:

1. Γ ⊢ T1 ∨T2 type. Then, by Lemma C.6, we have two cases:

a. for some i ∈ {1, 2}, Γ ⊢ t0 : Ti . This means that Γ ⊢ t0 : T1 ∨T2 holds by an instance of [t -⩽]. Then, by letting

T ′ = E[Ti ], we get Γ ⊢ T
τ [∨]
−−−→ T ′

and Γ ⊢ t : T ′
: hence, we conclude by obtaining item (a);

b. for all i ∈ {1, 2}, Γ ⊬ t0 : Ti . Then, either:

(a) the reducing∨-type is introduced by a subterm of t0 of the form if t ′
1
then t ′

2
else t ′

3
, possibly combined with instances

of if ... then ... else ..., ¬..., let ... = ... in ..., or function application. Thus, t0 can reduce as:

Γ ⊢ t0
α
−⇁ t ′′ with α ∈ {τ [¬x], τ [if x], τ [x()], τ [λ()], τ [r] | x ∈X, [r], [R-Comm]}

and thus, by [SR-E], we also have Γ ⊢ t α
−⇁ P[t ′′]; moreover, by Thm. 4.4, we have Γ ⊢ t ′′ : T1 ∨T2, which implies

Γ ⊢ P[t ′′] : T . Therefore, letting t ′ = P[t ′′], we get Γ ⊢ t α
−⇁ t ′ and Γ ⊢ t ′ : T , and conclude by obtaining item (b);

(b) the reducing ∨-type is not introduced by a subterm of t0 of the form if t ′
1
then t ′

2
else t ′

3
. Then, it must be due to

some variable z of type T ′
1
∨T ′

2
, that might occur either:

• within some instances of if ... then ... else ..., ¬..., let ... = ... in ..., or function application. Then, t0 can reduce

as Γ ⊢ t0
α
−⇁ t ′′ similarly to case (a), we conclude by obtaining item (b);

• directly as z, hence t = P[z]. Then, t has a top-level send/recv term (possibly within ||), and correspondingly,

by Lemma C.7, E has a top-level o/i term (possibly within p[..., ...]). Therefore, T has an enabled transition for

input/output/interaction with a label α , τ [∨]: hence, we conclude by obtaining item (c);

2. Γ ⊢ T1 ∨T2 π -type. Then, we have Γ ⊢ T1,T2 π -type, and using Lemma C.7, we find two cases, corresponding to either

case 1a or 1b(a) above — and conclude similarly.

□
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F Proof of Lemma 4.7
We prove the thesis in three steps:

1. we develop a calculus akin to CCS [53], but without restrictions nor relabeling, called CCST
. Its syntax is based on our

π -types, and its labelled semantics match Def. 4.2. We also show that our π -types are encodable in CCST
(§F.1);

2. since CCST
has no name restriction nor relabeling, we show that it can be encoded into Petri nets with a minor variation

of [22, §4.1] (§F.2);

3. from this, it follows that linear-time µ-calculus formulas are decidable for CCST
terms, and thus, for our types (§F.3).

F.1 Encoding of π -types into CCST

Definition F.1. CCST
terms have the following syntax:

T ,U F S ⟨T ⟩ .T
�� ∑

i ∈I

Si (Ti ).Ti
�� T || U

�� T ∨U
�� T +U

�� µt.T
�� t

�� nil

The congruence ≡ between CCST
terms is defined as:

T || U ≡ U || T (T1 || T2) || T3 ≡ T1 || (T2 || T3) T || nil ≡ T µt.T ≡ T {µt.T/t}

Given a typing environment Γ, the semantics of CCST
terms is defined as:

S ⟨T ⟩ .T
S ⟨T ⟩
−−−−→ T

∑
i ∈I Si (Ti ).Ti

Sk (Tk )
−−−−−→ Tk (k ∈ I )

T1 ∨ T2

τ [∨]
−−−→ Tk (k ∈ {1, 2})

Ti
α
−→ T ′

for some i ∈ {1, 2}

T1 + T2

α
−→ T ′

T
S ⟨x ⟩
−−−→ T ′ U

S ′(x)
−−−→ U ′ Γ ⊢ S ▷◁ S ′

T || U
τ [S ,S ′]
−−−−−→ T ′ || U ′

T
S ⟨T ⟩
−−−−→ T ′ U

S ′(T ′)
−−−−→ U ′ Γ ⊢ S ▷◁ S ′ Γ ⊢ T ⩽ T ′ T < X

T || U
τ [S ,S ′]
−−−−−→ T ′ || U ′

T
α
−→ T ′

T || U
α
−→ T ′ || U

T ≡ T ′ α
−→ U ′ ≡ U

T
α
−→ U

Definition F.2. We write Γ ⊢ T1 ⩽⩾ T2 iff Γ ⊢ T1 ⩽ T2 and Γ ⊢ T2 ⩽ T1.

We can now define an encoding of our π -types into CCST
(Def. F.5 below). The encoding is straightforward, except for one

detail:

(∗) given Γ, by Def. 4.2 the π -type To = o[S ∨ S ′,T ,Π()U ] can reduce as follows:

Γ ⊢ o[S ∨ S ′,T ,Π()U ]
S∨S ′ ⟨T ⟩
−−−−−−→ U

Γ ⊢ o[S ∨ S ′,T ,Π()U ]
τ [∨]
−−−→ o[S,T ,Π()U ]

S ⟨T ⟩
−−−−→ U

Γ ⊢ o[S ∨ S ′,T ,Π()U ]
τ [∨]
−−−→ o[S ′,T ,Π()U ]

S ′ ⟨T ⟩
−−−−→ U

where the second and third transition are due to the contextual rule, allowing to reduce ∨-types inside o/i-types;

To simplify our encoding of π -types in CCST
, it is convenient to remove the transitions of ∨/µ-types inside i-o-types; to

this purpose, we expand a type, with the rewriting outlined below:

(∗∗) we bring ∨-types at the top-level, removing the need of expanding them inside i/o-types. For this purpose, we introduce
an “expaded or” type “+” defined exactly like ∨, except that its semantic rules are:

Γ ⊢ T
α
−→ T ′

Γ ⊢ T +U
α
−→ T ′

Γ ⊢ U
α
−→ U ′

Γ ⊢ T +U
α
−→ U ′

i.e., + does not introduce a τ [∨]-transition when choosing one of its two options.

Then, the expansion of type To = o[S ∨ S ′,T ,Π()U ] above is the type:

T ′
o = o[S ∨ S ′,T ,Π()U ] +

(
o[S,T ,Π()U ] ∨ o[S ′,T ,Π()U ]

)
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and we can verify that Γ ⊢ To ⩽⩾ T ′
o holds (Def. F.2), hence To and T

′
o type the same set of λπ⩽ terms; moreover, the

reduction of S ∨ S ′ inside i/o-types is redundant in the expanded type: i.e., the original type o[S ∨ S ′,T ,Π()U ] and its

expansion T ′
o above are bisimilar (Def. F.3 below), even if we do not let T ′

o fire the reduction of S ∨ S ′ inside the o-type.
Now, given a π -type T , we write exp(T ) for the expanded version of T , according to the rewriting (∗∗) above. Then, we

can verify that T and exp(T ) are bisimilar up-to type equivalence of their labels (Def. F.2, that equates recursive terms up-to

unfolding), as formalised in Prop. F.4 below.

Definition F.3 (Type bisimulation). We say that a relation RΓ between valid π -types in Γ is a type bisimulation iff, whenever

(U1,U2) ∈ RΓ :

1. Γ ⊢ U1

S ⟨T ⟩
−−−−→ U ′

1
implies ∃S ′,T ′,U ′

2
: Γ ⊢ S ⩽⩾ S ′, Γ ⊢ T ⩽⩾ T ′

, Γ ⊢ U2

S ′ ⟨T ′⟩
−−−−−→ U ′

2
and (U ′

1
,U ′

2
) ∈ RΓ ;

2. Γ ⊢ U1

S (T )
−−−→ U ′

1
implies ∃S ′,T ′,U ′

2
: Γ ⊢ S ⩽⩾ S ′, Γ ⊢ T ⩽⩾ T ′

, Γ ⊢ U2

S ′(T ′)
−−−−→ U ′

2
and (U ′

1
,U ′

2
) ∈ RΓ ;

3. Γ ⊢ U1

τ [S ,T ]
−−−−−→ U ′

1
implies ∃S ′,T ′,U ′

2
: Γ ⊢ S ⩽⩾ S ′, Γ ⊢ T ⩽⩾ T ′

, Γ ⊢ U2

τ [S ′,T ′]
−−−−−−→ U ′

2
and (U ′

1
,U ′

2
) ∈ RΓ ;

4. Γ ⊢ U1

τ [∨]
−−−→ U ′

1
implies ∃U ′

2
: Γ ⊢ U2

τ [∨]
−−−→ U ′

2
and (U ′

1
,U ′

2
) ∈ RΓ ;

5. the converse of clauses 1–4, on the transitions emanating fromU2.

We write Γ ⊢ U1 ∼ U2 iff, for some type bisimulation RΓ , we haveU1 RΓ U2.

Proposition F.4. For all Γ,T such that Γ ⊢ T π -type, Γ ⊢ T ∼ exp(T ).

Definition F.5 (CCST
encoding of π -types). For all Γ,T such that Γ ⊢ T π -type, the CCST

encoding of T in Γ is defined as

⟨⟨exp(T )⟩⟩Γ , where:

⟨⟨nil⟩⟩Γ = nil ⟨⟨µt.T ⟩⟩Γ = µt. ⟨⟨T ⟩⟩Γ ⟨⟨t⟩⟩Γ = t ⟨⟨T ∨U ⟩⟩Γ = ⟨⟨T ⟩⟩Γ ∨ ⟨⟨U ⟩⟩Γ ⟨⟨T +U ⟩⟩Γ = ⟨⟨T ⟩⟩Γ + ⟨⟨U ⟩⟩Γ

⟨⟨p[T ,U ]⟩⟩Γ = ⟨⟨T ⟩⟩Γ || ⟨⟨U ⟩⟩Γ ⟨⟨o[S,T ,Π()U ]⟩⟩Γ = S ⟨T ⟩ . ⟨⟨U ⟩⟩Γ〈〈
i
[
S,Π(x:T )U

]〉〉
Γ =

∑
T ′∈Y S(T

′). ⟨⟨U {T
′
/x}⟩⟩Γ where Y =

{
T ′

���� (T ′ = T or T ′ ∈ X)
and Γ ⊢ T ′ ⩽ T

}
The only non-straightforward part of Def. F.5 above is the last case: it encodes an input type by composing all its outgoing

transitions into a summation

∑
T ′∈Y . . ., where Y contains all possible payload typesT ′

, according to the premises of rule [T→i].

As discussed in §B.2, the set Y is always finite, hence the summation has a finite number of branches.

Proposition F.6. For all Γ,T such that Γ ⊢ T π -type, Γ ⊢ T ∼ ⟨⟨exp(T )⟩⟩Γ .

Proof. By Def. F.5, we can verify that Γ ⊢ exp(T ) ∼ ⟨⟨exp(T )⟩⟩Γ , where the judgement stands for strong bisimilarity, and is

defined as expected. Then, we conclude by Prop. F.4. □

F.2 Encoding of CCST into Petri nets
Following Def. F.1, we can encode CCST

terms into a Petri net with a minor variation of the encoding in [22, §4.1]. The

key restrictions for such an encoding is that it only applies to finite-branching and guarded CCST
terms (i.e., in a recursive

term µt.T , the recursion variable t can only appear in T as subterm of S(U ).T ′
or S ⟨U ⟩ .T ′

). By Def. F.5, both restrictions are

satisfied by CCST
terms obtained by encoding guarded π -types (hence the requirement in Lemma 4.7).

Besides this, the only differences w.r.t. [22, §4.1] are that:

1. in CCST
we have two kinds of internal transitions: τ [∨] and τ [S, S ′] — whereas in CCS, only one τ -transition covers all

cases. Such different internal transitions must be kept distinguished in the labels of the encoded Petri net;

2. to generate a synchronisation label τ [S, S ′] in the encoded Petri net, we must apply the (decidable) checks of the

corresponding semantic rules in Def. F.1, which include subtyping-based comparisons — whereas CCS uses simpler

duality checks (e.g., the CCS label a only synchronises with a, and vice versa).

F.3 Decidability of linear-time µ-calculus judgements
By [20, §3], linear-time µ-calculus judgements are decidable on Petri nets — and this includes those generated with the encoding

in §F.2. Moreover, the encoding in §F.2 yields Petri nets that are strongly bisimilar to their originating CCST
terms, which

in turn are strongly bisimilar to their originating π -types (Prop. F.6). Therefore, if we have a π -type T , and a linear-time

µ-calculus formula ϕ, we obtain that ϕ holds for T ’s Petri net if and only if it holds for T ; and since we can decide whether ϕ
holds for T ’s Petri net, we have obtained a decision procedure of ϕ for T .
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G Process verification via type verification
G.1 Basic properties

Lemma G.1. If Γ ⊢ T
α
−→ T ′

, then BΓ(T
′) ⊆ BΓ(T ).

Proof. By induction on the derivation of the transition Γ ⊢ T
α
−→ T ′

. □

Corollary G.2. If Γ ⊢ T
α
−→ T ′

, then AΓ(T
′) ⊆ AΓ(T ).

Proof. Direct consequence of Lemma G.1 and Def. B.4. □

Corollary G.3. If Γ ⊢ T
α
−→ T ′

, then for all S , Ui
Γ,T(S) ⊆ U

i
Γ,T’

(S) and Uo
Γ,T(S) ⊆ U

o
Γ,T’

(S).

Proof. Direct consequence of Cor. G.2 and Def. B.4. □

G.2 Proof of Theorem 4.10
Definition G.4. Assume Γ ⊢ t : T , with Γ ⊢ T π -type. The set of actions of t in Γ is:

AΓ(t) = {β | Γ ⊢ t
α1−−⇁

α2−−⇁ · · ·
β
−⇁ }

Theorem 4.10. Within productive λπ⩽ , assume Γ ⊢ t : T , with Γ ⊢ T π -type, proc < T . Also assume, for all i[S,Π(x:U )U ′]

occurring in T , that there is y such that Γ ⊢ y : U holds.
6
For µ-calculus judgements on T , let Act = AΓ(T ), and Aτ ={

τ [S, S ′] ∈AΓ(T )
�� {S, S ′}⊈dom(Γ)

}
. Then, the implications in Fig. 7 hold.

Proof. We develop some interesting cases in Fig. 7 (the remaining ones are similar).

Item (1) (non-usage). Let ϕ = □
(
¬

(∨
i ∈1..n (U

o
Γ,T(xi ))⊤

))
. By Def. B.3 and Def. B.2, the denotation of ϕ is:

∥ϕ∥∅ =
⋃ {

W ⊆ AΓ(T )
∞

����� W ⊆

((
AΓ(T )

∞ \

{
σ ∈ AΓ(T )

∞
��� hd(σ ) ∈ ⋃

i ∈1..n U
o
Γ,T(xi )

})
∩

(
AΓ(T )

∞ \
{
σ ∈ AΓ(T )

∞
�� tl(σ ) ∈ (AΓ(T )

∞ \W)
}) ) }

=
⋃ {

W ⊆ AΓ(T )
∞

����� W ⊆ AΓ(T )
∞ \

({
σ ∈ AΓ(T )

∞
��� hd(σ ) ∈ ⋃

i ∈1..n U
o
Γ,T(xi )

}
∪

{
σ ∈ AΓ(T )

∞
�� tl(σ ) ∈ (AΓ(T )

∞ \W)
} ) }

=
⋃ {
W ⊆ AΓ(T )

∞

���� W ⊆ AΓ(T )
∞ \

{
σ ∈ AΓ(T )

∞

���� hd(σ ) ∈ ⋃
i ∈1..n U

o
Γ,T(xi )

or tl(σ ) <W

} }
=

⋃ {
W ⊆ AΓ(T )

∞

���� W ⊆

{
σ

����σ = ϵ or

hd(σ ) <
⋃

i ∈1..n U
o
Γ,T(xi )

and tl(σ ) ∈ W

} }
(2)

and therefore, for all finite or infinite words α1α2 . . . ∈ Act
∞
,

α1α2 . . . ∈ ∥ϕ∥∅ iff ∀j ∈ 1, 2, . . . : α j <
⋃

i ∈1..n U
o
Γ,T(xi )

which implies that, by the hypothesis T ↑Γ

{
xi

}
i ∈1..n

|= ϕ and Def. B.2,

T ↑Γ

{
xi

}
i ∈1..n

α1

−−→
α2

−−→ · · · implies ∀j ∈ 1, 2, . . . : α j <
⋃

i ∈1..n U
o
Γ,T(xi ) (3)

Now, taking any t such that Γ ⊢ t : T , we prove that:

t ↑Γ {xi }i ∈1..n
β1

−−⇁
β2

−−⇁ · · · implies ∀j ∈ 1, 2, . . . : βj <
⋃

i ∈1..n {xi ⟨w⟩ |w ∈ V∪X} (4)

We proceed by contradiction. Assume that (4) is false, i.e., that ∃k ∈ 1, 2, . . . such that:

t ↑Γ {xi }i ∈1..n
β1

−−⇁ · · ·
βk−1

−−−⇁ tk−1 ↑Γ {xi }i ∈1..n
βk
−−⇁ tk ↑Γ {xi }i ∈1..n (5)

where

{
∀j ∈ 1..k−1 : βj <

⋃
i ∈1..n {xi ⟨w⟩ | w ∈ V∪X}

βk = y⟨w⟩ for some y ∈ {xi }i ∈1..n and w ∈ V∪X
(6)

6
This implicitly requires Γ ⊢ U type, hence fv(U ) ∩ bv(T )= ∅: this assumption could be relaxed (with a more complicated clause), but offers a compromise

between simplicity and generality, that is sufficient to verify our examples. Besides this, the existence of y such that Γ ⊢ y : U can be assumed w.l.o.g.: if

Γ ⊢ t : T but ∄y such that Γ ⊢ y : U , we can pick y
′<dom(Γ), extend Γ as Γ′=Γ, y′:U , and get Γ′ ⊢ y′ : U and Γ′ ⊢ t : T .
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Then, letting t0 = t and T0 = T , by induction on k (using Thm. 4.4) we can prove:

∃T1, . . . ,Tk :

∀l ∈ 0..k : Γ ⊢ tl : Tl

∀l ∈ 0..k−1 :

Tl = Tl+1 if βl+1 = τ [r] with [r] , [R-Comm], or βl+1 = τ [x()]

∃α ′
l+1

: Γ ⊢ Tl
τ [∨]
−−−→∗

α ′
l+1

−−−→ Tl+1 otherwise

(7)

and in particular, from the definition of βk in (6), we have:

∃S,U : Γ ⊢ y : S,w :U and α ′
k = S ⟨U ⟩ (by (5), (6) and Thm. 4.4) (8)

Γ ⊢ y ⩽ S (by (8) and Prop. C.8) (9)

α ′
k ∈ Uo

Γ,T
k-1

(y) (by (9) and Def. B.4) (10)

α ′
k ∈ Uo

Γ,T(y) (by (10), (7) and Cor. G.3) (11)

Hence, summing up:

∃α ′′
1
,α ′′

2
, . . . ,α ′′

m :

α ′′
m = α ′

k

and T ↑Γ

{
xi

}
i ∈1..n

α ′′
1

−−→
α ′′

2

−−→ · · ·
α ′′
m

−−→

and α ′′
m = α ′

k ∈
⋃

i ∈1..n U
o
Γ,T(xi ) (by (11), (7) and (6))

but this contradicts (3), and thus, the hypothesis T ↑Γ

{
xi

}
i ∈1..n

|= ϕ. Therefore, (5)/(6) must be false, and we obtain that (4)

holds.

Now, by (4), we have that all the runs of t ↑Γ {xi }i ∈1..n belong to:⋃ {
W ⊆ AΓ(t)

∞

���� W ⊆

{
σ

����σ = ϵ or

hd(σ ) <
⋃

i ∈1..n {xi ⟨w⟩ | w ∈ V∪X}
and tl(σ ) ∈ W

} }
(12)

=
⋃ {

W ⊆ AΓ(t)
∞

���� W ⊆

( (
AΓ(t)

∞ \
{
σ ∈ AΓ(t)

∞
�� hd(σ ) ∈ ⋃

i ∈1..n {xi ⟨w⟩ | w ∈ V∪X}
})

∩
(
AΓ(t)

∞ \
{
σ ∈ AΓ(t)

∞
�� tl(σ ) ∈ (AΓ(t)

∞ \W)
}) ) }

(13)

= ∥□(¬(
∨

i ∈1..n (xi ⟨w⟩)⊤))∥∅ (14)

where we get the equality from (12) to (13) through a series of rewritings similar to the ones in (2) above (in reverse order), and

the equality from (13) to (14) by Def. B.2. Therefore, by (14) and Def. B.2, we conclude t ↑Γ {xi }i ∈1..n |= □(¬(
∨

i ∈1..n (xi ⟨w⟩)⊤)).

Item (3) (eventual usage). Let ϕ = (−Aτ )⊤ U
(∨

i ∈1..n ({xi ⟨U
′⟩ | anyU ′})⊤

)
. By Def. B.3 and Def. B.2, the denotation

of ϕ is:

∥ϕ∥∅ = AΓ(T )
∞ \

⋃ 
W

�����������
W ⊆

©«

(
AΓ(T )

∞ \

(
AΓ(T )

∞ \
⋂

i ∈ 1..n
xi ⟨U ⟩ ∈ Uo

Γ,T(xi )

(
AΓ(T )

∞ \ {σ | hd(σ ) = xi ⟨U ⟩}

)))
∩

©«AΓ(T )
∞ \

©«
AΓ(T )

∞ \
⋂

α ∈AΓ(T )\Aτ AΓ(T )
∞ \ {σ | hd(σ ) = α } ∩{

σ ∈ AΓ(T )
∞

���� hd(σ ) ∈ AΓ(T )
and tl(σ ) ∈ AΓ(T )

∞ \W

} ª®¬ª®¬
ª®®®®®®¬


= AΓ(T )

∞ \
⋃ 

W

��������� W ⊆

©«
(
AΓ(T )

∞ \
⋃

i ∈ 1..n
xi ⟨U ⟩ ∈ Uo

Γ,T(xi )

(
{σ | hd(σ ) = xi ⟨U ⟩}

))
∩

(
AΓ(T )

∞ \

( ⋃
α ∈AΓ(T )\Aτ {σ | hd(σ ) = α } ∩{
σ

�� tl(σ ) ∈ AΓ(T )
∞ \W

} ))ª®®®®¬


= AΓ(T )
∞ \

⋃ 
W

��������� W ⊆

©«
(
AΓ(T )

∞ \
⋃

i ∈ 1..n
xi ⟨U ⟩ ∈ Uo

Γ,T(xi )

(
{σ | hd(σ ) = xi ⟨U ⟩}

))
∩

( (
AΓ(T )

∞ \
⋃

α ∈AΓ(T )\Aτ {σ | hd(σ ) = α }
)

∪
(
AΓ(T )

∞ \
{
σ

�� tl(σ ) ∈ AΓ(T )
∞ \W

}) )ª®®®®¬
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= AΓ(T )
∞ \

⋃ 
W

��������� W ⊆

©«
(
AΓ(T )

∞ \
⋃

i ∈ 1..n
xi ⟨U ⟩ ∈ Uo

Γ,T(xi )

(
{σ | hd(σ ) = xi ⟨U ⟩}

))
∩

( (
AΓ(T )

∞ \ {σ | hd(σ ) ∈ AΓ(T ) \ Aτ }
)

∪ {σ | σ = ϵ or tl(σ ) ∈ W}

)ª®®®®¬


= AΓ(T )
∞ \

⋃ {
W

����� W ⊆

((
AΓ(T )

∞ \

{
σ

��� hd(σ ) ∈ {
xi ⟨U ⟩

��� i ∈ 1..n, xi ⟨U ⟩ ∈ Uo
Γ,T(xi )

}})
∩ ({σ | σ = ϵ or hd(σ ) ∈ Aτ } ∪ {σ | σ = ϵ or tl(σ ) ∈ W})

) }
= AΓ(T )

∞ \
⋃ {

W

����� W ⊆

({
σ

���σ = ϵ or hd(σ ) <
{
xi ⟨U ⟩

��� i ∈ 1..n, xi ⟨U ⟩ ∈ Uo
Γ,T(xi )

}}
∩ ({ϵ} ∪ {σ | hd(σ ) ∈ Aτ } ∪ {σ | tl(σ ) ∈ W})

) }

= AΓ(T )
∞ \

⋃  W
�������� W ⊆

©«
{ϵ}

∪

{
σ

��� hd(σ ) < {
xi ⟨U ⟩

��� i ∈ 1..n, xi ⟨U ⟩ ∈ Uo
Γ,T(xi )

}
and hd(σ ) ∈ Aτ

}
∪

{
σ

��� hd(σ ) < {
xi ⟨U ⟩

��� i ∈ 1..n, xi ⟨U ⟩ ∈ Uo
Γ,T(xi )

}
and tl(σ ) ∈ W

} ª®®®¬


= AΓ(T )
∞ \

⋃ {
W

����� W ⊆

(
{ϵ} ∪ {σ | hd(σ ) ∈ Aτ }

∪

{
σ

��� hd(σ ) < {
xi ⟨U ⟩

��� i ∈ 1..n, xi ⟨U ⟩ ∈ Uo
Γ,T(xi )

}
and tl(σ ) ∈ W

}) }
= AΓ(T )

∞ \
⋃ {

W

����� W ⊆

{
σ

�����σ = ϵ or hd(σ ) ∈ Aτ or

hd(σ ) <
{
xi ⟨U ⟩

��� i ∈ 1..n, xi ⟨U ⟩ ∈ Uo
Γ,T(xi )

}
and tl(σ ) ∈ W

} }
(15)

which implies that, by the hypothesis T ↑Γ

{
xi

}
i ∈1..n

|= ϕ and Def. B.2,

T ↑Γ

{
xi

}
i ∈1..n

α1

−−→
α2

−−→ · · · implies

{
∃k ∈ N : k ≥ 1 and αk ∈

⋃
i ∈1..n U

o
Γ,T(xi )

and ∀j ∈ 1..k−1 : α j < {τ [S, S
′] | S, S ′ < dom(Γ)}

(16)

Now, taking any t such that Γ ⊢ t : T , we prove that:

t ↑Γ {xi }i ∈1..n
β1

−−⇁
β2

−−⇁ · · · implies ∃h ∈ N : βh ∈
⋃

i ∈1..n {xi ⟨w⟩ | i ∈ 1..n, w ∈ V∪X} (17)

We proceed by contradiction. Assume that (17) is false, i.e., that there is a run of t ↑Γ {xi }i ∈1..n such that:

t ↑Γ {xi }i ∈1..n
β1

−−⇁
β2

−−⇁ · · · and ∄h : βh ∈
⋃

i ∈1..n {xi ⟨w⟩ | i ∈ 1..n, w ∈ V∪X} (18)

First, observe that for any run σt of t ↑Γ {xi }i ∈1..n , we can use Thm. 4.4 (subject reduction) to build a corresponding sequence

σT of actions of T ↑Γ

{
xi

}
i ∈1..n

— and σT will contain an action α ∈
⋃

i ∈1..n U
o
Γ,T(xi ) (i.e., an α of the form xi ⟨U ⟩, for some

i ∈ 1..n and U ) only if σt contains xi ⟨w⟩ (for some i ∈ 1..n andw ∈ V∪X). Hence, the run σt of (18) yields a sequence of type
actions σT that does not contain any xi ⟨U ⟩, hence does not belong to ∥ϕ∥∅. Now, by (18) we have two possibilities:

• t ↑Γ {xi }i ∈1..n never fires xi ⟨w⟩, and reaches a state t ′ ↑Γ {xi }i ∈1..n that cannot further reduce. Then, for some T ′
, we

have Γ ⊢ t ′ : T ′
such that T ′ ↑Γ

{
xi

}
i ∈1..n

is reachable from T ↑Γ

{
xi

}
i ∈1..n

by firing the transitions in σT . We have two

cases:

1. T ′ ↑Γ

{
xi

}
i ∈1..n

cannot perform further actions. Then, σT is a complete (finite) run of T ↑Γ

{
xi

}
i ∈1..n

, and since it

does not belong to ∥ϕ∥∅, we obtain the contradiction T ↑Γ

{
xi

}
i ∈1..n

̸ |= ϕ;

2. T ′ ↑Γ

{
xi

}
i ∈1..n

can perform further actions. Then, notice that by the guarded recursion hypothesis on types, T ′
can

fire a finite (possibly empty) sequence στ only containing τ [∨] actions, and then either:

a. reach someT ′′
that cannot perform further actions. Then,T ↑Γ

{
xi

}
i ∈1..n

has a complete (finite) run σ ′
T = σTστ that

does not contain any xi ⟨U ⟩, hence does not belong to ∥ϕ∥∅. Thus, we obtain the contradiction T ↑Γ

{
xi

}
i ∈1..n

̸ |= ϕ;

b. perform some other action α , different from τ [∨]. Since t ′ cannot reduce, by the contrapositive of Thm. 4.5

we know that α cannot have the form x⟨U ⟩, x(U ), or τ [x, x]. Therefore, α can only have the form τ [S, S ′] with

{S, S ′} ⊈ dom(Γ): this implies that there is a run of T ↑Γ

{
xi

}
i ∈1..n

that violates (16), hence does not belong to ∥ϕ∥∅:

i.e., we obtain the contradiction T ↑Γ

{
xi

}
i ∈1..n

̸ |= ϕ.
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• t ↑Γ {xi }i ∈1..n can run forever, producing an infinite run σt that does not contain xi ⟨w⟩ (for any i ∈ 1..n andw ∈ V∪X).
Since t is productive (by hypothesis), σt cannot contain an infinite sequence of transitions only using labels of the form

τ [r] (with [r] , [R-Comm]), τ [¬x], τ [if x] (for some x), or τ [x()]. Therefore, σt contains an infinite number of actions of

the form x(w) (for some x and w ∈ V∪X), τ [x] (for some x), or τ [R-Comm]; hence, by Thm. 4.4 (subject reduction), the

sequence of type actions σT built from σt is also infinite; therefore, σT is an (infinite) run of T ↑Γ

{
xi

}
i ∈1..n

that does not

contain any xi ⟨U ⟩, hence does not belong to ∥ϕ∥∅ — i.e., we obtain the contradiction T ↑Γ

{
xi

}
i ∈1..n

̸ |= ϕ.

Summing up: if we assume (18), we contradict the hypothesis T ↑Γ

{
xi

}
i ∈1..n

|= ϕ. Therefore, (18) must be false, hence (17)

holds.

Now, by (17), we have that all the runs of t ↑Γ {xi }i ∈1..n belong to:

AΓ(t)
∞ \

⋃ {
W

���� W ⊆

{
σ

����σ = ϵ or

hd(σ ) < {xi ⟨w⟩ | i ∈ 1..n, w ∈ V∪X} and tl(σ ) ∈ W

} }
(19)

= AΓ(t)
∞ \

⋃ 
W

��������� W ⊆

©«
(
AΓ(t)

∞ \

(
AΓ(t)

∞ \
⋂

i ∈ 1..n
w ∈ V∪X

(
AΓ(t)

∞ \ {σ | hd(σ ) = x⟨w⟩}
)))

∩

(
AΓ(t)

∞ \

{
σ ∈ AΓ(t)

∞

���� hd(σ ) ∈ AΓ(t)
and tl(σ ) ∈ AΓ(t)

∞ \W

}) ª®®®®¬


(20)

= ∥⊤ U (
∨

i ∈1..n ({xi ⟨w⟩ | w ∈ V∪X})⊤)∥∅ (21)

= ∥♢(
∨

i ∈1..n (xi ⟨w⟩)⊤)∥∅ (22)

where we get the equality from (19) to (20) through a series of rewritings similar to the ones in (15) above (in reverse order),

the equality from (20) to (21) by Def. B.2, and finally we obtain (22) by Def. B.3. Therefore, by (22) and Def. B.2, we conclude

t ↑Γ {xi }i ∈1..n |= ♢(
∨

i ∈1..n (xi ⟨w⟩)⊤).

Item (4) (forwarding). Letting ϕ = □
(
({S(z) |S(z) ∈Ui

Γ,T(x)})⊤⇒

(
(−(Aτ ∪U

i
Γ,T(x)))⊤ U (y⟨z⟩)⊤

))
, the proof follows

the same strategy of the proofs for items (1) and (3): use the shape of all runs ofT ↑Γ {x, y, z} (belonging to ∥ϕ∥∅) to determine

the shape of the runs of t ↑Γ {x, y, z}, using Thm 4.4 and Thm 4.5. In particular:

• first, we use a strategy similar to item (1) to show that any action x(z) in a run of t ↑Γ {x, y, z} is matched by an action α
in the run of T ↑Γ {x, y, z} such that α ∈ {S(z) | S(z) ∈Ui

Γ,T(x)};

• then, we use a strategy similar to item (3) to show that the action x(z) above must be followed by y⟨z⟩, that is the only

term action that can correspond to the type action y⟨z⟩.

Finally, we show that all runs of t ↑Γ {x, y, z}belong to the denotation□(
(x(z))⊤⇒

(
(−x(w))⊤ U (y⟨z⟩)⊤

) )
∅

from which, by Def. B.2, we conclude t ↑Γ {x, y, z} |= □
(
(x(z))⊤⇒

(
(−x(w))⊤ U (y⟨z⟩)⊤

) )
. □
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