Verifying message-passing programs with dependent behavioural types

Abstract

Concurrent and distributed programming is notoriously hard. Modern languages and toolkits ease this difficulty by offering message-passing abstractions, such as actors (e.g., Erlang, Akka, Orleans) or processes (e.g., Go): they allow for simpler reasoning w.r.t. shared-memory concurrency, but do not ensure that a program implements a given specification. To address this challenge, it would be desirable to specify and verify the intended behaviour of message-passing applications using types, and ensure that, if a program type-checks and compiles, then it will run and communicate as desired. We develop this idea in theory and practice. We formalise a concurrent functional language λπ ⩽, with a new blend of behavioural types (from π-calculus theory), and dependent function types (from the Dotty programming language, a.k.a. the future Scala 3). Our theory yields four main payoffs: (1) it verifies safety and liveness properties of programs via type– level model checking; (2) unlike previous work, it accurately verifies channel-passing (covering a typical pattern of actor programs) and higher-order interaction (i.e., sending/receiving mobile code); (3) it is directly embedded in Dotty, as a toolkit called Effpi, offering a simplified actor-based API; (4) it enables an efficient runtime system for Effpi, for highly concurrent programs with millions of processes/actors

    Similar works