198 research outputs found

    Ovalbumin sensitization and challenge increases the number of lung cells possessing a mesenchymal stromal cell phenotype

    Get PDF
    Abstract Background Recent studies have indicated the presence of multipotent mesenchymal stromal cells (MSCs) in human lung diseases. Excess airway smooth muscle, myofibroblasts and activated fibroblasts have each been noted in asthma, suggesting that mesenchymal progenitor cells play a role in asthma pathogenesis. We therefore sought to determine whether MSCs are present in the lungs of ovalbumin (OVA)-sensitized and challenged mice, a model of allergic airways disease. Methods Balb/c mice were sensitized and challenged with PBS or OVA over a 25 day period. Flow cytometry as well as colony forming and differentiation potential were used to analyze the emergence of MSCs along with gene expression studies using immunochemical analyses, quantitative polymerase chain reaction (qPCR), and gene expression beadchips. Results A CD45-negative subset of cells expressed Stro-1, Sca-1, CD73 and CD105. Selection for these markers and negative selection against CD45 yielded a population of cells capable of adipogenic, osteogenic and chondrogenic differentiation. Lungs from OVA-treated mice demonstrated a greater average colony forming unit-fibroblast (CFU-F) than control mice. Sorted cells differed from unsorted lung adherent cells, exhibiting a pattern of gene expression nearly identical to bone marrow-derived sorted cells. Finally, cells isolated from the bronchoalveolar lavage of a human asthma patient showed identical patterns of cell surface markers and differentiation potential. Conclusions In summary, allergen sensitization and challenge is accompanied by an increase of MSCs resident in the lungs that may regulate inflammatory and fibrotic responses.http://deepblue.lib.umich.edu/bitstream/2027.42/78265/1/1465-9921-11-127.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78265/2/1465-9921-11-127.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78265/3/1465-9921-11-127-S1.DOCPeer Reviewe

    IL‐1Ξ² prevents ILC2 expansion, type 2 cytokine secretion, and mucus metaplasia in response to early‐life rhinovirus infection in mice

    Full text link
    BackgroundEarly‐life wheezing‐associated respiratory infection with human rhinovirus (RV) is associated with asthma development. RV infection of 6‐day‐old immature mice causes mucous metaplasia and airway hyperresponsiveness which is associated with the expansion of IL‐13‐producing type 2 innate lymphoid cells (ILC2s) and dependent on IL‐25 and IL‐33. We examined regulation of this asthma‐like phenotype by IL‐1Ξ².MethodsSix‐day‐old wild‐type or NRLP3βˆ’/βˆ’ mice were inoculated with sham or RV‐A1B. Selected mice were treated with IL‐1 receptor antagonist (IL‐1RA), anti‐IL‐1Ξ², or recombinant IL‐1Ξ².ResultsRhinovirus infection induced Il25, Il33, Il4, Il5, Il13, muc5ac, and gob5 mRNA expression, ILC2 expansion, mucus metaplasia, and airway hyperresponsiveness. RV also induced lung mRNA and protein expression of pro‐IL‐1Ξ² and NLRP3 as well as cleavage of caspase‐1 and pro‐IL‐1Ξ², indicating inflammasome priming and activation. Lung macrophages were a major source of IL‐1Ξ². Inhibition of IL‐1Ξ² signaling with IL‐1RA, anti‐IL‐1Ξ², or NLRP3 KO increased RV‐induced type 2 cytokine immune responses, ILC2 number, and mucus metaplasia, while decreasing IL‐17 mRNA expression. Treatment with IL‐1Ξ² had the opposite effect, decreasing IL‐25, IL‐33, and mucous metaplasia while increasing IL‐17 expression. IL‐1Ξ² and IL‐17 each suppressed Il25, Il33, and muc5ac mRNA expression in cultured airway epithelial cells. Finally, RV‐infected 6‐day‐old mice showed reduced IL‐1Ξ² mRNA and protein expression compared to mature mice.ConclusionMacrophage IL‐1Ξ² limits type 2 inflammation and mucous metaplasia following RV infection by suppressing epithelial cell innate cytokine expression. Reduced IL‐1Ξ² production in immature animals provides a mechanism permitting asthma development after early‐life viral infection.Early‐life rhinovirus infection increases epithelial expression of the innate cytokines IL‐25 and IL‐33, expands (type 2 innate lymphoid cells) ILC2s, and enhances development of an asthma‐like phenotype. Rhinovirus causes macrophage (NLR family, pyrin domain containing 3) NLRP3 inflammasome activation and bioactive IL‐1Ξ² production. IL‐1Ξ² production, which is deficient in immature mice, attenuates production of IL‐25 and IL‐33, thereby protecting against rhinovirus‐induced asthma development.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156197/3/all14241_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156197/2/all14241.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156197/1/all14241-sup-0001-FigS1.pd

    Mesenchymal Stromal Cells from Neonatal Tracheal Aspirates Demonstrate a Pattern of Lung-Specific Gene Expression

    Full text link
    We have previously isolated mesenchymal stromal cells (MSCs) from the tracheal aspirates of premature neonates with respiratory distress. Although isolation of MSCs correlates with the development of bronchopulmonary dysplasia, the physiologic role of these cells remains unclear. To address this, we further characterized the cells, focusing on the issues of gene expression, origin, and cytokine expression. Microarray comparison of early passage neonatal lung MSC gene expression to cord blood MSCs and human fetal and neonatal lung fibroblast lines demonstrated that the neonatal lung MSCs differentially expressed 971 gene probes compared with cord blood MSCs, including the transcription factors Tbx2, Tbx3, Wnt5a, FoxF1, and Gli2, each of which has been associated with lung development. Compared with lung fibroblasts, 710 gene probe transcripts were differentially expressed by the lung MSCs, including IL-6 and IL-8/CXCL8. Differential chemokine expression was confirmed by protein analysis. Further, neonatal lung MSCs exhibited a pattern of Hox gene expression distinct from cord blood MSCs but similar to human fetal lung fibroblasts, consistent with a lung origin. On the other hand, limiting dilution analysis showed that fetal lung fibroblasts form colonies at a significantly lower rate than MSCs, and fibroblasts failed to undergo differentiation along adipogenic, osteogenic, and chondrogenic lineages. In conclusion, MSCs isolated from neonatal tracheal aspirates demonstrate a pattern of lung-specific gene expression, are distinct from lung fibroblasts, and secrete pro-inflammatory cytokines.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90487/1/scd-2E2010-2E0494.pd

    Pellino-1 Regulates the Responses of the Airway to Viral Infection

    Get PDF
    Exposure to respiratory pathogens is a leading cause of exacerbations of airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). Pellino-1 is an E3 ubiquitin ligase known to regulate virally-induced inflammation. We wished to determine the role of Pellino-1 in the host response to respiratory viruses in health and disease. Pellino-1 expression was examined in bronchial sections from patients with GOLD stage two COPD and healthy controls. Primary bronchial epithelial cells (PBECs) in which Pellino-1 expression had been knocked down were extracellularly challenged with the TLR3 agonist poly(I:C). C57BL/6 Peli1-/- mice and wild type littermates were subjected to intranasal infection with clinically-relevant respiratory viruses: rhinovirus (RV1B) and influenza A. We found that Pellino-1 is expressed in the airways of normal subjects and those with COPD, and that Pellino-1 regulates TLR3 signaling and responses to airways viruses. In particular we observed that knockout of Pellino-1 in the murine lung resulted in increased production of proinflammatory cytokines IL-6 and TNFΞ± upon viral infection, accompanied by enhanced recruitment of immune cells to the airways, without any change in viral replication. Pellino-1 therefore regulates inflammatory airway responses without altering replication of respiratory viruses.</p

    The <i>Castalia</i> mission to Main Belt Comet 133P/Elst-Pizarro

    Get PDF
    We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosetta mission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESA M4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these

    Histone Deacetylases Regulate Gonadotropin-Releasing Hormone I Gene Expression via Modulating Otx2-Driven Transcriptional Activity

    Get PDF
    BACKGROUND: Precise coordination of the hypothalamic-pituitary-gonadal axis orchestrates the normal reproductive function. As a central regulator, the appropriate synthesis and secretion of gonadotropin-releasing hormone I (GnRH-I) from the hypothalamus is essential for the coordination. Recently, emerging evidence indicates that histone deacetylases (HDACs) play an important role in maintaining normal reproductive function. In this study, we identify the potential effects of HDACs on Gnrh1 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Inhibition of HDACs activities by trichostatin A (TSA) and valproic acid (VPA) promptly and dramatically repressed transcription of Gnrh1 gene in the mouse immortalized mature GnRH neuronal cells GT1-7. The suppression was connected with a specific region of Gnrh1 gene promoter, which contains two consensus Otx2 binding sites. Otx2 has been known to activate the basal and also enhancer-driven transcription of Gnrh1 gene. The transcriptional activity of Otx2 is negatively modulated by Grg4, a member of the Groucho-related-gene (Grg) family. In the present study, the expression of Otx2 was downregulated by TSA and VPA in GT1-7 cells, accompanied with the opposite changes of Grg4 expression. Chromatin immunoprecipitation and electrophoretic mobility shift assays demonstrated that the DNA-binding activity of Otx2 to Gnrh1 gene was suppressed by TSA and VPA. Overexpression of Otx2 partly abolished the TSA- and VPA-induced downregulation of Gnrh1 gene expression. CONCLUSIONS/SIGNIFICANCE: Our data indicate that HDAC inhibitors downregulate Gnrh1 gene expression via repressing Otx2-driven transcriptional activity. This study should provide an insight for our understanding on the effects of HDACs in the reproductive system and suggests that HDACs could be potential novel targets for the therapy of GnRH-related diseases

    MDA5 and TLR3 Initiate Pro-Inflammatory Signaling Pathways Leading to Rhinovirus-Induced Airways Inflammation and Hyperresponsiveness

    Get PDF
    Rhinovirus (RV), a single-stranded RNA picornavirus, is the most frequent cause of asthma exacerbations. We previously demonstrated in human bronchial epithelial cells that melanoma differentiation-associated gene (MDA)-5 and the adaptor protein for Toll-like receptor (TLR)-3 are each required for maximal RV1B-induced interferon (IFN) responses. However, in vivo, the overall airway response to viral infection likely represents a coordinated response integrating both antiviral and pro-inflammatory pathways. We examined the airway responses of MDA5- and TLR3-deficient mice to infection with RV1B, a minor group virus which replicates in mouse lungs. MDA5 null mice showed a delayed type I IFN and attenuated type III IFN response to RV1B infection, leading to a transient increase in viral titer. TLR3 null mice showed normal IFN responses and unchanged viral titers. Further, RV-infected MDA5 and TLR3 null mice showed reduced lung inflammatory responses and reduced airways responsiveness. Finally, RV-infected MDA5 null mice with allergic airways disease showed lower viral titers despite deficient IFN responses, and allergic MDA5 and TLR3 null mice each showed decreased RV-induced airway inflammatory and contractile responses. These results suggest that, in the context of RV infection, binding of viral dsRNA to MDA5 and TLR3 initiates pro-inflammatory signaling pathways leading to airways inflammation and hyperresponsiveness
    • …
    corecore