146 research outputs found

    Brain connectivity changes in autosomal recessive Parkinson Disease: a model for the sporadic form

    Get PDF
    Biallelic genetic mutations in the Park2 and PINK1 genes are frequent causes of autosomal recessive PD. Carriers of single heterozygous mutations may manifest subtle signs of disease, thus providing a unique model of preclinical PD. One emerging hypothesis suggests that non-motor symptom of PD, such as cognitive impairment may be due to a distributed functional disruption of various neuronal circuits. Using resting-state functional MRI (RS-fMRI), we tested the hypothesis that abnormal connectivity within and between brain networks may account for the patients' cognitive status. Eight homozygous and 12 heterozygous carriers of either PINK1 or Park2 mutation and 22 healthy controls underwent RS-fMRI and cognitive assessment. RS-fMRI data underwent independent component analysis to identify five networks of interest: default-mode network, salience network, executive network, right and left fronto-parietal networks. Functional connectivity within and between each network was assessed and compared between groups. All mutation carriers were cognitively impaired, with the homozygous group reporting a more prominent impairment in visuo-spatial working memory. Changes in functional connectivity were evident within all networks between homozygous carriers and controls. Also heterozygotes reported areas of reduced connectivity when compared to controls within two networks. Additionally, increased inter-network connectivity was observed in both groups of mutation carriers, which correlated with their spatial working memory performance, and could thus be interpreted as compensatory. We conclude that both homozygous and heterozygous carriers exhibit pathophysiological changes unveiled by RS-fMRI, which can account for the presence/severity of cognitive symptom

    Parkinson Phenotype in Aged PINK1-Deficient Mice Is Accompanied by Progressive Mitochondrial Dysfunction in Absence of Neurodegeneration

    Get PDF
    Background Parkinson's disease (PD) is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1) cause the recessive PARK6 variant of PD. Methodology/Principal Findings Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of alpha-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. Conclusion Thus, aging Pink1 -/- mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death

    Cognitive decline in Huntington's disease expansion gene carriers

    Get PDF
    BACKGROUND: In Huntington's Disease (HD) cognitive decline can occur before unequivocal motor signs become apparent. As cognitive decline often starts early in the course of the disease and has a progressive nature over time, cognition can be regarded as a key target for symptomatic treatment. The specific progressive profile of cognitive decline over time is unknown. OBJECTIVE: The aim of this study is to quantify the progression of cognitive decline across all HD stages, from pre-motormanifest to advanced HD, and to investigate if CAG length mediates cognitive decline. METHODS: In the European REGISTRY study 2669 HD expansion gene carriers underwent annual cognitive assessment. General linear mixed models were used to model the cognitive decline for each cognitive task across all disease stages. Additionally, a model was developed to evaluate the cognitive decline based on CAG length and age rather than disease stage. RESULTS: There was significant cognitive decline on all administered tasks throughout pre-motormanifest (close to estimated disease onset) participants and the subsequent motormanifest participants from stage 1 to stage 4. Performance on the Stroop Word and Stroop Color tests additionally declined significantly across the two pre-motormanifest groups: far and close to estimated disease onset. The evaluation of cognition performance in relation to CAG length and age revealed a more rapid cognitive decline in participants with longer CAG length than participants with shorter CAG length over time. CONCLUSION: Cognitive performance already shows decline in pre-motormanifest HD gene expansion carriers and gradually worsens to late stage HD. HD gene expansion carriers with certain CAG length have their own cognitive profile, i.e., longer CAG length is associated with more rapid decline

    The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients

    Get PDF
    The cause of Huntington disease (HD) is a polyglutamine repeat expansion of more than 36 units in the huntingtin protein, which is inversely correlated with the age at onset of the disease. However, additional genetic factors are believed to modify the course and the age at onset of HD. Recently, we identified the V471A polymorphism in the autophagy-related gene ATG7, a key component of the autophagy pathway that plays an important role in HD pathogenesis, to be associated with the age at onset in a large group of European Huntington disease patients. To confirm this association in a second independent patient cohort, we analysed the ATG7 V471A polymorphism in additional 1,464 European HD patients of the “REGISTRY” cohort from the European Huntington Disease Network (EHDN). In the entire REGISTRY cohort we could not confirm a modifying effect of the ATG7 V471A polymorphism. However, analysing a modifying effect of ATG7 in these REGISTRY patients and in patients of our previous HD cohort according to their ethnic origin, we identified a significant effect of the ATG7 V471A polymorphism on the HD age at onset only in the Italian population (327 patients). In these Italian patients, the polymorphism is associated with a 6-years earlier disease onset and thus seems to have an aggravating effect. We could specify the role of ATG7 as a genetic modifier for HD particularly in the Italian population. This result affirms the modifying influence of the autophagic pathway on the course of HD, but also suggests population-specific modifying mechanisms in HD pathogenesis

    Usi clinici della tossina botulinica.Gastroenterologia

    No full text

    Occurrence of Writing Tremor in Patients With Scans Without Evidence of Dopaminergic Deficit

    No full text
    Asymmetric rest tremor is one of the main features of patients diagnosed with scans without evidence of dopaminergic deficit (SWEDD). Clinical and neurophysiological evidence suggests a dystonic origin of this tremor, although the underlying pathophysiology is still unclear. Dystonic tremor has a great tendency to vary with different postures or voluntary motor tasks. Here, we performed a phenomenological analysis of tremor in 14 patients with normal scans and in 14 tremor-dominant Parkinson's disease (PD) patients by assessing the presence of writing tremor. The Wilcoxon-Mann-Whitney's test revealed that patients with normal scans exhibit writing tremor more frequently, regardless of the side mostly affected by motor disturbances in handwriting (P < 0.01) and drawing (right hand: P = 0.01; left hand: P < 0.05). Our findings show that patients with asymmetric rest tremor and normal scans, contrarily to PD patients, present more commonly action tremor during writing tasks. This feature may thus be helpful to distinguish the two conditions
    corecore