21 research outputs found

    Measures of the Soft X-ray Excess as an Eigenvector 1 Parameter for Active Galactic Nuclei

    Get PDF
    We present a preliminary analysis of X-ray data of quasars in the context of the 4D eigenvector 1 parameter space (Sulentic et al.2000a, b). 4DE1 serves as a surrogate H-R diagram for representing empirical diversity among quasars and identifying the physical drivers of the diversity. The soft X-ray spectral index (Γ) was adopted as one of the key 4DE1 that correlates contrasting extremes in Type 1 properties. 4DE1 motivated the hypothesis of two quasar populations (A and B) divided by L/L≈0.2. Pop. A is a largely radio-quiet population with FWHM Hβ<4000 km/s and often showing a soft X-ray excess. Pop. B is a mix of radio-quiet and a majority of RL quasars shows only a hard X-ray power-law SED. The X-ray separation was based upon earlier ROSAT and ASCA data but we now confirm this dichotomy with large samples of X-ray spectra obtained with XMM-Newton and SWIFT. One popular idea connects the soft excess in Pop. A quasars as a signature of thermal emission from a hot accretion disk in sources radiating close to the Eddington limit.This research was supported by the Spanish Ministry of Economy and Competitiveness through projects AYA2010-15169 and AYA2013-42227-P and by the Junta de Andalucia project TIC 114. KS acknowledges financial support from the Ministerio de Economia y Competitividad through the Spanish grant BES-2014-069767. The authors thank the referee for useful suggestions. This research made use of the NASA IPAC extragalactic database (NED), which is operated by the JPL under contract with the National Aeronautics and Space Administration. This research has made use of the NED database which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. We thank the SDSS collaboration for providing the extraordinary database and processing tools that made part of this work possible. The SDSS website is http://www.sdss.org/.Peer reviewe

    New spectroscopy of multiple stars RR Lyncis and HT Virginis

    Get PDF
    In this paper we present radial velocity measurements as a result of new spectroscopic observations of RR Lyncis and HT Virginis. Both systems are worth to be the objects of a long-term monitoring. The observations made during a long period of time reveal the apsidal motion and the movements around the center of mass of the systems. Long-term measurements enable us to measure the light-time effect in the eclipsing binaries as well. Data were collected using the Poznan Spectroscopic Telescope (PST1) at Borowiec station (Baranowski et al. 2009) covering a range of wavelength 4280-7500 Å. The telescope is equipped with an echelle spectrograph thermally stabilized to 0.1oC. The data were calibrated with ThAr (Thorium-Argon) lamp. Data reduction was performed with IRA

    The Exotic Type Ic Broad-Lined Supernova SN 2018gep: Blurring the Line Between Supernovae and Fast Optical Transients

    Full text link
    In the last decade a number of rapidly evolving transients have been discovered that are not easily explained by traditional supernovae models. We present optical and UV data on onee such object, SN 2018gep, that displayed a fast rise with a mostly featureless blue continuum around maximum light, and evolved to develop broad features more typical of a SN Ic-bl while retaining significant amounts of blue flux throughout its observations. The blue excess is most evident in its near-UV flux that is over 4 magnitudes brighter than other stripped envelope supernovae, but also visible in optical g-r colors at early times. Its fast rise time of trise,V6.2±0.8t_{\rm rise,V} \lesssim 6.2 \pm 0.8 days puts it squarely in the emerging class of Fast Evolving Luminous Transients, or Fast Blue Optical Transients. With a peak absolute magnitude of Mr=19.49±0.23_r=-19.49 \pm 0.23 mag it is on the extreme end of both the rise time and peak magnitude distribution for SNe Ic-bl. Only one other SN Ic-bl has similar properties, iPTF16asu, for which less of the important early time and UV data have been obtained. We show that the objects SNe 2018gep and iPTF16asu have similar photometric and spectroscopic properties and that they overall share many similarities with both SNe Ic-bl and Fast Evolving Transients. We obtain IFU observations of the SN 2018gep host galaxy and derive a number of properties for it. We show that the derived host galaxy properties for both SN 2018gep and iPTF16asu are overall consistent with the SNe Ic-bl and GRB/SNe sample while being on the extreme edge of the observed Fast Evolving Transient sample. These photometric observations are consistent with a simple SN Ic-bl model that has an additional form of energy injection at early times that drives the observed rapid, blue rise, and we speculate that this additional power source may extrapolate to the broader Fast Evolving Transient sample

    Data from: Malaria infections reinforce competitive asymmetry between two Ficedula flycatchers in a recent contact zone

    No full text
    Parasites may influence the outcome of interspecific competition between closely related host species through lower parasite virulence in the host with which they share the longer evolutionary history. We tested this idea by comparing the prevalence of avian malaria (Haemosporidia) lineages and their association with survival in pied and collared flycatchers (Ficedula hypoleuca and F. albicollis) breeding in a recent contact zone on the Swedish island of Öland. A nested PCR protocol amplifying haemosporidian fragments of mtDNA was used to screen the presence of malaria lineages in 1048 blood samples collected during 6 years. Competitively inferior pied flycatchers had a higher prevalence of blood parasites, including the lineages that were shared between the two flycatcher species. Multistate mark–recapture models revealed a lower survival of infected versus uninfected female pied flycatchers, while no such effects were detected in male pied flycatchers or in collared flycatchers of either sex. Our results show that a comparatively new host, the collared flycatcher, appears to be less susceptible to a local northern European malarial lineage where the collared flycatchers have recently expanded their distribution. Pied flycatchers experience strong reproductive interference from collared flycatchers, and the additional impact of species-specific blood parasite effects adds to this competitive exclusion. These results support the idea that parasites can strongly influence the outcome of interspecific competition between closely related host species, but that the invading species need not necessarily be more susceptible to local parasites

    Malaria-infected female collared flycatchers (Ficedula albicollis) do not pay the cost of late breeding

    No full text
    Life-history theory predicts that the trade-off between parasite defense and other costly traits such as reproduction may be most evident when resources are scarce. The strength of selection that parasites inflict on their host may therefore vary across environmental conditions. Collared flycatchers (Ficedula albicollis) breeding on the Swedish island Oland experience a seasonal decline in their preferred food resource, which opens the possibility to test the strength of life-history trade-offs across environmental conditions. We used nested-PCR and quantitative-PCR protocols to investigate the association of Haemosporidia infection with reproductive performance of collared flycatcher females in relation to a seasonal change in the external environment. We show that despite no difference in mean onset of breeding, infected females produced relatively more of their fledglings late in the season. This pattern was also upheld when considering only the most common malaria lineage (hPHSIB1), however there was no apparent link between the reproductive output and the intensity of infection. Infected females produced heavier-than-average fledglings with higher-than-expected recruitment success late in the season. This reversal of the typical seasonal trend in reproductive output compensated them for lower fledging and recruitment rates compared to uninfected birds earlier in the season. Thus, despite different seasonal patterns of reproductive performance the overall number of recruits was the same for infected versus uninfected birds. A possible explanation for our results is that infected females breed in a different microhabitat where food availability is higher late in the season but also is the risk of infection. Thus, our results suggest that another trade-off than the one we aimed to test is more important for explaining variation in reproductive performance in this natural population: female flycatchers appear to face a trade-off between the risk of infection and reproductive success late in the season

    Malaria infections reinforce competitive asymmetry between two Ficedula flycatchers in a recent contact zone

    No full text
    Parasites may influence the outcome of interspecific competition between closely related host species through lower parasite virulence in the host with which they share the longer evolutionary history. We tested this idea by comparing the prevalence of avian malaria (Haemosporidia) lineages and their association with survival in pied and collared flycatchers (Ficedula hypoleuca and F. albicollis) breeding in a recent contact zone on the Swedish island of Oland. A nested PCR protocol amplifying haemosporidian fragments of mtDNA was used to screen the presence of malaria lineages in 1048 blood samples collected during 6 years. Competitively inferior pied flycatchers had a higher prevalence of blood parasites, including the lineages that were shared between the two flycatcher species. Multistate mark-recapture models revealed a lower survival of infected versus uninfected female pied flycatchers, while no such effects were detected in male pied flycatchers or in collared flycatchers of either sex. Our results show that a comparatively new host, the collared flycatcher, appears to be less susceptible to a local northern European malarial lineage where the collared flycatchers have recently expanded their distribution. Pied flycatchers experience strong reproductive interference from collared flycatchers, and the additional impact of species-specific blood parasite effects adds to this competitive exclusion. These results support the idea that parasites can strongly influence the outcome of interspecific competition between closely related host species, but that the invading species need not necessarily be more susceptible to local parasites

    The Exotic Type Ic Broad-Lined Supernova SN 2018gep: Blurring the Line Between Supernovae and Fast Optical Transients

    Get PDF
    Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Maunakea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. T.P. acknowledges support from NASA under the Swift GI grant 1619152, the Tess GI grant G03267, from the NYU Center for Cosmology and Particle Physics, from a 19 Washington Square North Award awarded to M.M, and in part by a grant from the New York University Research Challenge FundProgram. M.M. and the SNYU group have been supported by the NSF CAREER award AST-1352405, by the NSF award AST1413260, and by a Humboldt Faculty Fellowship. M.M. is grateful for her sabbatical stay supported by the Center for Computational Astrophysics at the Flatiron institute and for the hospitality of the Max-Planck Institute for Astronomy, Heidelberg, during which some of this work was accomplished. K.B. acknowledges financial support from the Ministerio de Economia y Competitividad through the Spanish grant BES2014-069767. K.B., C.T. and A.d.U.P. acknowledge support from the Spanish research project AYA2017-89384-P. C.T. acknowledges support from funding associated to a Ramon y Cajal fellowship RyC-2012-09984. A.d.U.P. acknowledges support from funding associated to a Ramon y Cajal fellowship RyC-2012-09975. L.I. acknowledges support from funding associated to a Juan de la Cierva Incorporacion fellowship IJCI-2016-30940. D.A.K. acknowledges support from the Spanish research projects AYA 2014-58381-P, AYA201789384-P, from Juan de la Cierva Incorporacion fellowship IJCI-2015-26153, and from Spanish National Project research project RTI2018-098104-J-I00 (GRBPhot). J.V. and his research group at Konkoly Observatory is supported by the "Transient Astrophysical Objects" GINOP 2.3.2-15-2016-00033 project of the National Research, Development and Innovation Office (NKFIH), Hungary, funded by the European Union. K.V. and L.K. thank the financial support from the National Research, Development and Innovation Office (NKFIH), Hungary, under grants NKFI-K-131508 and NKFI-KH-130526. A.B. and K.V. are supported by the Lendulet program grant LP2018-7/2019 of the Hungarian Academy of Sciences. T.N.D. also acknowledges the support of the Hungarian OTKA grant No. 119993. The work of X.W. was funded by the National Science Foundation of China (NSFC grants 12033003, 11633002, and 11761141001), the Major State Basic Research Development Program (grant No. 2016YFA0400803), and the Scholar Program of Beijing Academy of Science and Technology (DZ:BS202002). L.G. was funded by the European Union's Horizon 2020 research and innovation program under the Marie SklodowskaCurie grant agreement No. 839090. This work has been partially supported by the Spanish grant PGC2018-095317-BC21 within the European Funds for Regional Development (FEDER). R.G.B. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness through grant AYA2016-77846-P and from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709). These observations made use of the LCO network. D.A.H., C.P., D.H., and J.B. are supported by NSF Grant AST-1911225 and NASA Grant 80NSSC19k1639.In the last decade a number of rapidly evolving transients have been discovered that are not easily explained by traditional supernova models. We present optical and UV data on one such object, SN 2018gep, that displayed a fast rise with a mostly featureless blue continuum around peak, and evolved to develop broad features typical of an SN Ic-bl while retaining significant amounts of blue flux throughout its observations. This blue excess is most evident in its near-UV flux, which is over 4 mag brighter than other stripped-envelope supernovae, and is still visible in optical g-r colors. Its fast rise time of t (rise,V ) = 5.6 +/- 0.5 days puts it squarely in the emerging class of Fast Evolving Luminous Transients, or Fast Blue Optical Transients. With a peak absolute magnitude of M ( v ) = -19.53 +/- 0.23 mag it is on the extreme end of both the rise time and peak magnitude distribution for SNe Ic-bl. These observations are consistent with a simple SN Ic-bl model that has an additional form of energy injection at early times that drives the observed rapid, blue rise. We show that SN 2018gep and the literature SN iPTF16asu have similar photometric and spectroscopic properties and that they overall share many similarities with both SNe Ic-bl and Fast Evolving Transients. Based on our SN 2018gep host galaxy data we derive a number of properties, and we show that the derived host galaxy properties for both SN 2018gep and iPTF16asu are consistent with the SNe Ic-bl and gamma-ray burst/supernova sample while being on the extreme edge of the observed Fast Evolving Transient sample.W.M. Keck FoundationNASA under the Swift GI grant 1619152Tess GI grant G03267NYU Center for Cosmology and Particle PhysicsNew York University Research Challenge FundProgramNational Science Foundation (NSF) NSF - Office of the Director (OD) AST-1352405 National Science Foundation (NSF) AST-1911225 AST-1413260Humboldt Faculty FellowshipCenter for Computational Astrophysics at the Flatiron instituteSpanish Government BES2014-069767 RyC-2012-09975 RyC-2012-09984Juan de la Cierva Incorporacion fellowship IJCI-2015-26153 IJCI-2016-30940"Transient Astrophysical Objects" project of the National Research, Development and Innovation Office (NKFIH), Hungary - European Union GINOP 2.3.2-15-2016-00033National Research, Development & Innovation Office (NRDIO) - Hungary NKFI-K-131508 NKFI-KH-130526Hungarian Academy of Sciences LP2018-7/2019Orszagos Tudomanyos Kutatasi Alapprogramok (OTKA) 119993National Natural Science Foundation of China (NSFC) 12033003 11633002 11761141001National Basic Research Program of China 2016YFA0400803Scholar Program of Beijing Academy of Science and Technology DZ:BS202002European Commission 839090 PGC2018-095317-BC21Spanish Ministry of Economy and Competitiveness AYA2016-77846-PState Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award SEV-2017-0709National Aeronautics & Space Administration (NASA) 80NSSC19k163919 Washington Square North Award AYA 2014-58381-P AYA201789384-P RTI2018-098104-J-I00 AYA2017-89384-

    Comparison of onset of breeding and clutch size in relation to breeding time between female collared flycatchers infected and uninfected with Haemosporidia parasites breeding on Swedish island of Öland.

    No full text
    <p>In onset of breeding graph a), thick horizontal segments represent median, the bottom and the upper edges of the boxes show first and third quartiles, whiskers demonstrate minimum and maximum values. In clutch size graph b), the slopes represent predicted values derived from model-averaged estimates based on models within ΔAICc<2. Infected and uninfected females do not differ in their onset of breeding or in their seasonal decline in clutch size.</p
    corecore