60 research outputs found

    Evidence for SrHo2O4 and SrDy2O4 as model J1-J2 zig-zag chain materials

    Get PDF
    Neutron diffraction and inelastic spectroscopy is used to characterize the magnetic Hamiltonian of SrHo2O4 and SrDy2O4. Through a detailed computation of the crystal-field levels we find site- dependent anisotropic single-ion magnetism in both materials and diffraction measurements show the presence of strong one-dimensional spin correlations. Our measurements indicate that competing interactions of the zig-zag chain, combined with frustrated interchain interactions, play a crucial role in stabilizing spin-liquid type correlations in this series.Comment: 5 pages, 5 figure

    Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium.

    Get PDF
    BACKGROUND The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. METHODS For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. FINDINGS Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. INTERPRETATION COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. FUNDING Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization

    Vascular and blood-brain barrier-related changes underlie stress responses and resilience in female mice and depression in human tissue

    Get PDF
    Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Dynamics of viral contamination in an urban water environment

    No full text
    Les virus entériques sont l'une des principales causes d'épidémies de gastroentérites chez l'Homme. Ces virus sont essentiellement excrétés dans les selles et sont donc observés en grande quantité au sein des eaux usées. L'abattement viral est très variable en fonction des types de traitements mis en place dans les stations d'épurations (STEP). Malgré ces traitements, la grande majorité des STEP rejettent d'importantes quantités de virus entériques dans l'environnement. L'objectif de ce travail a été d'apporter des éléments de réponse concernant la circulation des virus entériques humains dans un environnement hydrique urbain. Pour cela, des méthodes d'analyse ont été mises au point afin de permettre la détection d'un large panel de virus entériques dans différentes matrices hydriques susceptibles d'être étudiées dans l'environnement. Trois contrôles ont été développés afin de vérifier le bon déroulement de cette méthode et donc de valider les résultats obtenus. Une campagne d'échantillonnage a été réalisée au niveau d'un tronçon de la Seine impacté par les affluents naturels et des effluents de STEP. La prise en compte des débits au niveau des différents points de prélèvement a permis de calculer les flux viraux qui correspondent à la quantité de virus circulant en un point au cours d'une unité de temps. Cette approche a permis de démontrer la contribution majeure des effluents de STEP dans la contamination virale du milieu récepteur. Parmi l'ensemble des virus entériques recherchés, les adénovirus, les norovirus, les astrovirus et les rotavirus présentaient les charges virales les plus importantes dans les effluents de STEP et dans les eaux de surface. Leurs quantités au sein de ces matrices d'eau étaient les plus importantes durant la période hivernale ce qui était cohérent avec les données épidémiologiques. Un lien étroit entre l'état sanitaire de la population humaine reliée au réseau d'assainissement et la concentration en virus entériques des effluents de STEP et des eaux de surface a pu être établi. Sur ces mêmes prélèvements, l'étude de la diversité des astrovirus et des norovirus de génogroupes I et II a été réalisée par pyroséquençage. Cette approche a permis d'établir un profil des différents génotypes circulant dans les effluents de STEP. Au regard des données épidémiologiques recueillies sur la même période par le Centre National de Référence des virus entériques, un grand nombre de génotypes communs ont pu être observés entre ces deux jeux de données. Ce constat met en évidence le caractère informatif de l'analyse des effluents de STEP qui fournit un profil relativement pertinent des virus entériques circulant dans l'environnement mais aussi dans la population humaine. La présence de virus entériques présente dans les eaux de surface, ressources utilisées pour la potabilisation, est un réel problème de santé publique. C'est pourquoi la dernière partie de ce travail s'intéresse à évaluer leur persistance dans l'eau de surface et l'eau destinée à la consommation humaine, mais aussi face à des traitements de désinfection, fréquemment utilisés dans les usines de potabilisation et parfois en sortie de STEP. L'absence de modèle cellulaire pour la plupart de ces virus nous a conduit à développer une approche basée sur l'emploi d'agents intercalants permettant d'évaluer l'intégrité de la capside des particules virales détectées par PCR en temps réel. L'utilisation de ces agents intercalants s'est avérée pertinente à partir du moment où les conditions conduisent à une dégradation des capsides virales. Par conséquent, leur emploi sur des échantillons d'eau potabilisée a permis une meilleure estimation du risque sanitaire associé à la consommation de l'eau produite. En conclusion, ce travail propose des méthodes d'analyse qui ont permis de mettre en exergue les relations existantes entre la circulation des virus entériques dans l'environnement et l'état sanitaire de la population humaineEnteric viruses are a major cause of gastroenteritis outbreaks in humans. These viruses are mainly excreted in the faeces and are therefore observed in large amounts in wastewater. Depending on the types of treatments, virus removal from effluent may vary from one wastewater treatment plants (WWTP) to another. Despite these treatments, most of the WWTP releases significant quantities of enteric viruses in the environment. The aim of this study was to better understand the circulation of human enteric viruses in urban rivers. For this purpose methods have been developed to enable the detection of a broad panel of enteric viruses in various water matrices that may be collected from the environment. Since there is important inhibition observed in this type of water samples, three controls were developed to verify the success of this method, from the sample concentration to the PCR quantification, and thus to validate the results. A sampling campaign was carried out at the Seine River section (Paris area) affected by its natural tributaries and WWTP effluents. The river and effluent flows at the different sampling points were used to calculate the viral flows as the amount of virus circulating at a point during a time unit. This approach has demonstrated the major implication WWTP effluents in the viral contamination of the Seine River. Among all the targeted enteric viruses, adenoviruses, norovirus, astrovirus and rotavirus showed the most significant viral loads in WWTP effluents and consequently in river waters. Their quantities in WWTP effluents and surface water were the most important during the winter period which was consistent with the epidemiological data from the French Reference Center for enteric viruses. A close connection between the health status of the Parisian population and enteric virus concentration in WWTP effluents and in the Seine River could be established. The study of the diversity of astrovirus and norovirus of genogroups I and II was carried out by pyrosequencing on WWTP effluent and Seine river samples to develop a profile of the different genotypes circulating in the environment. Many common genotypes were observed between the effluent dataset and the epidemiological data collected over the same period by the French Reference Center. These results highlight the complementarity of the two datasets, and the fact that WWTP effluents provide a relevant profile of enteric viruses circulating in the environment but also in the human population. The amount of enteric viruses present in drinking water resources such as surface waters is a real public health problem. Therefore, it is important to evaluate viral persistence in surface waters during tertiary treatment and in drinking water, but also the viral persistence after usual disinfection treatments such chlorination and ultraviolet treatment. The absence of cell model for culture of most enteric viruses, has led us to develop a method using intercalating dyes to assess the capsid integrity of the viral particles quantified by real time PCR. The use of these intercalating agents was relevant when the environmental conditions and disinfection treatments caused a degradation of the viral capsid. Consequently, their use for the analysis of water samples from drinking water plants allowed to prevent an overestimation of the risk of transmission to humans by the consumption of tap water. In conclusion, this work provides development of analysis methods highlighting the relationships between the circulation of infectious enteric viruses in the environment and the health status of the human populatio

    J. Jay

    No full text

    [Reproduction of obverse and reverse of the Royal Society James Cook commemorative medal] [picture] /

    No full text
    Engraved below image: From a medal appartening [sic] to His Majesty King Louis XVI, 1784.; Beddie, 2812.; Also available in an electronic version via the Internet at: http://nla.gov.au/nla.pic-an9186365; S3584

    Detection of enterovirus in environmental waters: A new optimized method compared to commercial real-time RT-qPCR kits

    No full text
    International audienceDespite the progress in water and wastewater treatment technologies, waterborne diseases are still amajor concern of public health. In the reported water-related outbreaks, viruses constitute one of themain causal agents. Enteroviruses are one of the most viruses monitored in water and are often usedas an indicator of viral pollution. Isolation and identification of this virus are now regularly based onmolecular tools. However published or commercial protocols for detection of these viruses in waterare frequently lacking of validation processes and performance evaluation in such complex samples. Amethod for enterovirus detection in environmental water has been developed, its performance has beenevaluated and compared with several commercial kits.The sensitivity of commercial methods in clinical samples, ranged between 89% and 100%, while thesensitivity in seeded environmental matrices fell between 16% and 91%. This method showed the bestperformance in environmental samples and was subsequently applied on surface and treated wastewa-ter. The results showed the large dissemination of enteroviruses in an urbanized river. The results alsoemphasized the importance of good knowledge of the method’s limits for its utilization in environmentalsamples in order to minimize false negatives and to avoid underestimating viral concentration
    corecore