3,247 research outputs found
Archeops: an instrument for present and future cosmology
Archeops is a balloon-borne instrument dedicated to measure the cosmic
microwave background (CMB) temperature anisotropies. It has, in the millimetre
domain (from 143 to 545 GHz), a high angular resolution (about 10 arcminutes)
in order to constrain high l multipoles, as well as a large sky coverage
fraction (30%) in order to minimize the cosmic variance. It has linked, before
WMAP, Cobe large angular scales to the first acoustic peak region. From its
results, inflation motivated cosmologies are reinforced with a flat Universe
(Omega_tot=1 within 3%). The dark energy density and the baryonic density are
in very good agreement with other independent estimations based on supernovae
measurements and big bang nucleosynthesis. Important results on galactic dust
emission polarization and their implications for Planck are also addressed.Comment: 4 pages, 2 figures, to appear in Proceedings of the Multiwavelength
Cosmology Conference, June 2003, Mykonos Island, Greec
Submillimetre point sources from the Archeops experiment: Very Cold Clumps in the Galactic Plane
Archeops is a balloon-borne experiment, mainly designed to measure the Cosmic
Microwave Background (CMB) temperature anisotropies at high angular resolution
(~ 12 arcminutes). By-products of the mission are shallow sensitivity maps over
a large fraction of the sky (about 30 %) in the millimetre and submillimetre
range at 143, 217, 353 and 545 GHz. From these maps, we produce a catalog of
bright submillimetre point sources. We present in this paper the processing and
analysis of the Archeops point sources. Redundancy across detectors is the key
factor allowing to sort out glitches from genuine point sources in the 20
independent maps. We look at the properties of the most reliable point sources,
totalling 304. Fluxes range from 1 to 10,000 Jy (at the frequencies covering
143 to 545 GHz). All sources are either planets (2) or of galactic origin.
Longitude range is from 75 to 198 degrees. Some of the sources are associated
with well-known Lynds Nebulae and HII compact regions in the galactic plane. A
large fraction of the sources have an IRAS counterpart. Except for Jupiter,
Saturn, the Crab and Cas A, all sources show a dust-emission-like modified
blackbody emission spectrum. Temperatures cover a range from 7 to 27 K. For the
coldest sources (T<10 K), a steep nu^beta emissivity law is found with a
surprising beta ~ 3 to 4. An inverse relationship between T and beta is
observed. The number density of sources at 353 GHz with flux brighter than 100
Jy is of the order of 1 per degree of Galactic longitude. These sources will
provide a strong check for the calibration of the Planck HFI focal plane
geometry as a complement to planets. These very cold sources observed by
Archeops should be prime targets for mapping observations by the Akari and
Herschel space missions and ground--based observatories.Comment: Version matching the published article (English improved). Published
in Astron. Astrophys, 21 pages, 13 figures, 4 tables Full article (with
complete tables) can be retrieved at
http://www.archeops.org/Archeops_Publicatio
Slippage of water past superhydrophobic carbon nanotube forests in microchannels
We present in this letter an experimental characterization of liquid flow
slippage over superhydrophobic surfaces made of carbon nanotube forests,
incorporated in microchannels. We make use of a micro-PIV (Particule Image
Velocimetry) technique to achieve the submicrometric resolution on the flow
profile necessary for accurate measurement of the surface hydrodynamic
properties. We demonstrate boundary slippage on the Cassie superhydrophobic
state, associated with slip lengths of a few microns, while a vanishing slip
length is found in the Wenzel state, when the liquid impregnates the surface.
Varying the lateral roughness scale L of our carbon nanotube forest-based
superhydrophobic surfaces, we demonstrate that the slip length varies linearly
with L in line with theoretical predictions for slippage on patterned surfaces.Comment: under revie
SPG20 protein spartin is recruited to midbodies by ESCRT-III protein Ist1 and participates in cytokinesis.
Hereditary spastic paraplegias (HSPs, SPG1-46) are inherited neurological disorders characterized by lower extremity spastic weakness. Loss-of-function SPG20 gene mutations cause an autosomal recessive HSP known as Troyer syndrome. The SPG20 protein spartin localizes to lipid droplets and endosomes, and it interacts with tail interacting protein 47 (TIP47) as well as the ubiquitin E3 ligases atrophin-1-interacting protein (AIP)4 and AIP5. Spartin harbors a domain contained within microtubule-interacting and trafficking molecules (MIT) at its N-terminus, and most proteins with MIT domains interact with specific ESCRT-III proteins. Using yeast two-hybrid and in vitro surface plasmon resonance assays, we demonstrate that the spartin MIT domain binds with micromolar affinity to the endosomal sorting complex required for transport (ESCRT)-III protein increased sodium tolerance (Ist)1 but not to ESCRT-III proteins charged multivesicular body proteins 1-7. Spartin colocalizes with Ist1 at the midbody, and depletion of Ist1 in cells by small interfering RNA significantly decreases the number of cells where spartin is present at midbodies. Depletion of spartin does not affect Ist1 localization to midbodies but markedly impairs cytokinesis. A structure-based amino acid substitution in the spartin MIT domain (F24D) blocks the spartin-Ist1 interaction. Spartin F24D does not localize to the midbody and acts in a dominant-negative manner to impair cytokinesis. These data suggest that Ist1 interaction is important for spartin recruitment to the midbody and that spartin participates in cytokinesis
Nonlinear Statistical Filtering and Applications to Segregation in Steels from Microprobe Images
Microprobe images of solidification studies are well known to be subject to a Poisson noise. That is, the radiation count at a pixel x for a certain element may be considered to be an observation of a Poisson random variable whose parameter is equal to the true chemical concentration of the element at x. By modeling the image as a random function, we are able to use geostatistical techniques to perform various filtering operations. This filtering of the image itself may be done using linear kriging. For explicitely nonlinear problems such as the estimation of the underlying histogram of the noisy image, or the estimation of the probability that locally the concentration passes a certain value (this probability is needed for segregation studies), it is usually not possible to use linear techniques as they give biased results. For this reason, we applied the nonlinear technique of Disjunctive Kriging to these nonlinear problems. Linear kriging needs only second order statistical models ( covariance functions or variograms) while disjunctive kriging needs bivariate distribution models. This approach 1s illustrated by examples of filtering of various X-ray mappings in steel samples
A generalization of Hausdorff dimension applied to Hilbert cubes and Wasserstein spaces
A Wasserstein spaces is a metric space of sufficiently concentrated
probability measures over a general metric space. The main goal of this paper
is to estimate the largeness of Wasserstein spaces, in a sense to be precised.
In a first part, we generalize the Hausdorff dimension by defining a family of
bi-Lipschitz invariants, called critical parameters, that measure largeness for
infinite-dimensional metric spaces. Basic properties of these invariants are
given, and they are estimated for a naturel set of spaces generalizing the
usual Hilbert cube. In a second part, we estimate the value of these new
invariants in the case of some Wasserstein spaces, as well as the dynamical
complexity of push-forward maps. The lower bounds rely on several embedding
results; for example we provide bi-Lipschitz embeddings of all powers of any
space inside its Wasserstein space, with uniform bound and we prove that the
Wasserstein space of a d-manifold has "power-exponential" critical parameter
equal to d.Comment: v2 Largely expanded version, as reflected by the change of title; all
part I on generalized Hausdorff dimension is new, as well as the embedding of
Hilbert cubes into Wasserstein spaces. v3 modified according to the referee
final remarks ; to appear in Journal of Topology and Analysi
Semi-classical analysis of real atomic spectra beyond Gutzwiller's approximation
Real atomic systems, like the hydrogen atom in a magnetic field or the helium
atom, whose classical dynamics are chaotic, generally present both discrete and
continuous symmetries. In this letter, we explain how these properties must be
taken into account in order to obtain the proper (i.e. symmetry projected)
expansion of semiclassical expressions like the Gutzwiller trace
formula. In the case of the hydrogen atom in a magnetic field, we shed light on
the excellent agreement between present theory and exact quantum results.Comment: 4 pages, 1 figure, final versio
Growth rate for the expected value of a generalized random Fibonacci sequence
A random Fibonacci sequence is defined by the relation g_n = | g_{n-1} +/-
g_{n-2} |, where the +/- sign is chosen by tossing a balanced coin for each n.
We generalize these sequences to the case when the coin is unbalanced (denoting
by p the probability of a +), and the recurrence relation is of the form g_n =
|\lambda g_{n-1} +/- g_{n-2} |. When \lambda >=2 and 0 < p <= 1, we prove that
the expected value of g_n grows exponentially fast. When \lambda = \lambda_k =
2 cos(\pi/k) for some fixed integer k>2, we show that the expected value of g_n
grows exponentially fast for p>(2-\lambda_k)/4 and give an algebraic expression
for the growth rate. The involved methods extend (and correct) those introduced
in a previous paper by the second author
- …