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Abstract 

Microprobe images of solidification studies are well 
known to be subject to a Poisson noise. That is, the radiation 
count at a pixel x for a certain element may be considered 
to be an obseivation of a Poisson random variable whose 
parameter is equal to the true chemical concentration of the 
element at x. By modeling the image as a random function, 
we are able to use geostatistical techniques to perform 
various filtering operations. This filtering of the image itself 
may be done using linear kriging. For explicitely nonlinear 
problems such as the estimation of the underlying histogram 
of the noisy image, or the estimation of the probability that 
locally the concentration passes a certain value (this 
probability is needed for segregation studies), it is usually 
not possible to use linear techniques as they give biased 
results. For this reason, we applied the nonlinear technique 
ofpisjunctive Kriging to these nonlinear problems. Linear 
kngmg needs only second order statistical models 
( covariance functions or variograms) while disjunctive 
~ri~ing needs bivariate distribution models. This approach 
1s illustrated by examples of filtering of various X-ray 
mappings in steel samples. 
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Introduction 

A common problem in image analysis is that of image 
filtering. For example in Figure 1, we see an image of 
chemical concentration obtained in a steel sample using a 
microprobe. Despite a high acquisition time ( often about 7 
hours), the image remains quite noisy for elements of fairly 
low concentration. The simplest type of image filtering we 
might want to perform is to try to remove the noise from the 
image leaving an estimate of the underlying signal. For 
images of a diffuse type, such as that of the chemical 
concentration, a number of different types of filters give 
fairly good results. For example, amongst the statistical 
filters we have the linear kriging filter, the disjunctive 
kriging (see the following sections), or the filters associated 
with Markov random fields (1]. The kriging procedure was 
developed in the field of geostatistics [7] in the fifties to 
estimate unknown or noisy data, accounting for information 
about the spatial structure of the underlying phenomena. 
The early applications of geostatistics concerned the 
estimation of local concentrations in ore body deposits from 
probes at a given number of sites. The terminology "kriging" 
was used in honour of Dr. D.G. Krige who initiated this 
practice for gold deposits. Amongst the non statistical filters 
we have the median filter and the morphological filters [10]. 

However if instead of estimating simply the underlying 
maps, we are interested in estimating a more complex 
function such as a local probability map (probability that 
within a small neighbourhood v, a point chosen at random 
passes a certain value), then the type of method chosen 
seems to be of more importance. Later, we will develop the 
non linear disjunctive kriging filter and will apply it to 
estimating the local probability map. Using our estimate of 
the local probability, we will then be able to construct local 
segregation maps for steel samples which allow us to 
quantitatively compare the segregation properties of 
different types of steels. In the case of a chemical element 
with very low concentration but with very high influence on 
the in -use properties, it is important to know the true 
highest values occurring in the specimen. It requires 
performing an unbiased estimation of the underlying 
histogram (local or global) from noisy images. 

Linear Kriging 

Let us suppose that the true underlying chemical 
concentration at point x is Y(x) and the obseived data is 
given as Z(x). The linear kriging filter of Y(x) from the 
known data {Z(x)} in a neighbourhood ofx is an estimator 
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Figure 1. Improvement of a noisy microsegregation 
image obtained on a microprobe (la) by a linear kriging 
filter (lb). SNRo = 2.4; SNR = 83.8; image 512 x 
512, 3 µm/pixel. 

y•(x) of the unknown Y(x): 

(1) 

where the P..-} are chosen so that the variance of error 
Var(Y(x) - y•(x)) is a minimum subject to the constraint 
that the estimate be non biased, E[Y(x) - y•(x)] = O, 
where Eis the expectation ( or mean) of the random variable 
(Y(x) - Y*(x)). 

If the covariance Cov of Z(x) is known, 

Cov(Z(x), Z(y)) = E[Z(x) Z(y)] - m2 

m = E[Z(x)] (2) 

and if Cov(Z(x), Y(y))is known also, then it can be shown 
that the { 1..) are given by : 

= 1 (3) 

138 

µ being a Lagrange parameter resulting from the imposed 
non bias condition. 

For more information on linear kriging see [7] and for 
its application to filtering, see [ 4, 9] in the fields of 
microprobe and EELS (Electron Energy Loss Spectro­
scopy) electron microscopy imaging. The optimal (and 
adpative, since it depends on the covariance of the image) 
linear filter is a generalization of the Wiener filter, well 
known in the literature of signal processing. 

The covariance function Cov(Z(x),Z(y)) may be 
calculated from the experimental data by making the 
hypothesis of stationarity, that is, by assuming that the 
covariance depends only on the distance (x - y) between 
the points, and then by calculating an experimental version 
of the covariance function on the observed data. The 
covariance function Cov(Z(x),Y(y)) may be found exactly if 
we have two independent acquisitions of noisy data Z1(x) 
and Z2(x) in which case it can be shown that : 

Cov(Z 1(x), Z2(x)) = Cov(Z(x), Y(y)). (4) 

Failing this, it is sometimes possible to know 
Cov(Z(x),Y(y)) using only one acquisition. For example in 
the case of Poisson noise (eg. for microprobe images), we 
assume that each pixel x is obtained as a realization of a 
Poisson random variable with parameter Y(x). The 
covariance function for Z is equal to the cross covariance 
between Y and Z except at the origin where 
Var Z = Cov(Y,Z) + m. For more details see [2]. 

An illustrative example of application is given in Figure 
1 for the case of a micro probe image in a steel specimen. It 
appears that the filtered image shows very fine details 
concerning secondary arms with dendrites which are not 
visible on the initial noisy image. 

Recent extensions of the linear kriging filter include its 
implementation for the deconvolution of noisy images [6] 
which might be very useful to improve the spatial resolution 
of high magnification X-ray images, among others, 
obtained by combining a smoothing process (X-ray data 
arise from a non punctual source) and a noise due to the 
detection of photons. 

The variance of estimation of the estimator y•, at, is 
given by 

at = D 2[Y - Y*] = E[Y 2(x)] - LA; Cov[Z(x;)Y(x)] 
(5) 

From the variance of estimation, it is easy to calculate a 
signal to noise ratio (SNR) : 

SNR = Var[Y(x)] 
--a....,,2-'---

K 

(6) 

Var[Y(x)] 
SNRo = -V-ar-Z-(x-)-"----'-v-'-'ar-Y-(x-)' (7) 

SNRo being the initial SNR, before filtering. The 
improvement resulting from the filter is measured by 
SNR = Var Z(x) - Var Y(x) 
SNR 0 a~ 
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Disjunctive Kriging (D.K.) 

The principal advantage of the linear kriging 
considered in the previous section is that it only depends on 
all the covariance functions Cov(Z(x),Z(y)) and 
Cov(Z(x),Y(y)). As such, since these functions are relatively 
easy to estimate from the data, the linear kriging is a robust 
estimate which is not usually prone to serious error. Its 
major drawback is that it is linear and as such is not well 
adapted to the estimation of nonlinear functions such as the 
local law. A non linear estimate which has the merit of not 
making very strong demands on the data ( and so hopefully 
remaining fairly robust) is the disjunctive kriging (D.K.) 
filter. The D.K. filter depends only on the bivariate 
distributions. Nonetheless this hypothesis is stronger than 
that used by linear kriging which only depends on the 
covariance functions. It is by making these extra hypotheses 
that we allow ourselves the possibility of estimating 
non-linear functions of the true image such as the local law, 
but we must be careful not to make these hypotheses too 
strong or we might not be able to test them even partially 
with the data and so risk problems of robustness. 

In this case, we estimate an arbitrary function of Y(x), 
say q,(Y(x)) by : 

(8) 

so that our estimate is now a sum of functions of the data 
points rather than simply a linear sum as was the case for 
linear kriging. It can be shown [8] that the equations to be 
solved to determine the functions fi are : 

n 

E[q,(Y(x))IZ(xi)] = LE[f;(Z(x))IZ(xi)] j = 1, ... ,n (9) 
i=l 

where E[ q,(Y) I Z] is the conditional expectation of q,(Y) 
given Z. Unfortunately, these are a rather complicated 
system of integral equations whose numerical solution is 
quite demanding, and so we consider an approximate 
solution using an isofactorial model [8]. For full details see 
[2]. The main lines of this approach, as explained in the next 
section for the Gaussian model, consist in transforming the 
initial values into data admitting a given distribution ( eg. a 
Gaussian distribution, but other models were introduced in 
[8]). Important simplifications of Equation (9) occur when 
the chosen distribution is the marginal distribution of a 
bivariate distribution admitting an isofactorial develop­
ment, over orthogonal functions (usually polynomials). In 
that case, the nonlinear system (9) is replaced by a sequence 
of linear systems (21). 

The minimal variance criterion used to design the linear 
and disjunctive kriging filters can be interpreted as the 
orthogonal projection of the variable to be estimated on a 
Euclidean space E, using the covariance functions as a 
scalar product : 
- for the linear kriging, E is generated by the linear 
combinations of the data Z(x;), 
- for the disjunctive kriging, E is generated by the linear 
combinations of the measurable functions of the data 
fi(Z(xi)). 

The most general projection estimator, the conditional 
expectation, may be found by projecting the variable to be 
estimated on the space of all the measurable multivariate 
functions of the data f(Z(x1), ... ,Z(xn) ). This operator 
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requires the knowledge of multivariate distributions of 
order n, which are not accessible from the data, and 
therefore must be introduced from some a priori knowledge. 
As a consequence, it may be subject to strong discrepancies 
with the data, and hence might lack robustness in 
applications. For this reason, we prefer to concentrate on 
the two previous estimators, that are implemented with less 
requirements. 

We can note in passing that other filtering or estimation 
techniques, such as the so-called Maximum Entropy 
algorithms, while not being based on a projection operation, 
still use in fact an a priori knowledge of multivariate 
distributions of very high order. 

The Gaussian Isofactorial Model for Disjunctive Kriging 

The only example of an isofactorial model that we wish 
to consider in this paper is the Gaussian model, whereby we 
assume that the noisy image (after a suitable trans­
formation) has bivariate Gaussian laws. 

The principal disadvantage in using an isofactorial 
model is that it is usually impossible to model both the 
spatial law for the images and the type of noise process at the 
same time. Thus, if we are using a Gaussian disjunctive 
kriging model, it will not be rigorously possible to have 
Poisson noise. 

However for most image filtering purposes in steel 
samples, the Gaussian isofactorial model approximation to 
the Poisson noise characteristics appears to be quite good, 
which enables us to use the model heuristically. In the 
general case, that is for an arbitrary bivariate law with an 
arbitrary noise law, it will be necessary to solve the direct 
disjunctive kriging equations (1 ). In fact, these are easily 
calculated from the knowledge of the bivariate distributions 
of the underlying signal Y(x) and of the noise generation 
(which in this case is Poisson). Therefore a general 
approach for the D.K. is feasible if numerically somewhat 
demanding (an example was developed in [2]). 

We will now consider the Gaussian isofactorial laws. 
Let us first suppose that Y(x) (the underlying chemical 
concentration) has a bivariate Gaussian law and a 
correlation function Q(h). Then the bivariate law for a 
separation of h, (Y(x) = y1, Y(x+h) = Y2) is given by: 

gr(Y1,Y2) = 
1 e 2<1-:_\ 2/g

2y;+g 2y~-2QY,Y2l_l_ e -1 _1_ e -i 
~ f5t f5t 

(10) 

1 ,2 
If we call g(y) = [Sr, e - 2, then it can be shown that : 

gr(y1,Y2) = L Qn(h) 11n(Y1) 11nCY2) g(y1) g(y2) (11) 
n=O 

where 'Y/n(Y) is the normalised Hermite polynomial of order 
n. These polynomials are easily generated using the 
formulae: 

llo(y) = 1 ; ll1(y) = - Y 

lln+1(Y) = - /n ~ l Y lln(Y) - )n ~ l lln-1(Y) (12) 

and are also defined by the Rodrigues formula 
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,2 1 d n ,2 
e - 2 'YJ n(Y) = G-d n e - 2. An important result for the 

vn! Y 
bigaussian couple (Y(x),Y(x+h)) of correlation Q is that 

E[ri0 (Y(x + h)) I Y(x)] = Q0 'YJn(Y(x)) (13) 

Next we consider the bivariate law between the noisy 
Z(x+h) and the underlying Y(x). We suppose that the 
randomisation due to the noise is of the form : 

Z(x) = r Y(x) + ~ E(x) (14) 

where E (x) is a white noise random function independent of 
Y(x) and O ~ r ~ 1. We assume that Y(x), Z(x) and E(x) 
are all gaussian with mean O and standard deviation 1 
(N(0,1)) so that (Y(x), Z(x+h)) is bigaussian with 
correlation r(J(h); so its bivariate distribution can be 
immediately written in the isofactorial form : 

g:• 2 (y, z) = L (rg(h)}° 'YJn(Y) YJn(z) g(y) g(z) (15) 
n=O 

Moreover the couple (Z(x), Z(x+h)) is bigaussian with the 
correlation : 

Qz(h) = { r\(h) 
if h > 0 
if h = 0 (16) 

so that its bivariate law is written as : 

gf(y, z) = L Qz(h) 0 'YJn(Y) 'YJn(z) g(y) g(z) (17) 

Now suppose we wish to estimate an arbitrary function 
cp(Y(x)) from the Za( = Z(x 0 )) data. Firstly, we express 
cp(Y(x)) in terms of the Hermite polynomials. That is, we 
find the coefficients <l>n so that : 

"' 
cp(Y(x)) = L ¢ 0 'YJn(Y(x)) (18) 

0 

and then it can be shown that our D.K. estimate of cp(Y(x)), 
namely ¢ •(Y(x)) is given as: 

"' 
¢ • (Y(x)) = L ¢ 0 YJ~(Y(x)) (19) 

0 
where 

(20) 

and where the {A~} are given as solutions to the equations 

N 

L A~ Q~(Xa - Xp) = r"Qn(x - Xp) fJ = l, ... ,N (21) 
a=l 

The system (9) was simplified in to the system (21) in the 
case of an isofactorial model (namely the Gaussian 
bivariate model in the present case). 

The N points { x0 }N are points in a neighbourhood of 
the point x where we want to estimate cp(Y(x)). 
Theoretically we would have to solve these equations an 
infinite number of times to obtain our estimate 
cf (Y(x)) = L cj,0 YJ~(Y(x)). However in practice, the 
convergence qs usually quick and we need no more than 
9-10 terms of the development at the worst. Each term is 
solution of a particular kriging system (2), similar to the 
linear kriging system presented at the beginning of this 
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paper. 

The variance of estimation is given by: 

Var [¢(Y(x)) - cp'(Y(x))] =. 

nt ¢ 0 [ ¢n - ail A~ r
0
g

0
(x - Xa)J (22) 

We have noted that we can estimate an arbitrary 
function cp(Y(x)). In practice two such functions are 
especially of interest. 

The first such function is the anamorphosis function. 
This is of interest if we simply want to filter the noise from 
the noisy image (although we repeat here that for most steel 
sample images a linear filter is usually sufficient). In this 
case, it is most unlikely that the true underlying image Y(x) 
has a Gaussian law. So that we must find a transformation 
or anamorphosis function ¢ such that Y(x) = cp(Y(x)) with 
Y(x) a N(0,1) variable. In addition, we.. make the 
assumption that every pair cp(Y(x)), cp(Y(x + h)) is 
bigaussian. No additional assumption concerning higher 
order distributions is required. Of course fitting the 
anamorphosis function requires a knowledge of the true 
underlying law ofY(x). This is not readily available from the 
data and must be estimated. The technique of 
regularisation, which in fact turns out to be equivalent to a 
form of linear kriging, may be used to estimate the 
underlying law [2, 3]. It cannot be represented here. 

Once the anamorphosis function has been calculated, 
we may estimate cp(Y(x)), and so obtain a nonlinear D.K. 
filter, as illustrated in the following section. 

Estimation of a Local Probability Distribution by 
Disjunctive Kriging and Examples of Applications 

Another nonlinear function which we may wish to 
estimate is the local histogram. This is the function we will 
use to construct a measure of segregation. We are interested 
in calculating the local histogram for support size v : we 
would like to estimate the probability that a point chosen at 
random in the neighbourhood of size v about a point x will 
pass a given cutoff. Formally, we wish to estimate : 

P [ Y(x) < y Ix Ev] = ~ { l(Y(x)<y)dx (23) 

where l(Y(x) <y) = 1 if Y(x)<y, else 0. 

The indicator term in the integral admits the 
development : 

1 (:(x) <y) = L ¢n 'YJn(Y(x)) (24) 

with the cj,0 easily calculated from the Rodrigues formula 
for the Hermite polynomials. 

Once this local probability function has been 
calculated, we can use it to define a local segregation ratio. 
A possible choice is to find the upper and lower 5% 
quantiles for the local law z0 (x) and Ze(x) respectively and 
then to define 

z0 (x) - Ze(x) 
TS(x) = m (25) 

where m is the global mean of the image. This choice of a 
definition has the advantage that it is scalar and so may be 
compared from one image to another. The estimate of 
TS(x) given by D.K. is unbiased and the influence of the 
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Figure 2. _Compari_son be~w~n linear kriging filters and disjunctive kriging filter on a simulation. (a) Simulated image; (b) 
P01_sson n?1se from image m Fig. 2a (SNR = 0.66); (c) linear kriging filter of image in Fig. 2b (SNR = 2.820· (d) D.K. filter 
of image m Fig. 2b (SNR = 2.94). ' 

--------------------

n_oise in the_estimate is greatly reduced with respect to the 
simplest estimates which are obtained by post-processing 
of previously filtered images [5]. 

. To illustrate these notions, we use both simulated 
images (where we can compare the estimation to the "true" 
histograms), and microprobe images. 

In Figure ~a, we show a simulated image, which we use 
as a refere1;1ce image. ~twas spoiled by Poisson noise (Figure 
2? ~, the~ fdte:e_d b~ lm~ar kriging (7 x 7) in Figure 2c and 
disiunctive kngmg m Figure 2d. For both filters the SNR 
improvement is larg~r than 4, _which gives a s;tisfactory 
resul_t f~r. the restoration of the image. In this case, there is 
no. s1gmf1cant advantage using the D.K. In addition, we 
estimated the local probability distribution in a 11 x 11 
neighbourhood. Figure 3 gives the probability of passing the 
~alue 25~ : calculated as a frequency from the original 
image (Figure 3a), from the linear kriged image (Figure 3b) 
or estimated by disjunctive kriging (Figure 3c). We observ~ 
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i~ this cas~, as_ in many other examples [5], that we give a 
~iascd e_stimat1on of the local probability using the linear 
filtered image, due to a smoothing effect of the filter. This 
example, and others, seem to validate the implementation 
of the D.K. to give a correct estimation of the local 
probability distribution function (p.d.f. ). 

. The sa~e procedure was applied to noisy microprobe 
1m~ges. In Figure 4a, we see an example of an initial image 
which corresponds to the chemical concentration for Mn in 
th~ centre of the steel plate. The linear (Figure 4b) and D.K. 
~Figure 4c) filters provide similar results (the SNR ratio is 
iml?roved by a factor close to 2.5). The local p.d.f. is 
estimated ~or t_he lcvel 1070 in a 5 x 5 neighbourhood, and 
~resent~d m Figure Sa, b, c, for the noisy image, the linear 
~1ltered image, an? by D.K. The previously observed trend 
m the case of a simulated image seems to occur for this 
experimental situation : the D.K. p.d.f. image lies between 
the p.d.f. obtained on the noisy and the filtered images, as 
was expected. 
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Figure 3. Local histogram estimation for the image of 
Figure 2: (a) local probability (P{Y(x) > 250}) calcu­
lated in a 11 x 11 neighbourhood from the original 
image (Fig. 2a); (b) local probability estimated from the 
linear filtered image (Fig. 2c); (c) local probability 
estimated by D.K. 

Figure 4. Comparison between linear kriging filter and 
D.K. filter on a microprobe image: (a) noisy image (ele­
ment Mn; 256 x 256 pixels, 1 pixel = 25 µm); SNR = 
5.52; (b) filtered image (linear kriging) SNR = 11.82; 
(c) filtered image (D.K.). 

Figure 5. Local histogram estimation for the images of 
Figure 4 (P{Y(x) > 1070}) in a 5 x 5 neighbourhood of 
x: (a) on the noisy image of Fig. 4a; (b) from the linear 
filtered image (Fig. 4b); (c) by D.K. estimation. 

Figure 6. Estimation of a local segregation ratio map 
by D. K. { using the parameter TS(x)} from a noisy image 
with same characteristics as Figures 4 and 5. 

In Figure 6, we see a map of the local segregation 
obtained by D.K., using the parameter TS(x) defined 
previously. 

Conclusion 

From both linear, and nonlinear (D.K.) kriging 
techniques, Gcostatistics provides very efficient filters to 
improve noisy images, such as seen in chemical mappings 
obtained from the electron microprobe or electron 
microscopy. 

In addition, the D.K. estimator provides unbiased 
estimates of nonlinear functions of the data, such as local 
histograms or local segregation ratio, which have very 
important repercussions in characterizing physical 
properties of materials from noisy microscopical data. 
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Discussion with Reviewers 

N Bonnet : What is the size of the neighbourhood used for 
computing Fig. lb? Do the results largely depend upon this 
size? 

Authors : We used a 15 x 15 window. The size of the window 
is selected as a function of the image, according to the 
following criteria : in principle, the final SNR increases with 
the number of data points, provided that their correlation to 
the unknown point is significant. So, the optimal size of the 
window is of the order of the range ( or correlation length) 
of the covariance. In practice, experiments often show that 
when the size of the neighbourhood is increased beyond the 
range of the covariance, the weights Ai, found as a solution 
of the kriging system, find a stable configuration, with 
negligible values for points located beyond the range. This 
behaviour illustrates the fact that, unlike conventional 
filters such as moving averages or median filters, the kriging 
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filters are adaptive, and that they are quite robust with 
respect to the size of the neighbourhood. 

N Bonnet: Could you expand your comment about 
maximum entropy algorithms, at the end of section 3? More 
generally, could you compare the underlying of your 
geostatistical methods to other attempts to restore noisy 
images? 

PJ Statham : Much of the success of the D.K. approach would 
appear to depend on successful statistical modelling of the 
underlying signal. Can the approach still be used if there is no 
prior knowledge of expected signal variations ? 

Authors : A systematic and fair comparison of the 
geostatistical methods with the other filtering algorithms 
would require a large amount of work, using the same data 
set ( eg. provided by simulations of the degradations of 
reference images). We can only mention here the main 
assumptions and prerequisites used in some cases. 
Maximum entropy algorithms cover in fact various 
approaches, at different levels : on the lowest level, each 
pixel of the image is modified in order for the restored 
image to recover a given histogram, which is assumed to be 
the underlying histogram. At this level, no account is made 
for the spatial variation of the data, since the same 
algorithm could be applied (and would provide the same 
results) after any permutation of the pixels. In addition, it 
was shown in [2, 3] how different the histogram of a noisy 
image is from the underlying histogram. The latter should 
be restored in a first step, if not provided from a priori 
knowledge. 

On the highest level, maximum entropy is based on a 
priori assumptions on the multivariate distribution function 
involving all the pixels of the image. This assumption is so 
strong that it can produce impressive results, but it lacks 
robustness and may provide artefacts ( emerging from this 
assumption) from a pure white noise. In other cases, 
maximum entropy provides a regularization function for 
regularization algorithms involved in the solution of 
ill-posed problems like deconvolution. 

The geostatistical tools used in this paper are based on 
the second order statistics : the covariance of a stationary 
signal ( or more generally the variogram of increments of 
order k for non stationary intrinsic random functions) are 
sufficient to implement the linear kriging. 

The histogram of the image and the covariance of the 
data after making an anamorphis (to recover the histogram 
of an isofactorial model) are needed to use the D.K. 
algorithms. In the presented approach, we only assume that 
the underlying signal is a realization of a stationary random 
function, and we introduce assumptions about the 
formation of the noise from the signal ( addition of a noise, 
or randomization of a Poisson process). These assumptions 
are based on the physics of the instrument (presently X-ray 
detection in a microprobe ), and can be checked from 
experiments. We then make an appropriate choice of a 
model for the statistical tool (covariance, or choice of an 
isofactorial model), which is fitted to the experimental data 
(covariance, histogram) calculated from the image (or 
averaged over a population of similar images). Therefore 
most of the information used in the filtering technique 
comes from the images, which makes it adaptive, and not 
sensitive to some a priori and ill-defined knowledge. 



Nonlinear statistical filtering and applications 

N Bonnet : In your comments on Figures 2 and 3, you attribute 
the bias in the estimation of the local histogram by linear 
filtering to its smoothing effect. Do you mean that this 
smoothing effect is negligible when using D.K. ? More 
generally, could you give a qualitative explanation of the 
advantages of these nonlinear filters compared to linear filters 
and the way they work ? 

PJ Statham : How robust is the D.K. approach ? For example, 
if an inappropriate model were chosen for the underlying 
signal would D.K. produce any greater bias than Wiener 
filtering or a simple median filter ? 

Authors : The source of the bias in the estimate of the local 
probability law using the truncation of the linear kriging 
( extension of the Wiener filter, or of any filter including the 
Median filter and the D.K. filter) is precisely due to the 
truncation : an unbiased estimate of a signal is not an 
unbiased estimate of binary images obtained by a 
threshold ! Indeed, the D.K. was introduced [8] with the aim 
to remove this bias and to directly estimate any nonlinear 
function ¢. This sensitivity of the linear kriging to bias in the 
local histogram is illustrated in Figure 3. 

As far as robustness is concerned, the less assumptions 
are made on the image, the more robust results are 
expected. As is recalled above, only second order statistics 
are used in our approach. The D.K. requires more 
assumptions than the linear kriging, and should be more 
sensitive to the choice of a model. However, it was seen in 
many experiments made from different simulations [2] that 
the D.K. filter provided a stable estimate of the local 
histogram, which advocates in favour of a robust behaviour. 
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