331 research outputs found

    Structure and function of the regulatory C-terminal HRDC domain from Deinococcus radiodurans RecQ

    Get PDF
    RecQ helicases are critical for maintaining genome integrity in organisms ranging from bacteria to humans by participating in a complex network of DNA metabolic pathways. Their diverse cellular functions require specialization and coordination of multiple protein domains that integrate catalytic functions with DNA–protein and protein–protein interactions. The RecQ helicase from Deinococcus radiodurans (DrRecQ) is unusual among RecQ family members in that it has evolved to utilize three ‘Helicase and RNaseD C-terminal’ (HRDC) domains to regulate its activity. In this report, we describe the high-resolution structure of the C-terminal-most HRDC domain of DrRecQ. The structure reveals unusual electrostatic surface features that distinguish it from other HRDC domains. Mutation of individual residues in these regions affects the DNA binding affinity of DrRecQ and its ability to unwind a partial duplex DNA substrate. Taken together, the results suggest the unusual electrostatic surface features of the DrRecQ HRDC domain may be important for inter-domain interactions that regulate structure-specific DNA binding and help direct DrRecQ to specific recombination/repair sites

    Mutational analysis of the transferrin receptor reveals overlapping HFE and transferrin binding sites

    Get PDF
    The transferrin receptor (TfR) binds two proteins critical for iron metabolism: transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. Previous results demonstrated that Tf and HFE compete for binding to TfR, suggesting that Tf and HFE bind to the same or an overlapping site on TfR. TfR is a homodimer that binds one Tf per polypeptide chain (2:2, TfR/Tf stoichiometry), whereas both 2:1 and 2:2 TfR/HFE stoichiometries have been observed. In order to more fully characterize the interaction between HFE and TfR, we determined the binding stoichiometry using equilibrium gel-filtration and analytical ultracentrifugation. Both techniques indicate that a 2:2 TfR/HFE complex can form at submicromolar concentrations in solution, consistent with the hypothesis that HFE competes for Tf binding to TfR by blocking the Tf binding site rather than by exerting an allosteric effect. To determine whether the Tf and HFE binding sites on TfR overlap, residues at the HFE binding site on TfR were identified from the 2.8 Å resolution HFE-TfR co-crystal structure, then mutated and tested for their effects on HFE and Tf binding. The binding affinities of soluble TfR mutants for HFE and Tf were determined using a surface plasmon resonance assay. Substitutions of five TfR residues at the HFE binding site (L619A, R629A, Y643A, G647A and F650Q) resulted in significant reductions in Tf binding affinity. The findings that both HFE and Tf form 2:2 complexes with TfR and that mutations at the HFE binding site affect Tf binding support a model in which HFE and Tf compete for overlapping binding sites on TfR

    Crystal Structure of the FeS Cluster–Containing Nucleotide Excision Repair Helicase XPD

    Get PDF
    DNA damage recognition by the nucleotide excision repair pathway requires an initial step identifying helical distortions in the DNA and a proofreading step verifying the presence of a lesion. This proofreading step is accomplished in eukaryotes by the TFIIH complex. The critical damage recognition component of TFIIH is the XPD protein, a DNA helicase that unwinds DNA and identifies the damage. Here, we describe the crystal structure of an archaeal XPD protein with high sequence identity to the human XPD protein that reveals how the structural helicase framework is combined with additional elements for strand separation and DNA scanning. Two RecA-like helicase domains are complemented by a 4Fe4S cluster domain, which has been implicated in damage recognition, and an α-helical domain. The first helicase domain together with the helical and 4Fe4S-cluster–containing domains form a central hole with a diameter sufficient in size to allow passage of a single stranded DNA. Based on our results, we suggest a model of how DNA is bound to the XPD protein, and can rationalize several of the mutations in the human XPD gene that lead to one of three severe diseases, xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Perceived crime and traffic safety is related to physical activity among adults in Nigeria

    Get PDF
    Background: Neighborhood safety is inconsistently related to physical activity, but is seldom studied in developing countries. This study examined associations between perceived neighborhood safety and physical activity among Nigerian adults. Methods: In a cross-sectional study, accelerometer-based physical activity (MVPA), reported walking, perceived crime and traffic safety were measured in 219 Nigerian adults. Logistic regression analysis was conducted, and the odds ratio for meeting health guidelines for MVPA and walking was calculated in relation to four safety variables, after adjustment for potential confounders. Results: Sufficient MVPA was related to more perception of safety from traffic to walk (OR = 2.28, CI = 1.13-6.25) and more safety from crime at night (OR = 1.68, CI = 1.07-3.64), but with less perception of safety from crime during the day to walk (OR = 0.34, CI = 0.06- 0.91). More crime safety during the day and night were associated with more walking. Conclusions: Perceived safety from crime and traffic were associated with physical activity among Nigerian adults. These findings provide preliminary evidence on the need to provide safe traffic and crime environments that will make it easier and more likely for African adults to be physically active
    corecore