46 research outputs found

    Slow-Binding Inhibition of the Aminopeptidase from \u3cem\u3eAeromonas proteolytica\u3c/em\u3e by Peptide Thiols: Synthesis and Spectroscopic Characterization

    Get PDF
    Peptide-derived thiols of the general structure N-mercaptoacyl-leucyl-p-nitroanilide (1a−c) were synthesized and found to be potent, slow-binding inhibitors of the aminopeptidase from Aeromonas proteolytica (AAP). The overall potencies (KI*) of these inhibitors against AAP range from 2.5 to 57 nM exceeding that of the natural product bestatin and approaching that of amastatin. The corresponding alcohols (2a−b) are simple competitive inhibitors of much lower potencies (KI = 23 and 360 μM). These data suggest that the free thiols are involved in the formation of the E·I and E·I* complexes, presumably serving as a metal ligand. To investigate the nature of the interaction of the thiol-based inhibitors with the dinuclear active site of AAP, we have recorded electronic absorption and EPR spectra of Co(II)Co(II)-, Co(II)Zn(II)-, and Zn(II)Co(II)-AAP in the presence of the strongest binding inhibitor, 1c. Both [CoZn(AAP)] and [ZnCo(AAP)], in the presence of 1c, exhibited an absorption band centered at 320 nm characteristic of an S → Co(II) ligand−metal charge-transfer band. In addition, absorption spectra recorded between 400 and 700 nm showed changes characteristic of 1c interacting with each active-site metal ion. EPR spectra recorded at high temperature (19 K) and low power (2.5 mW) indicated that in a given enzyme molecule, 1c interacts weakly with one of the metal ions in the dinuclear site and that the crystallographically identified μ-OH(H) bridge, which has been shown to mediate electronic interaction of the Co(II) ions, is likely broken upon 1c binding. EPR spectra of [CoCo(AAP)]-1c, [ZnCo(AAP)]-1c, and [CoZn(AAP)]-1c were also recorded at lower temperature (3.5−4.0 K) and high microwave power (50−553 mW). The observed signals were unusual and appeared to contain, in addition to the incompletely saturated contributions from the signals characterized at 19 K, a very sharp feature at geff ≈ 6.8 that is characteristic of thiolate-Co(II) interactions. These data suggest that the thiolate moiety can bind to either of the metal ions in the dinuclear active site of AAP but does not bridge the dinuclear cluster. Compounds 1a−c are readily accessible by synthesis and thus provide a novel class of potent aminopeptidase inhibitors

    Microbiomic subprofiles and MDR1 promoter methylation in head and neck squamous cell carcinoma

    Get PDF
    Clinical observations and epidemiologic studies suggest that the incidence of head and neck squamous cell carcinoma (HNSCC) correlates with dental hygiene, implying a role for bacteria-induced inflammation in its pathogenesis. Here we begin to explore the pilot hypothesis that specific microbial populations may contribute to HNSCC pathogenesis via epigenetic modifications in inflammatory- and HNSCC-associated genes. Microbiomic profiling by 16S rRNA sequencing of matched tumor and adjacent normal tissue specimens in 42 individuals with HNSCC demonstrate a significant association of specific bacterial subpopulations with HNSCC over normal tissue (P < 0.01). Furthermore, microbial populations can separate tumors by tobacco status (P < 0.008), but not by alcohol status (P = 0.41). If our subhypothesis regarding a mechanistic link from microorganism to carcinogenesis via inflammation and consequent aberrant DNA methylation is correct, then we should see hypermethylation of relevant genes associate with specific microbiomic profiles. Methylation analysis in four genes (MDR1, IL8, RARB, TGFBR2) previously linked to HNSCC or inflammation shows significantly increased methylation in tumor samples compared with normal oral mucosa. Of these, MDR1 promoter methylation associates with specific microbiomic profiles in tumor over normal mucosa. Additionally, we report that MDR1 methylation correlates with regional nodal metastases in the context of two specific bacterial subpopulations, Enterobacteriaceae and Tenericutes (P < 0.001 for each). These associations may lead to a different, and potentially more comprehensive, perspective on the pathogenesis of HNSCC, and support further exploration of mechanistic linkage and, if so, novel therapeutic strategies such as demethylating agents and probiotic adjuncts, particularly for patients with advanced or refractory disease

    Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States

    Get PDF
    The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey\u27s Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States

    Exercise and global well-being in community-dwelling adults with fibromyalgia: a systematic review with meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercise has been recommended for improving global-well being in adults with fibromyalgia. However, no meta-analysis has determined the effects of exercise on global well-being using a single instrument and when analyzed separately according to intention-to-treat and per-protocol analyses. The purpose of this study was to fill that gap.</p> <p>Methods</p> <p>Studies were derived from six electronic sources, cross-referencing from retrieved studies and expert review. Dual selection of randomized controlled exercise training studies published between January 1, 1980 and January 1, 2008 and in which global well-being was assessed using the Fibromyalgia Impact Questionnaire (FIQ) were included. Dual abstraction of data for study, subject and exercise program characteristics as well as assessment of changes in global well-being using the total score from the FIQ was conducted. Risk of bias was assessed using the Cochrane bias assessment tool. Random-effects models and Hedge's standardized effect size (<it>g</it>) were used to pool results according to per-protocol and intention-to-treat analyses.</p> <p>Results</p> <p>Of 1,025 studies screened, 7 representing 5 per-protocol and 5 intention-to-treat outcomes in 473 (280 exercise, 193 control) primarily female (99%) participants 18-73 years of age were included. Small, statistically significant improvements in global well-being were observed for per-protocol (<it>g </it>and 95% confidence interval, -0.39, -0.69 to -0.08) and intention-to-treat (-0.34, -0.53 to -0.14) analyses. No statistically significant within-group heterogeneity was found (per-protocol, Q<sub>w </sub>= 6.04, <it>p </it>= 0.20, <it>I</it><sup>2 </sup>= 33.8%; intention-to-treat, Q<sub>w </sub>= 3.19, <it>p </it>= 0.53, <it>I</it><sup>2 </sup>= 0%) and no between-group differences for per-protocol and intention-to-treat outcomes were observed (Q<sub>b </sub>= 0.07, <it>p </it>= 0.80). Changes were equivalent to improvements of 8.2% for per-protocol analyses and 7.3% for intention-to-treat analyses.</p> <p>Conclusions</p> <p>The results of this study suggest that exercise improves global well-being in community-dwelling women with fibromyalgia. However, additional research on this topic is needed, including research in men as well as optimal exercise programs for improving global well-being in adults.</p

    Point Mutations in c-Myc Uncouple Neoplastic Transformation from Multiple Other Phenotypes in Rat Fibroblasts

    Get PDF
    Deregulation of c-Myc (Myc) occurs in many cancers. In addition to transforming various cell types, Myc also influences additional transformation-associated cellular phenotypes including proliferation, survival, genomic instability, reactive oxygen species production, and metabolism. Although Myc is wild type in most cancers (wtMyc), it occasionally acquires point mutations in certain lymphomas. Some of these mutations confer a survival advantage despite partially attenuating proliferation and transformation. Here, we have evaluated four naturally-occurring or synthetic point mutations of Myc for their ability to affect these phenotypes, as well as to promote genomic instability, to generate reactive oxygen species and to up-regulate aerobic glycolysis and oxidative phosphorylation. Our findings indicate that many of these phenotypes are genetically and functionally independent of one another and are not necessary for transformation. Specifically, the higher rate of glucose metabolism known to be associated with wtMyc deregulation was found to be independent of transformation. One mutation (Q131R) was greatly impaired for nearly all of the studied Myc phenotypes, yet was able to retain some ability to transform. These findings indicate that, while the Myc phenotypes examined here make additive contributions to transformation, none, with the possible exception of increased reliance on extracellular glutamine for survival, are necessary for achieving this state

    The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life

    Get PDF
    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life’s species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description. This article is part of the themed issue ‘From DNA barcodes to biomes’

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps

    Get PDF
    We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci,135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency 2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).Peer reviewe

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p
    corecore