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DNA barcoding was intended as a means to provide

species-level identifications through associating DNA

sequences from unknown specimens to those from curated

reference specimens. Although barcodes were not

designed for phylogenetics, they can be beneficial to the

completion of the Tree of Life. The barcode database for

Trichoptera is relatively comprehensive, with data from

every family, approximately two-thirds of the genera,

and one-third of the described species. Most Trichoptera,

as with most of life’s species, have never been subjected

to any formal phylogenetic analysis. Here, we present a

phylogeny with over 16 000 unique haplotypes as a work-

ing hypothesis that can be updated as our estimates

improve. We suggest a strategy of implementing con-

strained tree searches, which allow larger datasets to

dictate the backbone phylogeny, while the barcode data

fill out the tips of the tree. We also discuss how this

phylogeny could be used to focus taxonomic attention on

ambiguous species boundaries and hidden biodiversity.

We suggest that systematists continue to differentiate

between ‘Barcode Index Numbers’ (BINs) and ‘species’

that have been formally described. Each has utility, but

they are not synonyms. We highlight examples of integra-

tive taxonomy, using both barcodes and morphology for

species description.

This article is part of the themed issue ‘From DNA

barcodes to biomes’.
1. Introduction
Generating an accurate ‘Tree of Life’ (phylogeny) including

every species that exists, and has ever existed, is an impossible

challenge. However, systematists work toward this goal,

adding parts of the puzzle taxon by taxon. The culture of science

includes incentives to work both independently and coopera-

tively. In contrast with endeavours like the space programme,

which cannot be advanced without constant coordination,

there is a logical subdivision of labour in systematics, with

specialists working, sometimes in isolation, on their own phylo-

genetically organized taxa, gradually adding consensus and

modifying hypotheses, which we hope improve with time as

we add both characters and taxa. Our independent work can

eventually come together. A sense of urgency has been

expressed about the pace of ‘completing’ the Tree of Life. For

example, in the USA, the National Science Foundation’s

‘Assembling the Tree of Life’ and ‘Dimensions in Biodiversity’

programmes have attempted to accelerate the pace by support-

ing collaborative efforts with large grants. The challenges are

significant. Recently, it was thought that a major bottleneck

towards completing the Tree of Life would be in computing
speed, but programs such as RAxML [1] and FastTree [2]

permit the rapid and efficient analysis of datasets consisting of

thousands of both genes and taxa. The ultimate goal under

one way of thinking would be to develop the ability to analyse

millions of species simultaneously and summarize them on the

same comprehensive tree. A more practical alternative approach

would be to subdivide the tree into smaller taxonomic groups,

as has been standard practice, with each specialist working on

their own group. With this approach, subtrees must be grafted

together into a larger Tree of Life. A recent study proposed to

align phylogenies from different resources to synthesize a com-

prehensive Tree of Life, i.e. the Open Tree of Life [3]. We believe,

however, that it is critical to identify monophyletic groups care-

fully a priori, to avoid unstable phylogenies for subsequent

analysis. The strategy of subdividing the task into smaller sub-

clades is a solution that simply requires some criterion for

deciding which clades can be independently analysed.

Systematic biology is facing a radical transition from the

standard ‘few genes and morphology’, PCR-Sanger-based

approach, to transcriptomic and genomic sequencing. With

new datasets of unprecedented size (e.g. [4–6]), the backbone

of the Tree of Life, at least for insects, has been largely

resolved. This is a good time to discuss how we might inte-

grate the work on the terminal branches of the tree, such as

the DNA barcoding efforts [7]. A balance must be struck

between using millions of nucleotides from transcriptomes—

representing only dozens of representative taxa—and using

barcode data from, for example, 40 000 individuals.

(a) Using DNA barcodes to build leaves of the Tree
of Life

Using DNA sequences to identify specimens has been a possi-

bility since the 1980s. However, initial efforts were

uncoordinated and without standard and agreed-upon proto-

cols (i.e. [8,9]). A truly grand vision of using DNA to identify

every species on Earth would require a coordination of efforts,

with the selection of one, or a few standardized gene frag-

ments, and a huge database of identified sequences and

collections of voucher specimens, to which an unknown speci-

men could be compared and then identified [7,10]. A

coordinated international effort (the International Barcode of

Life, or iBOL, http://www.ibol.org/) to create such a database

(Barcode of Life Database, BOLD, http://www.boldsystems.

org/) has been underway for over 10 years. A 658-nucleotide

fragment of the 50-end of mitochondrial cytochrome oxidase

c, subunit 1 (COI) is the most commonly used marker for iden-

tifying animal species. This short, standardized DNA fragment

is referred to as a ‘barcode’.

The BOLD is a powerful tool for organizing, visualizing

and downloading DNA sequences, images and collection

records, and we have made extensive use of it here. By Febru-

ary 2016, over 6 million specimen records had been registered

in BOLD, representing over 250 000 species and approximately

500 000 BINs. In addition to its intended function for species

identification, we present a constructive, integrative approach

to discovering, describing and understanding biodiversity,

using Trichoptera, or caddisflies, as a model taxon. We are par-

ticularly interested in Trichoptera taxonomy and phylogenetics.

We recognize the limitations of barcode data for generating

phylogenies [11,12] and discuss how these limitations might

be mitigated for both inferring phylogeny and for discovering

and describing biodiversity.

http://orcid.org/
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(b) Using Trichoptera as a model system
Trichoptera are an order of holometabolous insects, with small,

moth-like adults and aquatic larvae that produce silk to con-

struct a diverse array of case and retreat architecture [13,14].

The larvae exploit diverse aquatic microhabitats and are impor-

tant participants in nutrient dynamics and energy flow in

freshwater ecosystems. Because different species are differen-

tially sensitive to pollution, their relative diversity and

abundance can be used to assess and monitor water quality

[15]. It is the larval stage in Trichoptera that is collected for bio-

logical monitoring, but because most taxonomy (i.e. species

diagnoses and descriptions) is based on male genitalia, many

larval species (and females) are difficult to identify and have

not been described. We are fortunate in that the monophyly

of Trichoptera is well established and its sister taxon relation-

ship with Lepidoptera (moths and butterflies), comprising

the super-order Amphiesmenoptera, is the most strongly sup-

ported sister order relationship within insects [16]. Therefore,

a phylogeny of Trichoptera can be inferred and subsequently

rooted with its sister taxon Lepidoptera alone. Then the

Amphiesmenoptera phylogeny can be grafted onto a larger

phylogeny, derived from an analysis of Holometabola, using

representative taxa, rather than all species. Still, generating

the phylogeny of Trichoptera, a moderately diverse insect

order with over 14 500 described species, is no small task.

The most significant challenge is the availability of specimens

representing the order’s diversity. Most species (and higher

taxa) follow a hollow curve distribution [17], referring to the

dominance of few abundant species and the presence of

many more rare species, some of which may be known as

single specimens, collected only once and never seen again.

Since 1995, with the help of collaborators, we have collected

molecular data from approximately 480 of the 616 extant

Trichoptera genera. This includes sampling a leg from every

Trichoptera species (under a sampling threshold of 40 years

old or less) in both the National Museum of Natural History

(Smithsonian Institution) and the University of Minnesota

Insect Collection (UMSP). These institutions have employed

Trichoptera specialists for 55 and 30 years, respectively. Other

specimens have come to us from H.M., who holds one of the

largest Trichoptera collections in the world. If one were to com-

bine all the collecting efforts from our previous Trichoptera

phylogenetics projects, it would conservatively be represented

by over 100 ‘person years’. Yet over 20% of the genera are miss-

ing, many of which will probably remain unobtainable (e.g.

nomina dubia or rare, monotypic genera). According to the Tri-

choptera World Checklist [18], as of January 2013 there were

14 548 extant species of Trichoptera, making it the seventh

most species-rich of the 30 insect orders. There are probably

another 15 000 yet to be described (our minimum best pro-

fessional estimate). While it may be possible to imagine a

‘Tree of Life’ for mammals or birds, the scale of the endeavour

for most of life’s representatives, insects and other arthropods

as well as bacteria, is far greater. However, even if our efforts

represent only one-eigth of the Trichoptera tree, we believe it

is worth putting together a phylogeny from the taxa that we

have now. The overwhelming majority of species in our dataset

are represented with only the barcode data. Many of these

species have never been subjected to any kind of formal phylo-

genetic analysis. Here, we reflect on what we are doing with

Trichoptera, toward reaching our phylogenetic goals, and

suggest that our approach may be applicable to other taxa.
Earlier work on a single diverse genus, Chimarra [12], showed

that many nodes from COI alone were congruent with our best

estimates of phylogeny from multiple genes and morphology,

and those that were ‘unexpected’ were weakly supported and

easy to identify. Closely related species clustered together with

high bootstrap values at the tips and deeper relationships were

also recovered in congruence with morphological and nuclear

DNA data. An area of incongruence was also clear between

the nodes at the tips and the deeper nodes, with intermediate

nodes showing morphologically unexpected or geographically

surprising relationships with weak support [12]. Therefore, the

phylogenetic results from barcodes were considered mixed.

Despite conflict, the barcode data were promising in that a

small amount of rRNA data (estimated to be more appropriate

for capturing intermediate and deeper nodes [11]) seemed able

to dominate the combined data. In other words, although the

number of variable characters from the barcodes was far greater

than the rRNA, the barcode data did not appear to carry any

strong biases, and was able to inform on the tips of the tree with-

out negatively influencing deeper nodes. Even though it is clear

that COI is not an optimal gene for deep-level phylogenetics [11]

and single genes may not reflect species phylogeny (gene trees

may not match species trees, especially at the shallow parts of

the tree toward the terminals) owing to independent sorting,

introgression or other problems [19,20]), the relevant question

is: ‘Are COI-generated phylogenetic hypotheses worth

reporting?’ We show that they are.
2. Material and methods
(a) Dataset
The public records from the BOLD systems were searched for

Trichoptera in February 2016, using the following criteria: more

than 500 bp, not flagged as errors, contaminants or stop codons.

Once the FASTA files were downloaded from the BOLD website,

we applied a script that identified and merged all identical haplo-

types into a single OTU (operational taxonomic unit, which in this

context is equivalent to a unique haplotype). Additional scripts

were written to reduce the taxon labels provided by BOLD to

include only the species name, a three-letter locality abbreviation

indicating ‘country’ and numerical codes that indicate the

number of individuals that possess that identical haplotype. The

seven largest countries (by area) received a second two-letter

abbreviation for state or province. If individuals with identical

haplotypes were collected in different locations, each location is

represented in the taxon name. We uploaded all relevant files to

a GitHub repository (https://github.com/pbfrandsen/trichop-

tera_barcodes), including all scripts and detailed sample

information. Specimen IDs are recorded according to their labels

on the tree and available as an Excel file on GitHub. Specimen

information, along with sequences, electropherograms and

primer details for each specimen are available in BOLD at the

DOI dx.doi.org/10.5883/DS-TBOL and in GenBank (accession

numbers KX291053–KX296688).
(b) Phylogenetic inference
(i) Phylogenetic constraints
Because the COI gene has been shown to be homoplastic for

recovering deep-level phylogenetic trees for Trichoptera [11,12],

we applied a series of topological constraints to our analysis to

concentrate the resolving power of the barcode data toward the

tips of the tree. These constraints were generated from a variety

https://github.com/pbfrandsen/trichoptera_barcodes
https://github.com/pbfrandsen/trichoptera_barcodes
https://github.com/pbfrandsen/trichoptera_barcodes
http://dx.doi.org/dx.doi.org/10.5883/DS-TBOL
http://rstb.royalsocietypublishing.org/
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of sources, using a variety of criteria. The primary source of con-

straints came from our most recent phylogeny [21], generated

from multiple genes, and over 10 000 nucleotides; nodes from

this work that had bootstrap values above 85%, and/or nodes

that were supported by two or more independent loci were con-

strained. Thus, in this case, independent corroboration was

deemed more important than bootstrap support, but in reality,

these measures are highly correlated [21]. We also used other

smaller datasets (cited below), and for these, we set the con-

straints for nodes supported by posterior probabilities of 100%,

because posterior probabilities are often much higher than boot-

straps [22]. Additional taxa from Malm and co-workers [23] were

added to the whole order constraint tree. Within individual

families, we set constraints for Leptoceridae [24], Polycentropo-

didae [25] and Glossosomatidae [26], and within genera, for

Chimarra [12]. The constraint tree is available as a Newick file

in the GitHub repository.
(ii) Phylogenetic reconstruction
Once sequences were downloaded and constraints were estab-

lished, we analysed them with RAxML [1], under the GTRþ
GAMMA substitution model. First, we estimated a tree represent-

ing all OTUs within Trichoptera. The constraint tree described

above was used to guide the tree search via the ‘-g’ option in

RAxML, which allows the user to specify a multifurcating con-

straint tree for a subset of the taxa or all taxa in the alignment.

Taxa not represented in the constraint tree were then placed into

the scaffold phylogeny induced by the constraint. The taxa not

present in the constraint tree are therefore placed by the barcode

data, but because the constraint tree is fixed, it is probable that

new taxa will attach themselves to a taxon in the constraint tree

that is relatively closely related. This strategy works best when

the constraint tree is densely populated.

Next, in a separate analysis with different input taxa, we gen-

erated trees for smaller, monophyletic groups within Trichoptera

(usually families). For each of these groups, we downloaded the

barcodes from BOLD, including several outgroups. Then we

merged duplicate haplotypes and encoded the taxon labels

using the same method and scripts that we used for the order-

wide tree. We aligned the sequences in MUSCLE [27] and then

partitioned each group into four subsets using a site-specific rate

model described by Kjer & Honeycutt [28]. The best-known

trees were then estimated in RAxML with 1000 rapid bootstraps

(using the -f option) [1]. Thus, there are two separate analyses:

one for the all taxon tree and another for subgroups. In the all

taxon tree, if there is a contaminant that is labelled, for example,
as ‘Xiphocentronidae’, but it is in reality an Ecnomidae, it will

be placed with the Ecnomidae in the big tree. By contrast, it will

appear as an extremely long branch (and obvious red flag) on

the Xiphocentronidae tree, because it is not a xiphocentronid [29].
(iii) Tree presentation
Presenting all the trees generated for this paper in print (even only

for unique haplotypes), with a readable font size, would require

nearly 160 pages. This demonstrates one of the challenges in pre-

senting the ‘Tree of Life’, even for a moderately sized insect order

with incomplete taxon sampling. We solved this problem in two

ways: first, all trees were uploaded to the GitHub repository in

Newick format. Each can easily be downloaded and viewed

with a program such as ‘FigTree’ [30] or ‘Dendroscope’ [31];

second, the larger (all taxon) tree is also available on the iTOL

website (http://itol.embl.de/tree/16011125417288281456757921).
3. Results
(a) The dataset
A total of 49 932 records were recovered from BOLD, of which

38 999 barcodes met our criteria. This dataset includes 5569

‘BINs’, representing 3280 named species (including 33 subspe-

cies) and 1009 interim names (provisional identifications used

by BOLD users, a system often applied by taxonomists as

working hypotheses to highlight potentially new or unidenti-

fied species), from 484 genera and all 49 Trichoptera families.

A ‘BIN’ is a DNA-barcode-based registration system for

animals, which represents a cluster of haplotypes, aiming to

facilitate revisionary taxonomy [32]. Specimens came from 81

countries, with concentrations visible on the map generated

from BOLD (figure 1). Viewing the BOLD taxonomy browser

in February 2016 for Trichoptera (http://www.boldsystems.

org/index.php/Taxbrowser_Taxonpage?taxid=99), we see a

concentration of sampling efforts at the Biodiversity Institute

of Ontario (BIO, 19 783: 34%), the University of Minnesota

Insect Collection (UMSP, 8301: 14%), the National Museum

of Natural History, Smithsonian Institution (NMNH, 6,376:

11%) and others (23 733: 41%). However, the number of indi-

viduals processed and the number of species added to the

database are not tightly correlated because many of the indi-

vidual samples come from bio-survey efforts, sometimes

http://itol.embl.de/tree/16011125417288281456757921
http://itol.embl.de/tree/16011125417288281456757921
http://www.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxid=99
http://www.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxid=99
http://www.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxid=99
http://rstb.royalsocietypublishing.org/
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with hundreds of individuals of the same species. Collections

from the UMSP and NMNH were specifically sampled by

specialists to increase the taxonomic diversity of the database,

as were the samples prepared by K.M.K., from collaborators.

Eighty-one countries are listed in the BOLD website, but

Canada and the USA account for 59% of the individuals.

Australia, Costa Rica, China, Germany, New Zealand and

Ecuador, listed in order of numbers, each provided over

1000 specimen records, adding another 21% to the list.

These numbers reflect the significant focus on the Canadian

fauna, from the Biodiversity Institute of Ontario in Guelph; the

collecting efforts of R.W.H. (UMSP) and O.S.F. (NMNH) in the

USA and the Neotropics; X.Z.’s efforts in China; Dave Ruiter’s

collections in western USA; and significant barcode initiatives

in Australia and New Zealand, led by M.S., B.S. and I.D.H.

Each of these centres of effort is visible on figure 1, as are the

homes of individual collectors, such as J.C.M. at Clemson

University (SC, USA), and H.M. in Austria, who has also

worked extensively in Thailand. A significant effort was also

made in Northern Fennoscandia by J.S., and J.C.M. and S.C. col-

lected extensively in Mongolia. The entire continent of Africa is

represented by only 398 samples. Notably missing from the

dataset, India has only 28 records. Schmid’s extensive available

collections from India are over 50 years old and although it may
be possible to obtain barcodes from these specimens, it has not

been seriously attempted with specialized techniques that

would probably be required. Most standard procedures for

sampling Schmid’s material resulted in failures, and in the

time since Schmid’s collecting trips, India has imposed severe

restrictions on the collection of DNA data by foreigners.

An exciting feature of the BOLD website is that ‘keyhole

map language’ (.kml) files can be downloaded, so that collec-

tion localities and images for each individual (when available)

can be visualized in the ‘Google Earth’ program. A .kml file

for this work is available for download from the GitHub repo-

sitory. All barcodes and associated meta-data as well as

haplotype labels presented on the barcode phylogeny are

downloadable as an Excel file (Taxon_metadata.xlsx) available

from the GitHub repository.
(b) The Trichoptera barcode phylogeny
The results from our work on Chimarra [12] encouraged us to

employ DNA barcodes in phylogenetic reconstruction (but

with caution). Our phylogeny for the entire order is shown in

figure 2. There are two ways to visualize the details of the tree.

First, a Newick file of this tree is available for download from

GitHub and can be viewed in phylogenetic tree viewing

https://github.com/pbfrandsen/trichoptera_barcodes
https://github.com/pbfrandsen/trichoptera_barcodes
http://rstb.royalsocietypublishing.org/
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software. Second (recommended), the tree is visualized on the

iTOL website (http://itol.embl.de/tree/1601112541728828145

6757921). This file will be periodically updated by the Trichop-

tera Barcode of Life community. The tree shown in figure 2

will be labelled as ‘Trichoptera_barcode_tree_28_Feb_2016’.

Another resource available for download is individual trees

for trichopteran families. Compared with the larger tree, errors in

these trees are easier to detect. For the larger analysis (figure 2),

RAxML was given a tree with individual haplotypes as a back-

bone, upon which the RAxML program grafted additional

haplotypes where they best fit without changing the order of

the branches on the constraint tree. This is ideal, because if a

specimen is misidentified, or is a contaminant, then it will

attach to the tree by what it is, not what it is named in the data-

base. Most of these misplaced taxa are the result of errors in data

submission, or errors in identification (most often females or

larvae), or unidentified contamination errors, as suggested by

long branches in figure 2. These long branches are intentionally
retained. It will take years to clean up the entire dataset, as it is

continually growing and corrections often involve specimen

loans and careful examination of the vouchers. We do not

think it wise to throw some out without a clear criterion for

doing so. In addition, we contend that these errors need to be

visualized before the painstaking process of curating the dataset

is completed. For example, we noted that some of the samples

from far Eastern Russia have barcodes that are identical across

families. While re-examining the Excel sheets we used to

submit these data, we found a transposition error that resulted

in some taxa being mislabelled. These errors are obvious in the

tree file and will be corrected in subsequent online revisions.
(c) Using barcodes for integrative taxonomy
The large Trichoptera barcode phylogeny tree provides an

invaluable basis for careful scrutiny of species boundaries

and relevant hypotheses. For instance, figure 3 provides an

http://itol.embl.de/tree/16011125417288281456757921
http://itol.embl.de/tree/16011125417288281456757921
http://itol.embl.de/tree/16011125417288281456757921
http://rstb.royalsocietypublishing.org/
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example of integrating barcode data into a previous phyloge-

netic hypothesis. Here, morphology, traditional Sanger-based

molecular analysis and transcriptome data placed Agrypnia
within Phryganeidae [21]. We generated a large dataset of

Phyganeidae [33] that included three Agrypnia species,

A. straminea, A. obsoleta and A. czerskyi, covering 892 genes.

Banksiola and Oligotricha were selected as outgroup taxa

[33]. We also generated 28S sequences for seven additional

Agrypnia species, all of which had barcode data. Finally, we

added the barcode data to the backbone constraints generated

by the larger datasets.

When examining the phylogeny (figure 3) at the species-

level, we see many species whose haplotype clusters are

distinct, and reflect the names they have been given. Most of

the species in figure 3 are preceded by long internodes that

reflect genetic isolation that match our conceptual ideas about

what species are. However, others are a mixture. The barcode

haplotypes for A. czerskyi, A. cristata and A. ulmeri are interca-

lated among one another (figure 3). This does not necessarily

mean that they are not real species. Species are defined by

taxonomists using integrative datasets, not barcodes alone.

However, figure 3 should encourage a taxonomist to reconsider

the evidence for this cluster of near identical barcode haplotypes.
4. Discussion
In this paper, we presented the largest Trichoptera phylogeny to

date, which was built based on data from multiple genes for

deep-level nodes and novel barcode data for terminal tips.

This large phylogeny (figure 2) contains a great deal of poten-

tially useful information. For example, taxonomists working

with any species in the tree can find hypothesized sister species

that are probably good outgroups. Both taxonomic and geo-

graphical consistency clearly demonstrate that this is a

meaningful tree. In our most recent phylogeny [29], the barcode

fragment alone recovered Trichoptera, Annulipalpia, Integripal-

pia, Brevitentoria and Plenitentoria—virtually the entire

backbone of deep Trichoptera phylogeny. Similar results were

seen across Trichoptera [34] and in Chimarra [12]. However, all

these studies noted that intermediate nodes were problematic

when assessed by congruence to morphology and/or other mol-

ecular data. A thorough discussion of ‘why?’ is beyond the scope

of this paper, and it is difficult to separate nodes we ‘like’ from

those we do not. Still, the tree is likely to contain two sources

of inaccuracy. First, like all phylogenetic hypotheses, our con-

straint tree is likely to contain errors. Constraints were built

from much larger, published datasets and can be modified as

our future understanding improves. Second, inaccuracies can

arise from the limitations of the COI data itself. The barcode is,

of course, only a short fragment of a single, rapidly evolving

locus. We suspect that the analysis of any short fragment of

DNA will be subject to stochastic error. In deep parts of the

tree, we suspect that the barcode fragment will be saturated

[11] (although it still recovers many deep nodes on its own).

However, some of these problems are alleviated by the

constraints and have little effect on intermediate nodes.

Confounding signal from incomplete lineage sorting (at the shal-

low nodes) or historical hybridization and introgression (at the

deeper nodes) is a possibility. We note that these are not

‘errors’, but rather, a reflection of true biological processes

when they are accurately estimated. However, they are in conflict

with the species tree. For many groups of caddisflies, however,
the barcode data provide the only phylogenetic hypothesis we

have. How ‘good’ the tree is, especially at the shallow nodes,

can only be discovered with additional data. We find these phy-

logenetic hypotheses to be useful for circumscribing potential

species, for inferring a first hypothesis of relationships among

species, for identifying misidentified taxa, and for associating

unidentified life-history stages with their described adult

stages. We are committed to continually updating our phylo-

geny. As we add more genes, we can address congruence,

decrease stochastic errors and increase node support. As we

add more taxa, even with a single gene, other problems owing

to long-branch effects, for example, will be reduced. Here, we

present our current best hypothesis. We would recommend,

given the nature of the data, that nodes with low bootstrap

values should be ignored or discarded. Contamination,

misidentification and misclassification in public databases,

including BOLD, are genuine problems that need to be

addressed. Here, we provide two means to detect them. They

will appear as long-branch taxa in the family-level trees on

GitHub (which were analysed together according to the names

assigned to them, which are sometimes wrong). A search

through the whole taxon tree (figure 2) for those same haplo-

types will offer a hypothesis of what they really are, as you

might find members of different suborders appearing to have

identical, or nearly identical haplotypes. This is because in the

big tree, all taxa are analysed together, and mislabelled taxa

will find their proper place in the phylogeny, despite the error

in the label. Either case should direct researchers toward the

voucher specimens for either correction or reclassification.

There have been attempts to automate tree building, tapping

into public databases to produce large summary phylogenies.

For example, researchers have explored the possibility of produ-

cing trees from GenBank of up to 8000 taxa [35,36]. However,

these trees were subject to the errors in the database (as indi-

cated above) and the limitations of the few genes that

dominate in GenBank. We find the prospect for non-specialists

to produce an automated phylogeny at the push of a button to

be exciting, but such a phylogeny is only as good as the care that

went into producing the database and in the rigour of the phy-

logenetic analysis. Our recommendation is a distinct alternative,

in that we think specialists should evaluate phylogenies from

reliable sources, to update current hypotheses based on con-

straints, using specified, transparent criteria. These constraints

can then be used as a backbone on which to hang other data

such as barcodes. Barcodes are ideal for what they were

designed to do: distinguish species, and even populations,

from one another. However, phylograms with extremely long

terminal branches relative to short intermediate and deep inter-

nodes are problematic for phylogenies [11], and the BOLD tree

option, which uses Neighbour-Joining [37], was not designed to

produce phylogenies (although it is excellent for finding the clo-

sest match across the datasets, which is what it was designed to

do). We decided which constraints were reasonable and justi-

fied this based on our expertise in Trichoptera. The advantage

of an expertly curated phylogeny available on the World

Wide Web is that an up-to-date phylogeny will be available

beyond the print version of this paper, and for as long as the

authors are able.
(a) A plan for future phylogenetic work
In Trichoptera phylogenetics, there are four sources of molecu-

lar data that are quite different in scale, each targeted at

http://rstb.royalsocietypublishing.org/
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different levels of divergence: transcriptomes, targeted

enrichment sequences [38,39], PCR-based Sanger nuclear

sequences and barcodes. We have generated a data matrix

from six of the standard ‘toolbox’ genes, comprising approxi-

mately 12 000 combined nucleotides for approximately 250

taxa [11,40,41]. Others have also made significant contributions

to the higher-level phylogeny of Trichoptera and their work

also contributed to the constraint tree [23–26]. Transcriptome

data are being collected through the 1000 Insect Transcriptome

Evolution project (1KITE, www.1KITE.org), and these data

dwarf the previous dataset, with 3800 nuclear genes for 60 tri-

chopteran taxa (figure 4). However, transcriptome sequencing

requires the collection of fresh, specially preserved specimens,

which makes the inclusion of rare taxa difficult. To fill these

taxonomic gaps, we have been generating data with hybrid

capture techniques [38] and have captured 900 loci for speci-

mens representing 250 Trichoptera genera. A strategy for

using these large datasets to provide a backbone phylogeny

was briefly discussed elsewhere [33]. It should be possible to

generate transcriptomes from every family, hybrid capture

data from every obtainable genus, rRNA (ideally the 28S,

D2) from thousands of species, and barcode data for most

species. Our strategy is to use large, multigene datasets to

generate a backbone tree, and then use barcode data to fill in

the leaves of the tree. It is our intention to continually update

this tree as new constraints are discovered through our future

analyses of large datasets.
(b) DNA barcodes and integrative taxonomy
Repeating the process illustrated in figure 3 (for Agrypnia) for

the other 615 extant genera would be a difficult task, but not

impossible to imagine. As datasets grow, particularly from

high-throughput sequencing, constraints will improve.

Every population does not require a genome to place it in a

phylogenetic context. What is missing from our example

(figure 3) is taxonomic insight. We believe this would greatly

improve the final result and we expect that specialists will

contribute summary works on their genera, adding data to

the barcodes, as was done with Chimarra [12], Neophylax
[42] and Drusinae [43,44] using two or more genes and mor-

phological expertise.

An example of how barcodes can inform descriptive

taxonomy is shown in figure 5. There is a hint that morpho-

logical variation was recognized from the description, in the

species epithet of Lype diversa Banks (Psychomyiidae). Ross

[45] illustrated variation in the genitalia of this species
(figure 5b). Still, it has remained a single species since its

description in 1914. The variation in branch-lengths in the bar-

code phylogram points toward hidden biodiversity. Using a

2% threshold, a number that is often correlated with species-

level diversity, there are five species. However, biological

species in reality are not based on pairwise haplotype diver-

gence. Useful algorithms can be constructed that estimate

mean differentiation within circumscribed lineages, and

these algorithms are useful for estimating diversity in biologi-

cal sample assemblages, as well as the probable number of

species clusters in aggregate. But on the individual level,

species should not be defined on expedient algorithms. We

recommend that haplotype clusters (as shown in figures 2, 3

and 5) can be explored by taxonomists in search of species

hypotheses. For example, if KKCAD-103 and ARLdiv8

shared a straight stub on the 10th tergite that looked like the

top illustration in the inset to figure 5b, and 8FLCAD-65’s

spine looked like the spine at the bottom, while all the rest

had curved, but not elongate spines, lacking the knob on the

end, then with confirmation of these patterns from museum

specimens, and consideration of geographical patterns, a

taxonomist could confidently describe three species from

figure 5, secure in the application of a species definition that

matches our concepts of speciation. However, to revise the

L. diversa species complex, additional specimens should be

examined across the range of the species, the morphological

characters should be described and analysed in detail, the

type species and any synonyms should be examined to deter-

mine which available names apply to which morphotypes, the

new species and their variation should be carefully illustrated

or photographed, new names should be proposed as needed,

and specimens should be vouchered, type specimens desig-

nated and all specimens deposited in a publicly accessible

museum. These requirements are difficult in today’s funding

climate and we are dismayed at the continued erosion of

support for taxonomy.

The patterns illustrated in figure 5 are not uncommon.

The classic paper by Hebert and co-workers [46] is a prime

example of cryptic biodiversity discovery. Years of obser-

vations on larval diet and morphology of Astraptes
fulgerator (Lepidoptera, Hesperiidae) did not lead to serious

species descriptions (ignoring the precedent of Brower [47],

which we would not follow as an example), because the

adults were indistinguishable, and in this case, it was difficult

to decide if the observed variation was the result of environ-

mental factors. It is the task of taxonomists to decide if the

variation they observe is intraspecific or interspecific. In the

above given example, Brower proposed to accept formally

3 to 7 of the 10 barcode clusters at species rank [48]. Barcode

data provide corroborative evidence, but cannot stand alone

without reciprocal illumination from other genes and/or

morphology. A similar example was shown by Harvey and

co-workers [49], who found that distinct haplotype clusters

precisely matched fixed variation in larval head morphology

of the Diplectrona modesta species complex, a widely distribu-

ted caddisfly across eastern North America (see their fig. 2).

We have witnessed an alarming decline in the support for

museums and organismal taxonomy. The Trichoptera barcode

database owes much of its utility to the tireless efforts of special-

ist taxonomists collecting and identifying specimens. Without

these identifications, the database would show only a large col-

lection of DNA haplotypes without associated species names.

Species names have been a baseline for biological work for

http://www.1KITE.org
http://rstb.royalsocietypublishing.org/


8FLCAD 65 L. diversa FL

KKCAD 103 L. diversa MN

ARLdiv8 L. diversa FL

7GSM 226 L. diversa TN

7GSM 377 L. diversa TN

7GSM 127 L. diversa NC

7GSM 125 L. diversa NC

7GSM 470 L. diversa TN

7GSM 165 L. diversa TN

7GSM 167 L. diversa TN

KKCAD 102 L. diversa NJ

7 17PKS 10 L. diversa VA

8DRCAD 50 L. diversa NY

8DRCAD 51 L. diversa NY

8NBEPT 478 L. diversa NB

8DRCAD 49 L. diversa NY

8NBEPT 1305 L. diversa NB

8NBEPT 1546 L. diversa NB

0.005 substitutions/site

12%

2%

8%

4%

(b)

(a)

Figure 5. Example of corroborative species illumination. (a) Neighbour-joining phylogram from BOLD of Lype diversa (Psychomyiidae). Taxa are labelled by an
abbreviation of the specimen ID, followed by the species name and then state or province abbreviation. Numerals on the internodes (in per cent) represent
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more than 250 years, and should not be abandoned for BINs or

MOTUs (Molecular Operational Taxonomic Units). Earlier work

on Trichoptera has shown that the number of haplotype clusters

in an environmental sample is tightly correlated with the

number of species [50], so that BINs in aggregate can provide

information that can be decoupled from taxonomy. For some

applications, such as biodiversity inventories, this correlation

would translate into fast, efficient and accurate biodiversity

assessments and community ecology studies. However, aban-

doning the process of species description altogether for the

expediency of single-gene based BINs would be a mistake. Bar-

code data can, however, assist in corroborating morphological

species boundaries, as shown in figure 5, and demonstrated by

e.g. the work of Flint & Kjer [42] and Previšić and co-workers

[43]. As the barcode database grows at its own rapid pace,

it will be increasingly valuable in distinguishing between intra-

specific and interspecific variations [51]. The two systems

(generation of barcode libraries and the description of species)
can advance independently, but should not be entirely

decoupled. Haplotype clusters can be algorithmically defined,

and should be called ‘BINs’ (where obtained from BOLD’s

BIN System) or ‘MOTUs’ from other molecular analysis algor-

ithms. Congruent genetic clusters from multiple genes or

whole genomes are probably distinct species, but we should

still refrain from calling them species until they have been for-

mally described by taxonomists. An example of the merging of

DNA taxonomy with biologically sound species concepts was

presented for Chinese Hydropsychidae; these authors made rec-

ommendations for associating larvae with adults that coupled

congruence across multiple genes with morphological hypoth-

eses of species [20]. These kinds of associations can be used to

describe the morphology of the larvae to aid the use of these

species in water quality assessment [50,52,53]. Similarly, barcode

evidence, together with morphology, has been employed in dif-

ferentiating cryptic diversity and defining new species of South

American and European caddisflies [43,54,55]. Thus, we find

http://rstb.royalsocietypublishing.org/
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that barcodes provide a valuable tool in answering a wide var-

iety of ecological and taxonomic questions. However, without

support for taxonomy, where expertise is rapidly declining, we

condemn ourselves to see ‘biodiversity’ as a collection of plastic

tubes, named with alpha-numeric codes that are divorced from

biological context.
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