40 research outputs found

    Capabilities of Earth-based radar facilities for near-Earth asteroid observations

    Full text link
    We evaluated the planetary radar capabilities at Arecibo, the Goldstone 70-m DSS-14 and 34-m DSS-13 antennas, the 70-m DSS-43 antenna at Canberra, the Green Bank Telescope, and the Parkes Radio Telescope in terms of their relative sensitivities and the number of known near-Earth asteroids (NEAs) detectable per year in monostatic and bistatic configurations. In the 2015 calendar year, monostatic observations with Arecibo and DSS-14 were capable of detecting 253 and 131 NEAs respectively, with signal-to-noise ratios (SNRs) greater than 30/track. Combined, the two observatories were capable of detecting 276 NEAs. Of these, Arecibo detected 77 and Goldstone detected 32, or 30% and 24% the numbers that were possible. The two observatories detected an additional 18 and 7 NEAs respectively, with SNRs of less than 30/track. This indicates that a substantial number of potential targets are not being observed. The bistatic configuration with DSS-14 transmitting and the Green Bank Telescope receiving was capable of detecting about 195 NEAs, or ~50% more than with monostatic observations at DSS-14. Most of the detectable asteroids were targets of opportunity that were discovered less than 15 days before the end of their observing windows. About 50% of the detectable asteroids have absolute magnitudes > 25, which corresponds diameters < ~30 m.Comment: 12 pages, 7 figures, Accepted to A

    Creep stability of the proposed AIDA mission target 65803 Didymos: I. Discrete cohesionless granular physics model

    Full text link
    As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, the near-Earth binary asteroid 65803 Didymos represents a special class of binary asteroids, those whose primaries are at risk of rotational disruption. To gain a better understanding of these binary systems and to support the AIDA mission, this paper investigates the creep stability of the Didymos primary by representing it as a cohesionless self-gravitating granular aggregate subject to rotational acceleration. To achieve this goal, a soft-sphere discrete element model (SSDEM) capable of simulating granular systems in quasi-static states is implemented and a quasi-static spin-up procedure is carried out. We devise three critical spin limits for the simulated aggregates to indicate their critical states triggered by reshaping and surface shedding, internal structural deformation, and shear failure, respectively. The failure condition and mode, and shear strength of an aggregate can all be inferred from the three critical spin limits. The effects of arrangement and size distribution of constituent particles, bulk density, spin-up path, and interparticle friction are numerically explored. The results show that the shear strength of a spinning self-gravitating aggregate depends strongly on both its internal configuration and material parameters, while its failure mode and mechanism are mainly affected by its internal configuration. Additionally, this study provides some constraints on the possible physical properties of the Didymos primary based on observational data and proposes a plausible formation mechanism for this binary system. With a bulk density consistent with observational uncertainty and close to the maximum density allowed for the asteroid, the Didymos primary in certain configurations can remain geo-statically stable without including cohesion.Comment: 66 pages, 24 figures, submitted to Icarus on 25/Aug/201

    Determining asteroid spin states using radar speckles

    Get PDF
    Knowing the shapes and spin states of near-Earth asteroids is essential to understanding their dynamical evolution because of the Yarkovsky and YORP effects. Delay-Doppler radar imaging is the most powerful ground-based technique for imaging near-Earth asteroids and can obtain spatial resolution of <10 m, but frequently produces ambiguous pole direction solutions. A radar echo from an asteroid consists of a pattern of speckles caused by the interference of reflections from different parts of the surface. It is possible to determine an asteroid’s pole direction by tracking the motion of the radar speckle pattern. Speckle tracking can potentially measure the poles of at least several radar targets each year, rapidly increasing the available sample of NEA pole directions. We observed the near-Earth asteroid 2008 EV5 with the Arecibo planetary radar and the Very Long Baseline Array in December 2008. By tracking the speckles moving from the Pie Town to Los Alamos VLBA stations, we have shown that EV5 rotates retrograde. This is the first speckle detection of a near-Earth asteroid

    Constraints on the perturbed mutual motion in Didymos due to impact-induced deformation of its primary after the DART impact

    Full text link
    Binary near-Earth asteroid (65803) Didymos is the target of the proposed NASA Double Asteroid Redirection Test (DART), part of the Asteroid Impact & Deflection Assessment (AIDA) mission concept. In this mission, the DART spacecraft is planned to impact the secondary body of Didymos, perturbing mutual dynamics of the system. The primary body is currently rotating at a spin period close to the spin barrier of asteroids, and materials ejected from the secondary due to the DART impact are likely to reach the primary. These conditions may cause the primary to reshape, due to landslides, or internal deformation, changing the permanent gravity field. Here, we propose that if shape deformation of the primary occurs, the mutual orbit of the system would be perturbed due to a change in the gravity field. We use a numerical simulation technique based on the full two-body problem to investigate the shape effect on the mutual dynamics in Didymos after the DART impact. The results show that under constant volume, shape deformation induces strong perturbation in the mutual motion. We find that the deformation process always causes the orbital period of the system to become shorter. If surface layers with a thickness greater than ~0.4 m on the poles of the primary move down to the equatorial region due to the DART impact, a change in the orbital period of the system and in the spin period of the primary will be detected by ground-based measurement.Comment: 8 pages, 7 figures, 2 tables, accepted for publication in MNRA

    Libration-induced Orbit Period Variations Following the DART Impact

    Get PDF
    The Double Asteroid Redirection Test (DART) mission will be the first test of a kinetic impactor as a means of planetary defense. In late 2022, DART will collide with Dimorphos, the secondary in the Didymos binary asteroid system. The impact will cause a momentum transfer from the spacecraft to the binary asteroid, changing the orbit period of Dimorphos and forcing it to librate in its orbit. Owing to the coupled dynamics in binary asteroid systems, the orbit and libration state of Dimorphos are intertwined. Thus, as the secondary librates, it also experiences fluctuations in its orbit period. These variations in the orbit period are dependent on the magnitude of the impact perturbation, as well as the system’s state at impact and the moments of inertia of the secondary. In general, any binary asteroid system whose secondary is librating will have a nonconstant orbit period on account of the secondary’s fluctuating spin rate. The orbit period variations are typically driven by two modes: a long period and a short period, each with significant amplitudes on the order of tens of seconds to several minutes. The fluctuating orbit period offers both a challenge and an opportunity in the context of the DART mission. Orbit period oscillations will make determining the post-impact orbit period more difficult but can also provide information about the system’s libration state and the DART impact

    Orbits of Near-Earth Asteroid Triples 2001 SN263 and 1994 CC: Properties, Origin, and Evolution

    Full text link
    Three-body model fits to Arecibo and Goldstone radar data reveal the nature of two near-Earth asteroid triples. Triple-asteroid system 2001 SN263 is characterized by a primary of ~10^13 kg, an inner satellite ~1% as massive orbiting at ~3 primary radii in ~0.7 days, and an outer satellite ~2.5% as massive orbiting at ~13 primary radii in ~6.2 days. 1994 CC is a smaller system with a primary of mass ~2.6 \times 10^11 kg and two satellites ~2% and ~1% as massive orbiting at distances of ~5.5 and ~19.5 primary radii. Their orbital periods are ~1.2 and ~8.4 days. Examination of resonant arguments shows that the satellites are not currently in a mean-motion resonance. Precession of the apses and nodes are detected in both systems (2001 SN263 inner body: d{\varpi}/dt ~1.1 deg/day, 1994 CC inner body: d{\varpi}/dt ~ -0.2 deg/day), which is in agreement with analytical predictions of the secular evolution due to mutually interacting orbits and primary oblateness. Nonzero mutual inclinations between the orbital planes of the satellites provide the best fits to the data in both systems (2001 SN263: ~14 degrees, 1994 CC: ~16 degrees). Our best-fit orbits are consistent with nearly circular motion, except for 1994 CC's outer satellite which has an eccentric orbit of e ~ 0.19. We examine several processes that can generate the observed eccentricity and inclinations, including the Kozai and evection resonances, past mean-motion resonance crossings, and close encounters with terrestrial planets. In particular, we find that close planetary encounters can easily excite the eccentricities and mutual inclinations of the satellites' orbits to the currently observed values.Comment: 17 pages, accepted to Astronomical Journa
    corecore