As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA)
mission, the near-Earth binary asteroid 65803 Didymos represents a special
class of binary asteroids, those whose primaries are at risk of rotational
disruption. To gain a better understanding of these binary systems and to
support the AIDA mission, this paper investigates the creep stability of the
Didymos primary by representing it as a cohesionless self-gravitating granular
aggregate subject to rotational acceleration. To achieve this goal, a
soft-sphere discrete element model (SSDEM) capable of simulating granular
systems in quasi-static states is implemented and a quasi-static spin-up
procedure is carried out. We devise three critical spin limits for the
simulated aggregates to indicate their critical states triggered by reshaping
and surface shedding, internal structural deformation, and shear failure,
respectively. The failure condition and mode, and shear strength of an
aggregate can all be inferred from the three critical spin limits. The effects
of arrangement and size distribution of constituent particles, bulk density,
spin-up path, and interparticle friction are numerically explored. The results
show that the shear strength of a spinning self-gravitating aggregate depends
strongly on both its internal configuration and material parameters, while its
failure mode and mechanism are mainly affected by its internal configuration.
Additionally, this study provides some constraints on the possible physical
properties of the Didymos primary based on observational data and proposes a
plausible formation mechanism for this binary system. With a bulk density
consistent with observational uncertainty and close to the maximum density
allowed for the asteroid, the Didymos primary in certain configurations can
remain geo-statically stable without including cohesion.Comment: 66 pages, 24 figures, submitted to Icarus on 25/Aug/201