59 research outputs found

    Remission of human type 2 diabetes requires decrease in liver and pancreas fat content but is dependent upon capacity for beta cell recovery

    Get PDF
    The Diabetes Remission Clinical Trial reported return and persistence of non-diabetic blood glucose control in 46% of people with type 2 diabetes of up to 6 years duration. Detailed metabolic studies were performed on a subgroup (intervention, n = 64; control, n = 26). In the intervention group, liver fat content decreased (16.0% ± 1.3% to 3.1% ± 0.5%, p < 0.0001) immediately after weight loss. Similarly, plasma triglyceride and pancreas fat content decreased whether or not glucose control normalized. Recovery of first-phase insulin response (0.04[−0.05–0.32] to 0.11[0.0005–0.51] nmol/min/m2, p < 0.0001) defined those who returned to non-diabetic glucose control and this was durable at 12 months (0.11[0.005–0.81] nmol/min/m2, p = 0.0001). Responders were similar to non-responders at baseline but had shorter diabetes duration (2.7 ± 0.3 versus 3.8 ± 0.4 years; p = 0.02). This study demonstrates that β cell ability to recover long-term function persists after diagnosis, changing the previous paradigm of irreversible loss of β cell function in type 2 diabetes

    Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images

    Get PDF
    Study funding This work was funded by the Row Fogo Charitable Trust (MVH, VGC) grant no. BRO-D.FID3668413, and the Wellcome Trust (patient recruitment, scanning, primary study Ref No. 088134/Z/09). The study was conducted independently of the funders who do not hold the data and did not participate in the study design or analyses. The Lothian Birth Cohort 1936 is funded by Age UK (Disconnected Mind grant) and the Medical Research Council (MRC; MR/M01311/1, G1001245, 82800), and the latter supported BSA. IJD was supported by the Centre for Cognitive Ageing and Cognitive Epidemiology, which is funded by the MRC and the Biotechnology and Biological Sciences Research Council (MR/K026992/1). David Moratal acknowledges financial support from the Spanish Ministerio de Economía y Competitividad (MINECO) and FEDER funds under Grant BFU2015-64380-C2-2-R, and from the Conselleria d'Educació, Investigació, Cultura i Esport, Generalitat Valenciana (grants AEST/2017/013 and AEST/2018/021). Rafael Ortiz-Ramón was supported by grant ACIF/2015/078 and grant BEFPI/2017/004 from the Conselleria d’Educació, Investigació, Cultura i Esport of the Valencian Community (Spain).Peer reviewedPublisher PD

    Blood Pressure, Internal Carotid Artery Flow Parameters, and Age-Related White Matter Hyperintensities

    Get PDF
    White matter hyperintensities (WMH) are associated with hypertension. We examined interactions between blood pressure (BP), internal carotid artery (ICA) flow velocity parameters and WMH. We obtained BP measurements from 694 community-dwelling subjects at mean ages 69.6 (±0.8) and again at 72.6 (±0.7) years, plus brain MRI and ICA ultrasound at age 73±1 years. Diastolic and mean BP decreased and pulse pressure increased but systolic BP did not change between 70 and 73 years. Multiple linear regression, corrected for vascular disease and risk factors, showed that WMH at age 73 were associated with history of hypertension (β=0.13, p<0.001) and with BP at age 70 (systolic β=0.08, mean β=0.09, diastolic β=0.08, all p<0.05); similar but attenuated associations were seen for BP at age 73. Lower diastolic BP and higher pulse pressure were associated with higher ICA pulsatility index at age 73 (diastolic BP: standardized β, age 70=−0.24, p<0.001; pulse pressure age 70 β=0.19, p<0.001). WMH were associated with higher ICA pulsatility index (β=0.13, p=0.002) after adjusting for BP and correction for multiple testing. Therefore falling diastolic BP and increased pulse pressure are associated with increased ICA pulsatility index, which in turn is associated with WMH. This suggests that hypertension and WMH may either associate indirectly because hypertension increases arterial stiffness which leads to WMH over time, or co-associate through advancing age and stiffer vessels, or both. Reducing vascular stiffness may reduce WMH progression and should be tested in randomised trials, in addition to testing antihypertensive therapy

    Progression of white matter disease and cortical thinning are not related in older community-dwelling subjects

    Get PDF
    Background and Purpose— We assessed cross-sectional and longitudinal relationships between whole brain white matter hyperintensity (WMH) volume and regional cortical thickness. Methods— We measured WMH volume and regional cortical thickness on magnetic resonance imaging at ≈73 and ≈76 years in 351 community-dwelling subjects from the Lothian Birth Cohort 1936. We used multiple linear regression to calculate cross-sectional and longitudinal associations between regional cortical thickness and WMH volume controlling for age, sex, Mini Mental State Examination, education, intelligence quotient at age 11, and vascular risk factors. Results— We found cross-sectional associations between WMH volume and cortical thickness within and surrounding the Sylvian fissure at 73 and 76 years (rho=−0.276, Q=0.004). However, we found no significant longitudinal associations between (1) baseline WMH volume and change in cortical thickness; (2) baseline cortical thickness and change in WMH volume; or (3) change in WMH volume and change in cortical thickness. Conclusions— Our results show that WMH volume and cortical thinning both worsen with age and are associated cross-sectionally within and surrounding the Sylvian fissure. However, changes in WMH volume and cortical thinning from 73 to 76 years are not associated longitudinally in these relatively healthy older subjects. The underlying cause(s) of WMH growth and cortical thinning have yet to be fully determined

    Blood pressure variability and leukoaraiosis in acute ischemic stroke

    Get PDF
    Higher blood pressure, blood pressure variability, and leukoaraiosis are risk factors for early adverse events and poor functional outcome after ischemic stroke, but prior studies differed on whether leukoaraiosis was associated with blood pressure variability, including in ischemic stroke. In the Third International Stroke Trial, blood pressure was measured in the acute phase of ischemic stroke immediately prior to randomization, and at 0.5, 1, and 24 h after randomization. Masked neuroradiologists rated index infarct, leukoaraiosis, and atrophy on CT using validated methods. We characterized blood pressure variation by coefficient of variance and three other standard methods. We measured associations between blood pressure, blood pressure variability, and leukoaraiosis using generalized estimating equations, adjusting for age, and a number of covariates related to treatment and stroke type/severity. Among 3017 patients, mean (±SD) systolic and diastolic blood pressure decreased from 155(±24)/82(±15) mmHg pre-randomization to 146(±23)/78(±14) mmHg 24 h later ( P &lt; 0.005). Mean within-subject coefficient of variance was 0.09 ± 0.05 for systolic and 0.11 ± 0.06 for diastolic blood pressure. Patients with most leukoaraiosis were older and had higher blood pressure than those with least ( P &lt; 0.0001). Although statistically significant in simple pairwise comparisons, no measures of blood pressure variability were associated with leukoaraiosis when adjusting for confounding variables ( P &gt; 0.05), e.g. age. Our results suggest that blood pressure variability is not a potential mechanism to explain the association between leukoaraiosis and poor outcome after acute stroke

    Sleep and brain morphological changes in the eighth decade of life

    Get PDF
    Objective: Sleep is important for brain health. We analysed associations between usual sleep habits and MRI markers of neurodegeneration (brain atrophy), vascular damage (white matter hyperintensities, WMH) and waste clearance (perivascular spaces, PVS) in older community-dwelling adults. Method: We collected self-reported usual sleep duration, quality and medical histories from the Lothian Birth Cohort 1936 (LBC1936) age 76 years and performed brain MRI. We calculated sleep efficiency, measured WMH and brain volumes, quantified PVS, and assessed associations between sleep measures and brain markers in multivariate models adjusted for demographic and medical history variables. Results: In 457 subjects (53% males, mean age 76±0.65 years), we found: brain and white matter loss with increased weekend daytime sleep (β=-0.114, P=0.03; β=-0.122, P=0.007 respectively), white matter loss with less efficient sleep (β=0.132, P=0.011) and PVS increased with interrupted sleep (OR 1.84 95% CI, P=0.025). Conclusion: Cross-sectional associations of sleep parameters with brain atrophy and more PVS suggest adverse relationships between usual sleep habits and brain health in older people that should be evaluated longitudinally

    Sleep quality, perivascular spaces and brain health markers in ageing - A longitudinal study in the Lothian Birth Cohort 1936

    Get PDF
    BackgroundSleep is thought to play a major role in brain health and general wellbeing. However, few longitudinal studies have explored the relationship between sleep habits and imaging markers of brain health, particularly markers of brain waste clearance such as perivascular spaces (PVS), of neurodegeneration such as brain atrophy, and of vascular disease, such as white matter hyperintensities (WMH). We explore these associations using data collected over 6 years from a birth cohort of older community-dwelling adults in their 70s.MethodWe analysed brain MRI data from ages 73, 76 and 79 years, and self-reported sleep duration, sleep quality and vascular risk factors from community-dwelling participants in the Lothian Birth Cohort 1936 (LBC1936) study. We calculated sleep efficiency (at age 76), quantified PVS burden (at age 73), and WMH and brain volumes (age 73 to 79), calculated the white matter damage metric, and used structural equation modelling (SEM) to explore associations and potential causative pathways between indicators related to brain waste cleaning (i.e., sleep and PVS burden), brain and WMH volume changes during the 8th decade of life.ResultsLower sleep efficiency was associated with a reduction in normal-appearing white matter (NAWM) volume (β = 0.204, P = 0.009) from ages 73 to 79, but not concurrent volume (i.e. age 76). Increased daytime sleep correlated with less night-time sleep (r = −0.20, P < 0.001), and with increasing white matter damage metric (β = −0.122, P = 0.018) and faster WMH growth (β = 0.116, P = 0.026). Shorter night-time sleep duration was associated with steeper 6-year reduction of NAWM volumes (β = 0.160, P = 0.011). High burden of PVS at age 73 (volume, count, and visual scores), was associated with faster deterioration in white matter: reduction of NAWM volume (β = −0.16, P = 0.012) and increasing white matter damage metric (β = 0.37, P < 0.001) between ages 73 and 79. On SEM, centrum semiovale PVS burden mediated 5% of the associations between sleep parameters and brain changes.ConclusionSleep impairments, and higher PVS burden, a marker of impaired waste clearance, were associated with faster loss of healthy white matter and increasing WMH in the 8th decade of life. A small percentage of the effect of sleep in white matter health was mediated by the burden of PVS consistent with the proposed role for sleep in brain waste clearance

    Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936

    Get PDF
    AbstractWe aimed to determine associations between multiple vascular risk factors (VRF) at ∼73 years and progression of white matter hyperintensities (WMH) from ∼73 years to ∼76 years. We calculated correlations and generalized estimating equation models of a comprehensive range of VRF at 73 years and change in WMH volume from 73 years to 76 years. Higher systolic (rho = 0.126, p = 0.009) and diastolic (rho = 0.120, p = 0.013) blood pressure at 73 years were significant predictors for greater WMH volume at 76 years in a simple correlation model. However, neither measured blood pressure nor self-reported hypertension at 73 years was significant predictors of WMH volume change in a fully adjusted model which accounted for initial WMH volume at 73 years. Lower high-density lipoprotein cholesterol (beta = −0.15 % intracranial, −1.80 mL; p < 0.05) and current smoking (beta = 0.43 % intracranial, 5.49 mL; p < 0.05) were the only significant VRF predictors of WMH volume change from 73 years to 76 years. A focus on smoking cessation and lipid lowering, not just antihypertensives, may lead to a reduction in WMH growth in the eighth decade of life

    Associations between hippocampal morphology, diffusion characteristics, and salivary cortisol in older men

    Get PDF
    High, unabated glucocorticoid (GC) levels are thought to selectively damage certain tissue types. The hippocampus is thought to be particularly susceptible to such effects, and though findings from animal models and human patients provide some support for this hypothesis, evidence for associations between elevated GCs and lower hippocampal volumes in older age (when GC levels are at greater risk of dysregulation) is inconclusive. To address the possibility that the effects of GCs in non-pathological ageing may be too subtle for gross volumetry to reliably detect, we analyse associations between salivary cortisol (diurnal and reactive measures), hippocampal morphology and diffusion characteristics in 88 males, aged ∼73 years. However, our results provide only weak support for this hypothesis. Though nominally significant peaks in morphology were found in both hippocampi across all salivary cortisol measures (standardised β magnitudes < 0.518, p(uncorrected) > 0.0000003), associations were both positive and negative, and none survived false discovery rate correction. We found one single significant association (out of 12 comparisons) between a general measure of hippocampal diffusion and reactive cortisol slope (β = 0.290, p = 0.008) which appeared to be driven predominantly by mean diffusivity but did not survive correction for multiple testing. The current data therefore do not clearly support the hypothesis that elevated cortisol levels are associated with subtle variations in hippocampal shape or microstructure in non-pathological older age
    corecore