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Summary 
 
New understanding of the physiologic mechanisms underlying type 2 diabetes has 

depended upon studies of small groups over short periods. Detailed metabolic studies were 

performed on 64 people with type 2 diabetes over 12 months. Liver fat content decreased 

(16.0±1.3% to 3.1±0.5%, p<0.0001) immediately after weight loss. Similarly, plasma 

triglyceride and pancreas fat content decreased in all, whether or not glucose control 

normalised. Only those who returned to non-diabetic glucose control recovered first phase 

insulin response (0.04[-0.05-0.32] to 0.11 [0.0005-0.51] nmol/min/m2
,
 p<0.0001) and this 

was durable at 12 months (0.11 [0.005-0.81] nmol/min/m2
,
 p=0.0001). Responders were 

similar to non-responders at baseline but had shorter diabetes duration (2.7±0.3 vs. 3.8±0.4 

years; p=0.02).  This study demonstrates that beta cell ability to recover long term function 

persists after diagnosis, changing the previous paradigm of irreversible and progressive loss 

of beta cell function in type 2 diabetes. 
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Introduction 

 

Type 2 diabetes now affects at least one in ten US adults, and 422 million worldwide 

(Menke et al., 2015; WHO, 2016). It has long been regarded as an inevitably 

progressive, lifelong condition. However, the Diabetes Remission Clinical Trial 

(DiRECT) has demonstrated that nearly half of those with early (< 6 years) type 2 

diabetes can be returned to long term non-diabetic glucose control using an 

effective method to achieve and maintain substantial weight loss (Lean et al., 2017). 

The initial period of weight loss was followed by weight maintenance and the data 

were reported at 12 months. This population-based study built upon the results of 

earlier small studies which revealed the detailed physiological basis of the transition 

from type 2 diabetes to normal (Lim et al., 2011; Steven et al., 2016a; Steven et al., 

2016b). However, whether these mechanisms operate in all individuals with type 2 

diabetes and the critical factor(s) that determine the capacity to return to non-

diabetic glucose metabolism remain uncertain. 

 

During a very low calorie diet in type 2 diabetes an initial study showed that liver fat 

content rapidly decreased, with normalisation of hepatic insulin sensitivity within 7 

days (Lim et al., 2011). Over an 8 week period, pancreas fat content decreased more 

slowly, as first phase insulin response gradually returned. A follow up study 

demonstrated that as duration of type 2 diabetes increased beyond 10 years, the 

possibility of restoring beta cell function decreased (Steven et al., 2016a). These 

observations led to a simplified view of the aetiology of type 2 diabetes (Taylor, 

2013), consistent with earlier observations (Henry et al., 1986; Wing et al., 1987), in 

that linked but distinct mechanisms in liver and pancreas appeared to explain the 

condition.  Recently, the molecular basis of the liver abnormalities in type 2 diabetes 

has been clarified (Perry et al., 2018).  In addition, a major decline in beta cell 

function is necessary before type 2 diabetes develops. In the last few years, 

metabolic stress-induced beta cell de-differentiation and subsequent re-

differentiation with significant weight loss have been demonstrated, potentially 
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explaining any return from type 2 diabetes to normal glucose tolerance (Cinti et al., 

2016; Pinnick et al., 2010; Talchai et al., 2012; White et al., 2016).  A larger study was 

required to determine the extent to which this explains common type 2 diabetes. 

Detailed pathophysiologic studies were carried out in a geographically pre-defined 

sub-group of DiRECT participants. These were designed to test the hypothesis that 

there would be differences between those who did or did not return to non-diabetic 

glucose control in some or all of the factors previously identified as underlying type 2 

diabetes. We have examined liver fat content, liver export of triglyceride, pancreas 

fat content and beta cell function in type 2 diabetes during conventional therapy, 

after weight loss and after 12 months of weight maintenance.  

 

Results and Discussion 

  

Baseline characteristics 

Responders, who returned to non-diabetic glucose control after weight loss, and 

non-responders, who did not, were similar in age, weight and sex (Table 1; Figure 

3A). Responders had a non-significantly lower fasting plasma glucose than non-

responders (148.9±6.8 vs. 167.8±11.9 mg/dl, p=0.18; Figure 3B), and HbA1c was 

7.4±0.2 vs. 7.9±0.2% respectively (p=0.04; Figure 3C). At baseline, liver fat in the 

whole intervention group was 16.0±1.3% and was not significantly different in 

responders and non-responders (16.7±1.5 vs. 14.5±2.6% respectively; p=0.47). There 

was no significant difference at baseline between responders and non-responders in 

VLDL1-TG production (560.7±30.9 vs. 581.1±52.1 mg/kg/day, p=0.70; Figure 4C) or 

total plasma triglyceride (162±11 vs. 168±22 mg/dl, p=0.08).  The non-responders 

had a longer duration of diabetes (2.7±0.3 vs. 3.8±0.4 years; p=0.02), lower fasting 

plasma insulin (108.3±10.0 vs. 77.2±8.5pmol/l; p=0.02) and lower plasma ALT 

(34.1±2.8 vs. 26.3±2.6 pmol/l; p<0.05).  Data on the whole intervention group 

compared with the conventionally treated control group are shown in Table 3.   
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Lower fasting plasma insulin levels and lower plasma ALT in individuals with type 2 

diabetes who cannot achieve non-diabetic plasma glucose levels despite adequate 

weight loss have previously been observed in a group with up to 23 years duration of 

diabetes (Steven et al., 2016a). In that study, longer duration was clearly associated 

with inability to achieve remission of diabetes. There was an evident failure at 

baseline to maintain fasting plasma insulin levels in the non-responders which was 

accompanied by lower hepatic fat levels. This is consistent with a slowing of insulin-

driven de novo lipogenesis as the beta cell defect advances. Type 2 diabetes of more 

than 8 years duration was observed to be associated with considerably lower plasma 

ALT (Steven et al., 2016b). In contrast, the present study focussed upon the first 6 

years of type 2 diabetes and within this shorter time span only a modest, non-

significant difference in liver fat levels was observed between responders and non-

responders. Nonetheless, plasma ALT levels were 26% lower in non-responders 

(p<0.05, Table 1), suggesting that the metabolic stress on the hepatocyte had 

diminished.  

 

Weight 

During the weight loss phase, weight decreased in responders (100.6±2.6 to 

84.4±2.1kg; p<0.0001; n=40) and in non-responders (102.1±4.4 to 88.7±4.4kg; 

p<0.0001; n=18; Figure 3A). The change during the weight loss phase did not differ 

significantly between groups (-16.2 ±1.2 vs. -13.4 ±1.4kg; p=0.14; Table 2).  

Between the end of weight loss and 12 months (weight maintenance phase), four 

responders failed to maintain remission, and nine participants dropped out of the 

total Intervention group. Paired data for the weight maintenance phase were thus 

available on 29 responders and 16 non-responders (Figure 1). No participants 

defined as non-responders after weight loss achieved remission during the weight 

maintenance phase. Weight in responders increased by 3.3±0.8kg to 86.2±3.0 kg 

(p<0.0001). Over the same period weight in non-responders increased by 4.9±0.8kg 

to 92.5±4.6 kg but stayed lower than baseline (p<0.0001). By 12 months the overall 

change was greater in the responders (-14.1±1.5 vs. -9.4±1.3kg; p<0.02). 
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Glucose control 

Weight loss lowered fasting plasma glucose from 148.9±6.8 to 102.2±2.2 mg/dl 

(p<0.0001) in responders, and had no significant effect in non-responders (167.8 

±11.9 to 158.9 ±10.9 mg/dl; p=0.47; Figure 3B). By 12 months there was no 

significant further change in either group (responders: 102.4±2.3 mg/dl; non-

responders: 152.0±7.9 mg/dl; Figure 3B).  

HbA1c decreased in responders (to 5.9±0.1%; p<0.0001), but not in non-responders 

(8.0±0.4 %, p=0.67; Figure 3C). At 12 months, HbA1c did not change further in either 

group so that differences were maintained (5.8±0.1 vs. 7.6±0.2 %, p<0.0001; Table 

2). 69.0% of the Intervention group (40/58) achieved non-diabetic blood glucose 

control after weight loss, and 64.4% at 12 months (29/45). 

 

 

Liver fat 

Liver fat content decreased after weight loss in both groups (responders: to 

3.3±0.6%; p<0.0001; non-responders: to 2.6±0.5%; p<0.0001; Figure 4A). The change 

in liver fat was similar (-13.4±1.4 vs. -11.9±2.4%, p=0.60; Table 2). At 12 months, liver 

fat in responders was 3.0±0.6% and in non-responders 6.1±1.9% (p=0.11 and p=0.04 

respectively compared with post-weight loss). The increase in liver fat in the weight 

maintenance phase was related to degree of weight gain. Those who gained less 

than the mean weight gain of the responder group (3.3kg) had no change in liver fat 

(3.2±1.1 vs. 3.2±1.0%; p=0.95; n=16). In contrast, in those who gained more than 

3.3kg, there was a resultant increase in liver fat (1.5±0.3 vs. 2.8±0.5%; p=0.03; n=15). 

In those randomised to the conventionally treated control group, there was no 

significant change in liver fat throughout the study (Figure 4A; Table 3).  

The importance of high levels of liver fat in the pathogenesis of type 2 diabetes is 

now recognised (Bril and Cusi, 2017; Petersen et al., 2005; Shibata et al., 2007; 

Steven et al., 2016b; Taylor, 2013). Raised liver fat levels are associated with hepatic 



 
 

7 
 

insulin resistance, inadequate suppression of hepatic glucose production and hence 

increased fasting plasma glucose (Petersen et al., 2005; Ravikumar et al., 2008; 

Seppala-Lindroos et al., 2002). Excess diacylglycerol has a profound effect in 

activating PKCε which inhibits the signalling pathway from the insulin receptor to 

IRS-1, the first post-receptor step in intracellular insulin action (Samuel et al., 2010). 

So, under circumstances of chronic energy excess, a raised level of intracellular 

diacylglycerol specifically prevents normal insulin action, and hepatic glucose 

production fails to be controlled. High-fat feeding of rodents brings about raised 

levels of diacylglycerol, PKCε activation and insulin resistance (Samuel et al., 2004), 

and these changes have recently been shown to reverse after 3 days on a very low 

calorie diet (Perry et al., 2018). The relationship between raised diacylglycerol, PKCε 

activation and hepatic insulin resistance leading to increased hepatic glucose output 

was clearly demonstrated in this recent study. In obese humans, intrahepatic 

diacylglycerol concentration has been shown to correlate with hepatic insulin 

sensitivity (Kumashiro et al., 2011; Magkos et al., 2012). It must be noted that raised 

diacylglycerol and PKCε activation are corrected early during calorie restriction and 

before major weight change (Lim et al., 2011; Perry et al., 2018). This should not  be 

interpreted to indicate that the more gradually occurring weight loss is not necessary 

for long term normalisation. The mechanisms underlying hepatic insulin resistance 

are now established, and the present observations demonstrate the complete 

reversibility of the liver abnormalities of human type 2 diabetes.  

 

 

Lipid metabolism 

In responders, VLDL1-TG production decreased after weight loss (to 413.6±25.8 

mg/kg/day, p<0.0001; Figure 4C). In non-responders, there was a non-significant fall 

(to 521.8 ±41.9 mg/kg/day; p=0.28). The change during weight loss was not 

significantly different between responders and non-responders (-147.2±33.8 vs. -

59.2±52.7; p=0.17). VLDL1-TG production rate did not change during the weight 

maintenance phase in responders (at 12 months: 437.5±22.4 mg/kg/day, p=0.12) but 

increased in non-responders (to 649.6±67.0 mg/kg/day, p=0.008).  
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Plasma VLDL1-TG concentration decreased in responders after weight loss 

(0.69±0.07 to 0.44±0.06 mmol/l, p=0.001, Figure 4E), followed by a small increase 

during weight maintenance (to 0.49±0.08 mmol/l, p=0.04; Figure 4E). There was no 

significant change in non-responders after weight loss (0.73±0.11 to 0.55±0.12 

mmol/l, p=0.12) nor during the weight maintenance phase (to 0.64±0.12 mmol/l, 

p=0.12). 

Total plasma triglyceride (largely chylomicrons plus VLDL-TG) fell similarly in 

responders and non-responders after weight loss (1.84±0.13 to 1.30 ±0.13 mmol/l, 

p<0.0001 and 1.91±0.25 to 1.24 ±0.14 mmol/l respectively, p=0.002, Figure 4B). This 

remained stable at 12 months (responders: to 1.24±0.12 mmol/l, p=0.43; non-

responders: to 1.39±0.21 mmol/l, p=0.52). In those randomised to control, there was 

no significant change in any parameter of lipid metabolism during the study (Table 

3).  

The series of studies which led to DiRECT was initiated to test the twin cycle 

hypothesis (Taylor, 2008). This described vicious cycles within the liver and pancreas, 

respectively ratcheting up hepatic insulin resistance and beta cell dysfunction. 

Critically, it postulated that these cycles were linked by elevated insulin driving 

increased de novo lipogenesis and hepatic VLDL1-TG export. The increased exposure 

of beta cells to fat metabolites postulated to lead ultimately to beta cell failure. 

VLDL1-TG is a major determinant of plasma triglyceride (Hiukka et al., 2005) and 

plasma concentration is proportional to liver fat content (Adiels et al., 2006). The 

dramatic and sustained normalisation of liver fat content in the present study was 

associated with a fall in both VLDL1-TG production rate and plasma levels. The fall 

was most pronounced in responders and with the continuing normoglycemia and 

low liver fat content, both production rate and plasma VLDL1-TG concentration 

remained significantly lower than baseline at 12 months. In non-responders, the 

modest weight gain during weight maintenance was followed by a significant rise in 

VLDL1-TG production rate even though the fasting plasma VLDL1-TG and total 

triglyceride concentrations remained lower than baseline. This suggests that non-

responders may exhibit a different relationship between the two major components 

of plasma triglyceride - chylomicron and VLDL1-TG. This may possibly relate to 
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different hepatic insulin sensitivity or plasma glucose levels in responders compared 

to non-responders. Although the major source of fatty acids supplying VLDL1-TG 

export is from adipose derived fatty acids (around 60%), the contribution of de novo 

lipogenesis to VLDL1-TG is much greater when liver triglyceride levels are raised 

(Donnelly et al., 2005). In non-obese individuals this process accounts for only a 

small proportion of the fatty acids of VLDL1-TG, whereas in NAFLD it accounts for up 

to 26% (Lambert et al., 2014; Timlin et al., 2005).  The present observations on 

change in VLDL-1 and total plasma triglyceride are consistent with the predictions of 

the twin cycle hypothesis. 

 

 

Pancreas fat 

Pancreas fat did not differ significantly between responders and non-responders at 

baseline (8.7±0.4 vs. 7.9±0.6%; p=0.25, Figure 4D). Weight loss produced a similar 

fall in intrapancreatic fat in both groups (responders: to 7.8±0.4%; p<0.0001 and 

non-responders: to 7.1±0.4%; p=0.004). There was no significant difference in extent 

of change between the two groups (-0.90±0.17 vs. -0.78±0.23; p=0.67; Table 2). 

During the weight maintenance phase, it remained stable in both groups (7.9±0.4% 

and 6.8±0.4% in responders and non-responders, respectively). There was no change 

in pancreas fat in the control group (Table 3).  

The magnetic resonance method of quantifying fat content quantifies fat content of 

both exocrine and endocrine pancreas, and the relationship of this to islet fat 

content and exposure must be considered. In rodents, beta cell triglyceride content 

is directly related to total intra-pancreatic fat content, and these parameters change 

in step (Lee et al., 2010). In vivo measurement of intra-pancreatic fat content in 

human studies during an 8 week period of calorie restriction in type 2 diabetic 

humans is concordant with the rodent observations, and also matches the gradual 

return of first phase insulin secretion in that study (Lim et al., 2011). The change in 

total intra-pancreatic fat is not seen during equivalent loss of weight in non-diabetic 

humans (Steven et al., 2016b), implying a specific excess of intracellular triglyceride 
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within both exocrine and endocrine cells of the pancreas in type 2 diabetes. In 

addition to this endogenous pool, the ongoing exposure of beta cells to excess fatty 

acid delivered from plasma VLDL1-TG and chylomicrons will contribute to the 

metabolic load experienced by the beta cell. Intra-pancreatic triglyceride content 

and lipid supply were decreased in both responders and non-responders.  

 

Beta cell function 

Fasting plasma insulin decreased in both groups during weight loss (responders: 

108.3±10.0 to 38.7±4.4 pmol/l; p<0.0001; non-responders 77.2±8.5 to 35.5±5.3 

pmol/l; p=0.0002, Figure 4F). Because of the higher baseline level in responders, 

there was a greater decrease in this group (-69.7±9.3 vs. -41.7 ±5.8 pmol/l; p<0.01). 

At 12 months fasting plasma insulin remained steady in both groups (responders: 

41.1±5.5 pmol/l, p=0.41) and (non-responders: 45.8±8.4 pmol/l, p=0.40).  

 

First phase insulin secretion increased in responders after weight loss from 0.04[-

0.05-0.32] to 0.11 [0.0005-0.51] nmol/min/m2 (p<0.0001). Whereas no change was 

observed in the non-responders (0.02[-0.07-0.13] to 0.01[-0.04-0.05] nmol/min/m2; 

p=0.59; Figure 5A; Table 2). In the responders, increased first phase insulin secretion 

was maintained during the weight maintenance phase, with improvement in some 

individuals which did not reach significance (to 0.11[0.005-0.81] nmol/min/m2; 

p=0.34). However, between baseline and 12 months the change was highly 

significant (p=0.0001). 

There was a gradual increase in maximal insulin secretion in responders after weight 

loss that became significant at 12 months (0.62[0.13-1.95] to 0.94 [0.25-2.69] 

nmol/min/m2; p=0.04 compared with baseline; Figure 5B). It remained unchanged in 

non-responders.  

First phase and total insulin secretion rates remained unchanged in the control 

group throughout the study (Table 3).  
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It was established many years ago that chronic in vitro exposure of beta-cells to 

triglyceride or fatty acids decreases ability to respond to an acute increase in glucose 

levels (Lee et al., 1994) and the concept that excess fat can impair beta cell function 

is not new (McGarry, 2002; Unger, 1995). In the ZDF rat, the onset of hyperglycemia 

is preceded by a rapid increase in pancreatic fat (Lee et al., 1994) and diabetes is 

completely preventable by restriction of food intake (Ohneda et al., 1995). Chronic 

exposure of human beta cells to lipid excess brings about decreased function (Zhou 

and Grill, 1995). Early studies demonstrated the ultrastructural damage brought 

about even by relatively low concentrations of saturated fatty acids (Pinnick et al., 

2010; Pinnick et al., 2008), and this endoplasmic reticulum stress has been identified 

in other in vivo studies of type 2 diabetes (Huang et al., 2007; Laybutt et al., 2007). 

Clearly, hyperglycemia cannot explain the initiation of beta cell stress in type 2 

diabetes, but once the increased glucose levels are added to lipid-induced stress the 

increased glucose supply will compound and perpetuate the metabolic insult 

(Bensellam et al., 2012; Poitout et al., 2010; Weir et al., 2013). Loss of fully 

differentiated beta cell phenotype is now recognised as the most likely mechanism 

underlying type 2 diabetes (Bensellam et al., 2018; Brereton et al., 2014; Spijker et 

al., 2015; Talchai et al., 2012; Wang et al., 2014; White et al., 2013). Very recent 

work has identified markers of dedifferentiation in the islets from people with type 2 

diabetes (Cinti et al., 2016). In the non-responders,  lower baseline fasting plasma 

insulin levels, lower ALT levels and higher HbA1c are consistent with a more 

advanced, irreversible stage of beta cell dysfunction.   

A potential alternative explanation could be that the non-responders have a 

different etiology of diabetes, in which non-lipid driven defects in beta cells are more 

important. However, the responders and non-responders were similar in 

anthropological characteristics at baseline, and exhibited the same abnormalities of 

grossly elevated liver fat content and all other metabolic abnormalities. Even though 

the DiRECT cohort were selected to have duration of type 2 diabetes of less than 6 

years, the non-responders had a modestly longer recorded duration of disease.   

It is established that the natural history of beta cell decline follows widely different 

time courses between individuals (Harrison et al., 2012; Turner et al., 1999), but this 
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is the first time that a difference in disease duration has been shown to relate to the 

capacity for redifferentiation during the first 6 years of type 2 diabetes. This 

observation carries potentially important implications for the initial clinical approach 

to management. At present, the early management of type 2 diabetes tends to 

involve a period of adjusting to the diagnosis and pharmacotherapy with lifestyle 

changes which in practice are modest. The present data suggest that substantial 

weight loss at the time of diagnosis may be more appropriate to prevent ongoing 

loss of beta cell capacity.   

 

  

Substrate oxidation 

The return to non-diabetic glucose control was accompanied by an increase in basal 

glucose oxidation rates and a fall in basal lipid oxidation rates (Table 1). These 

changes were not fully developed immediately after weight loss, but maximal at 12 

months. The glucose oxidation rates in responders increased from 1.27±0.12 at 

baseline to 1.44±0.14 and to 2.00±0.19 mg/kg/min after weight loss and weight 

maintenance respectively (p=0.0001 between baseline and 12 months). This was 

reflected in a greater increase in responders between baseline and 12 months 

compared to non-responders and controls (0.75 ±0.18 vs. -0.11±0.23; p=0.006; Table 

2).  Conversely, lipid oxidation rates decreased in responders from 0.96±0.05 to 

0.87±0.06 (p<0.28) and to 0.64±0.09 mg/kg/min; p<0.01) with a greater decrease 

than in non-responders over the same period (-0.32±0.08 vs. -0.05±0.09 mg/kg/min; 

p<0.04). There were no significant changes in substrate oxidation rates in the non-

responders (Table 1).  

 

 

 

Conclusions 
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This study demonstrates the physiologic changes associated with the return to 

normal glucose homeostasis in type 2 diabetes. It also quantifies the responses to 

weight loss in those who returned to normal glucose control compared with those 

who did not and shows most marked differences between these two groups to be in 

their ability to recover first phase insulin response.  An average decrease in body 

weight of 15% was achieved by a structured programme delivered by Primary Care 

staff. This brought about profound changes in lipid metabolism, irrespective of 

response in terms of glucose control. The greatest change was in liver fat content 

which fell from high levels to normal in the whole Intervention group at 12 months. 

Fall in plasma levels of VLDL1-TG was accompanied by fall in intra-pancreatic fat 

content. All changes in lipid metabolism and intra-organ lipid remained steady over 

12 months if weight loss was maintained, but, critically, only the responders 

demonstrated early and sustained improvement in beta cell function as measured by 

gold standard methodology, with difference at 12 months being striking.  In 

summary, weight loss in early type 2 diabetes brings about similar correction of 

intra-organ fat content in all, but the defect in those who do not return to non-

diabetic glucose control appears intrinsic to the beta cell.  
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Figure Legends 

 

Figure 1: CONSORT diagram of study randomization and sample size 

In the Intervention group 6 subjects withdrew during the weight loss phase and 7 during 
weight maintenance. To permit the paired analysis within each group, 4 subjects were 
excluded due to reversion to diabetic status. 

In the Control group of type 2 diabetes followed over time, 1 subject withdrew and other 2 
subjects were excluded due to dietary weight loss and remission of diabetes. During the 
weight maintenance phase 3 subjects withdrew.   

 

Figure 2: Study protocol 

Participants were randomized to receive a low calorie diet (Intervention) or to continue with 
their normal medication (Control).  This was lasted for an average of 4 months then 
followed by Stepped Food Reintroduction (SFR; 4 weeks) and weight maintenance.  

 
 
Figure 3: Changes in weight and glucose control 

Change in weight (A), fasting plasma glucose (B), and HbA1c (C) within the study groups 
between baseline, post weight loss (5 months), and 12 months.  Responders were 
presented as solid line, non-responders dotted black line, and control as grey dotted line. 
***P<0.0001 vs. baseline (responders); †††P<0.0001 vs. baseline (non-responders) 
###P<0.0001 vs. 5 months (responders); ‡‡‡P<0.0001 vs. 5 months (non-responders) 
 
 

Figure 4: Induced changes in lipid metabolism and fasting plasma insulin 

Change in liver fat (A), total plasma triglycerides (B), hepatic VLDL1-TG production (C), 
intrapancreatic fat (D), fasting plasma VLDL-TG (E), and fasting plasma insulin (F) between 
baseline, post weight loss (5 months), and 12 months. Responders were presented as solid 
line, non-responders dotted black line, and control as grey dotted line. 
**P<0.01 vs. baseline, ***P<0.0001 vs. baseline (responders) 
††P<0.01 vs. baseline, †††P<0.0001 vs. baseline (non-responders) 
#P<0.05 vs. 5 months (responders); ‡P<0.05 vs. 5 months (non-responders); ‡‡P<0.01 vs. 5 
months (non-responders) 
 
Figure 5: Induced changes in beta cell response to glucose stimulation 

Median first phase insulin response (A) and maximal insulin secretion (B) at baseline, post 
weight loss (5 months), and 12 months.  Responders - a black box; non-responders - dark 
grey box; control - light grey box. 
*P<0.05 vs. baseline (responders), ***P<0.0001 vs. baseline (responders) 
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*P<0.05 vs. baseline, **P<0.01 vs. baseline, ***P<0.0001 vs. baseline, # P<0.05 vs. 5 months, ## P<0.01 vs. 5 months, ### P<0.0001 vs. 5 
months, † P<0.05 responders vs. non-responders, †† P<0.01 responders vs. non-responders. Paired data were presented (baseline to post-
weight loss or baseline /post weight loss to 12 months). 

 Responders  Non-responders  

Baseline  
(n=40) 

Post-weight                                  
loss (n=40) 

   12 months  
      (n=29) 

Baseline 
(n=18) 

Post-weight                 
loss (n=18) 
 

12 months 
 (n=16) 

BMI (kg/m2) 34.9±0.7 29.4±0.6*** 29.6±0.8***### 
 

35.7±1.2 31.1±1.3*** 32.4±1.4***### 

Age (Year) 
 
Sex (F/M) 
 

53.0±1.2 
 
17/23 

- 
 
- 

- 
 
- 

53.3±1.9 
 
9/9 

- 
 
- 

- 
 
- 

Diabetes duration (years) 2.7±0.3 - - 3.8±0.4† - - 

VLDL1-TG pool(mg) 2445.9±267 1258.4±168*** 1461.7±240**## 2775.4±505 1866.4±432* 2234.1±570 

Fasting NEFA (mmol/l) 0.56±0.03 0.55±0.03 0.51±0.03 0.66±0.04 0.59±0.05 0.61±0.04 

Alanine Aminotransferase 
(ALT) (U/l) 

34.1±2.8 - 17.1±1.0*** 26.3±2.6† - 18.3±2.0** 

Cholesterol (mmol/l) 4.3±0.2 - 4.3±0.2 4.1±0.3 - 4.0±0.2 

HDL (mmol/l) 1.09±0.05 - 1.23±0.08** 0.99±0.05 - 1.11±0.06* 

Ketone (mmol/L) 0.19±0.02 0.29±0.04** 0.26±0.03* 0.18±0.02 0.20±0.02 0.24±0.04 

Lipid oxidation (mg/kg/min) 0.96±0.05 0.87±0.06 0.64±0.09**## 0.84±0.08 0.89±0.11 0.83±0.07 

Glucose oxidation 
(mg/kg/min) 

1.27±0.12 1.44±0.14 2.0±0.19***## 1.48±0.17 1.19±0.21 1.31±0.20† 

Resting Energy Expenditure  
(kcal/day) 

1996.5±57.0 

 
1647.1±48.1*** 

 
1696.4±67.3***# 

 
1981.7±108.0 

 
1641.1±89.5** 

 
1733.2±109.5** 

 

Table 1: Anthropometric, clinical and metabolic features of responders and non-responders before and after intervention 
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Table 2: Metabolic changes in responders and non-responders during weight loss, weight maintenance and from baseline to 12 months 

 Baseline to post-weight loss Post weight loss to 12 months Baseline to 12 months 

Δ change  Responders 
    (n=40) 

Non-responders 
  (n=18) 

Responders 
    (n=29) 

Non-responders 
  (n=16) 

Responders 
    (n=29) 

Non-responders 
  (n=16) 

Weight (kg) -16.2±1.2 -13.4±1.4  3.3±0.8 4.9±0.8 -14.1±1.5 -9.4±1.3* 

fasting plasma glucose (mg/dl) -46.6 ±7.3 -8.9±12.0** 1.6±2.6 -3.6±11.2 -47.9±8.7 -21.3±7.8* 

HbA1c (%) -1.5±0.2 0.2±0.4*** -0.1±0.05 -0.4±0.35 -1.6±0.2 -0.4±0.2*** 

Liver fat (%) -13.4±1.4 -11.9±2.4 0.6±0.3 3.6±1.6 -13.5±1.9 -9.7±2.1 

VLDL1-TG production 
(mg/kg/day) 

-147.2 ±33.8 -59.2±52.7 43.1 ±26.7 155.8±50.8 -119.2 ±39.0 72.2±73.6* 

Plasma VLDL1-TG conc. (mmol/l) -0.26±0.07 -0.19±0.12 0.10±0.05 0.16±0.10 -0.21±0.09 -0.04±0.08 

VLDL1-TG pool (mg) -1187.5 ± 245.9 -909.0 ± 385.4 391.5 ± 149.0 659.1 ± 364.7 -993.7 ± 303.8 -313.5 ± 301.1 

Total plasma TG (mmol/l) -0.54±0.12 -0.67±0.19 0.08±0.10 0.13±0.19 -0.58±0.18 -0.57±0.13 

fasting plasma insulin (pmol/l) -69.7±9.3 -41.7±5.8* 7.2±3.9 10.7±5.2 -65.3±12.1 -32.7±5.7* 

Pancreas fat (%) 
 

-0.90±0.17 -0.78±0.23 -0.14±0.28 0.17±0.23 -1.31±0.28 -0.74±0.27 

First phase insulin 
 (nmol/min/m2) 

0.08[-0.17-0.47] -0.002[-0.11-0.06]*** 0.02[-0.32-0.51] -0.01-0.06—0.08] 0.08[-0.30-0.81] -0.004[-0.17-0.11]*** 

Maximal insulin secretion 
(nmol/min/m2) 

0.08[-1.37-2.66] -0.03[-1.80-0.66] 0.09[-2.17-1.81] 0.02[-0.44-0.61] 0.17[-1.24-2.05] 0.06[-1.72-0.86]* 

glucose oxidation rate 
(mg/kg/min) 

0.17±0.19 -0.29±0.27 0.82±0.22 0.06±0.30* 0.75±0.18 -0.11±0.23** 

lipid oxidation rate 
 (mg/kg/min) 

-0.09±0.08 0.05±0.13 0.31±0.10 -0.02±0.15 -0.32±0.08 -0.05±0.09* 

*P<0.05 responders vs. non-responders, **P<0.01 responders vs. non-responders, ***P<0.0001 responders vs. non-responders 
Paired data were used to present changes between different phases of the study. 
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Table 3: Comparison of metabolic parameters between Intervention and Control groups  
 

 Intervention  Control  

Baseline 

(n=58) 

5 months 

(n=58) 

12 months  

(n=45) 

Baseline 

(n=23) 

5 months 

(n=23) 

12 months  

(n=20) 

Weight  (kg) 101.1±2.2 85.8±2.0*** 88.4±2.5***### 96.7±2.5 95.8±2.7 95.2±3.2 

HbA1c (%) 7.6± 0.1 6.5± 0.2*** 6.4± 0.2*** 7.4± 0.2 7.8±0.3* 7.2±0.2 

Fasting  plasma glucose (mg/dl) 154.7±6.0 119.8±5.0*** 120.0±4.8*** 149.7±7.6 151.0±8.6 152.6±9.0 

Liver fat (%) 16.0 ±1.3 3.1 ±0.5*** 4.1±0.8***# 9.8±1.7 † 10.6±1.8 9.2±1.9 

VLDL1-TG PR (mg/kg/day) 567.3±26.6 448.4±22.9*** 511.5±31.2**## 491.1±27.6 489.6±40.1 554.3±28.9 

Plasma VLDL-TG (mmol/l)  0.71±0.06 0.47±0.05*** 0.54±0.07*# 0.51±0.09 0.56±0.09 0.61±0.12 

Pancreas fat (%) 8.5±0.3 7.6±0.3*** 7.5±0.3*** 8.1±0.5 8.2±0.5 8.1±0.5 

Fasting plasma insulin (pmol/l) 98.5±7.5    37.7±3.4***  42.8±4.6***## 87.1 ±13.4 77.3±12.4 73.6±14.6 

First phase ins. (nmol/min/m2) 0.03[-0.07-0.32] 0.06[-0.04-0.51]*** 0.06[-0.03-0.81]** 0.02[-0.05-0.29] 0.03[-0.06-0.25] 0.03[-0.05-0.38] 

Maximal insulin (nmol/min/m2) 0.53[0.13-2.35] 0.63[0.01-3.21] 0.63[0.25-2.69] 0.54[0.13-1.76] 0.57[0.26-1.38] 0.56[0.25-1.45] 

 
*P<0.05 vs. baseline, **P<0.01 vs. baseline, ***P<0.0001 vs. baseline. 
# P<0.05 vs. 5 months, ## P<0.01 vs. 5 months, ### P<0.0001 vs. 5 months. 
†  P<0.05 Intervention vs. Control at baseline. 
Paired data were presented (baseline to post-weight loss or baseline/ post weight loss to 12 months). 
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STAR Methods 

 

KEY RESOURCES TABLE 

REAGENT or 

RESOURCE 

SOURCE IDENTIFIER 

Instruments and software  

3T Philips Achieva scanner Philips,  Netherlands SN: 17497 

Six-channel cardiac array Philips,   Netherlands PN: 453567009711 

Three-point Dixon 

acquisition  

Philips,  Netherlands mDixon 

Balanced Turbo Field Echo 

acquisition 

Philips,  Netherlands BTFE 

Glucose analyzer  Yellow Springs Inc, USA YSI 2300 STAT Plus 

Ultracentrifuge Beckman Coulter, Inc, USA Model L7-80 

Low speed Centrifuge MSE Ltd., UK Harrier 18/80R 

Low speed Centrifuge Scientific Laboratory 

Supplies Ltd, UK. 

Sigma 6K15 

SW 40 Ti Rotor Beckman Coulter, Inc, USA PN: 331302 

Peristaltic Pump eBay, China BT100M 

Quark RMR  COSMED, , Italy PN:C09074-01-99 

Infusion pump Arcomedical Infusion Ltd, UK Volumed® VP7000 PVC 

MATLAB MathWorks, UK Version R2013a 

ImageJ National Institutes of Health 

(NIH), USA 

Version 1.50 

Minitab  Minitab Inc.,  USA Version 17 
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MRIcro University of South Carolina, 

USA 

Version 1.40 

Low Calorie Diet 

Liquid formula diet (825–

853 kcal/day)                                        

Cambridge Weight Plan Ltd., 

UK 

N/A 

Laboratory reagents for lipoprotein separation 

Sodium Chloride Sigma-Aldrich, UK Cat No: S9888  

Sodium Bromide 97%  Alfa Aesar, USA Cat No: 14037 

Na2 EDTA VWR International Ltd, UK Cat No: 100935V 

Sodium Hydroxide VWR International Ltd, UK Cat No: 102525P 

Ultracentrifuge tubes  SETON SCIENTIFIC, INC, USA Cat No:7031W 

Glass Pasteur Pipettes VWR International Ltd, UK Cat No: VWRI 1822 

Clinical reagents for metabolic and calorimetric studies 

0.9% Sodium Chloride  Fresenius Kabi Ltd, UK Freeflex®  

Intralipid 20%  Fresenius Kabi Ltd, UK Intralipid® 20% 

Intralipid 10%  Fresenius Kabi Ltd, UK Intralipid® 10% 

20% Dextrose  Fresenius Kabi Ltd, UK 20% Dextrose 

Arginine  Martindale Pharmaceuticals, 

, UK 

L-Arginine hydrochloride 

(50%) 

Plasma assays  

Triglyceride  Roche Diagnostics, , U.K. Cat No: 05171407 190 

Insulin ELISA kit  Mercodia AB , Sweden 10-1128-01 

C-peptide ELISA kit Mercodia AB , Sweden 10-1136-01 

HbA1c  Tosoh Bioscience,UK HPLC-923G8 

NEFA enzymatic 

calorimetric kit 

BMG labtech, Germany FLUOstar Omega 

microplate reader 
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Ketone meter Abbott Diabetes Care Ltd, UK Optium Xceed (XCF644-

3826) 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

All queries should be directed to the lead author, Roy Taylor (roy.taylor@ncl.ac.uk).. 

The dataset of this study is available in Mendelev Data (____).        

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

The metabolic study was nested within the cluster-randomised controlled Diabetes 

Remission Clinical Trial (DiRECT; ISRCTN03267836) (Leslie et al., 2016). Ethical 

approval was obtained from the West of Scotland Ethics Committee, and written 

informed consent was obtained from all participants.  The primary aim of DiRECT 

was to assess the effect of weight loss by low calorie diet on type 2 diabetes 

remission in a routine primary care setting. Individuals with type 2 diabetes living in 

the Tyneside region of England (n=90, 38F/52M, (mean± SD): age 52.8±7.9 years, 

weight 100.2±16.3kg, BMI: 34.7±7.4 kg/m2, diabetes duration 3.0±1.7 years, HbA1c 

7.5±1.0 %) were recruited by their general practices (Figure 1). Inclusion criteria 

were diabetes duration of <6 years, age between 20-65 years, HbA1c > 6.5 % (>6.1% 

if taking anti-diabetes agents), and BMI of 27-45kg/m2. Subjects were not recruited if 

pregnant, experienced weight loss of more than 5kg within the past 6 months or 

they have serious health problems. The majority of participants were white 

European with <2% of other ethnic minorities including Black African and South 

Asian. Most participants were on glucose lowering medication and this was 

withdrawn after the baseline studies. Baseline characteristics of the whole direct 

cohort have been described (Taylor et al., 2017) and the baseline anthropometric, 

clinical and metabolic features for geographically defined subgroup who underwent 

detailed physiologic study are presented in Table 1. 

GP practices were randomized to either Intervention or Control groups. Intervention 

group subjects stopped all anti-diabetic medication on day 1 of the Counterweight 

Plus weight management programme consisting of 825–853 kcal/d liquid formula 
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diet (Cambridge Weight Plan Ltd., UK) continued for 12-20 weeks, followed by a 2-6 

week food reintroduction phase, then ongoing support for weight maintenance. The 

Control group continued usual diabetes management by their GP practice according 

to current UK clinical guidelines. 

The Tyneside cohort was designed to further study metabolic changes occurring 

during weight loss and remission of diabetes (Figure 2). Intervention group subjects 

were classified as responder or non-responder at the end of each phase. Responders 

were defined as those achieving non-diabetic levels of HbA1c (<6.5%) and blood 

glucose (<126mg/dl) off any anti-diabetes medication for at least 2 months. The 

purpose of the Control group was to examine sequential changes over the time 

course of the study in type 2 diabetic subjects, and participants (n=2) who lost >5kg 

weight and became non-diabetic were excluded from the analysis. All studies were 

performed after an overnight fast, and subjects drove or were transported to the MR 

Centre by taxi to minimise variability of physical activity and stress of travel.  

 

METHOD DETAILS 

Intraorgan fat quantification  

All participants underwent Magnetic Resonance (MR) quantification of pancreatic 

and hepatic fat on three occasions: at baseline, following return to isocaloric eating 

after weight loss and at 12 months; Figure 2). MR data were acquired using a 3T 

Philips Achieva scanner 2 with six-channel cardiac array (Philips, Netherlands). Data 

were acquired by three-point Dixon method, with gradient-echo scans acquired 

during one breath hold as previously described (Al-Mrabeh et al., 2017). Hepatic fat 

content was measured by selecting homogenous regions of interest on five image 

slices of liver (Lim et al., 2011). Intrapancreatic fat content was quantified using the 

MR-opsy method optimized to exclude interlobular adipose tissue areas (Al-Mrabeh 

et al., 2017). Analsyis of pancreas fat was carried out by a single observer (AAM) in a 

blinded manner. 

 

Lipoprotein separation and VLDL1-TG Production  
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VLDL1-triglyceride levels were determined from fasting plasma samples taken at 

each time point. Briefly, the VLDL1-triglyceride production rate was measured by 

accumulation of plasma VLDL1-triglyceride during competitive blockade of 

lipoprotein lipase by excess Intralipid (Al-Shayji et al., 2007). To do so, 20% Intralipid 

(Fresenius Kabi Ltd, UK) was injected intravenously as a bolus (0.1 g/kg body mass) 

followed by continuous infusion of 10% Intralipid at 0.1 g/kg/h by infusion pump 

(Arcomed Infusion Ltd, UK). Plasma samples were collected at six points over 75 min. 

After two step centrifugation to remove blood cells then chylomicrons plus Intralipid 

particles (Scientific Laboratory Supplies Ltd, UK), the VLDL1 fraction was separated 

by ultracentrifugation at 278,000g for 98 minutes using the SW 40 Ti swinging-

bucket rotor (Beckman Coulter, Inc, USA)  as described by Al-Shayji et al. (2007). 

Triglyceride concentration of this fraction was quantified using the standard method 

(Roche Diagnostics, U.K.), and VLDL1-triglyceride production rates were calculated 

from the gradient of the linear increase in plasma concentration over time. 

Beta cell function 

A Stepped Insulin Secretion Test with Arginine stimulation (SISTA) was used to 

quantitate first phase insulin secretion and maximal rate of insulin secretion (Lim et 

al., 2011; Toschi et al., 2002). Square wave hyperglycemia (50.4 then 100.8 mg/dl 

above baseline) was achieved by bolus of 20% Dextrose  (Fresenius Kabi Ltd, UK) 

followed by variable 20% Dextrose infusion for each 30 minute step using an infusion 

pump (Arcomedical Infusion Ltd, UK). An arginine bolus of 5g L-Arginine 

hydrochloride 50% (Martindale Pharmaceuticals, UK) was diluted in 10 ml of 0.9% 

sodium chloride (Fresenius Kabi Ltd, UK), and  injected during the second step of 

hyperglycemia to assess maximal insulin secretory capacity, followed by sampling 

every 2 min for 10 min. Blood samples for determination of C-peptide 

concentrations were obtained every 2 min for the first 10 min of each step, then 

every 5 min. Insulin secretion rates were calculated using a deconvolution method, 

modelling C-peptide kinetics as previously described (Lim et al., 2011). 

Indirect calorimetry 
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Indirect calorimetry was carried out in the fasting state after 30 minutes of supine 

rest using a Quark ventilated hood calorimeter (COSMED, Italy).  Substrate oxidation 

was calculated using standard equations (Frayn, 1983).  

Analytical Procedures 

Glucose was measured by the oxidase method (Yellow Springs Inc., USA). HbA1c was 

quantified using HPLC (Tosoh Bioscience, UK). Liver function tests were analysed at 

the Institute of Cardiovascular and Medical Sciences, University of Glasgow. C-

peptide, insulin, glucose, NEFA, VLDL1-triglyceride, ketones and other metabolites 

were analysed at Clinical Pathology Accreditation Laboratory (Newcastle upon Tyne 

Hospital NHS Foundation Trust, UK) using standard kits as described in the key 

resources table).   

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Analyses were conducted on all subjects with paired data both before and after each 

of the two phases, weight loss and weight maintenance. Data are presented as 

mean±SEM for normally distributed data and median (range) for skewed data. 

Student paired or two-sample t test was used as appropriate for parametric data and 

Mann Whitney U test for nonparametric data.  All statistical analyses including 

testing the normality of data distribution were performed  using Minitab 17 (Minitab 

Inc., State College, PA) and a P value <0.05 was considered as significant. Paired data 

were presented in all tables, and n represents the number of subjects in each group. 

We excluded from the analysis 6 subjects (2 controls who lost weight and became 

non-diabetic, and 4 intervention participants who changed responder status 

between 5 and 12 months) 

The study was designed to compare change in parameters between responders and 

non-responders, assuming a 60% rate of return to non-diabetic glucose control and a 

25% loss to follow up. It was powered on the most stringent variable (change in 

pancreas fat) in responders compared with non-responders.  The calculated sample 

size was achieved by randomising a greater proportion of general practices to 

Intervention in the Tyneside region. As there was 69.0% remission of diabetes after 
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weight loss and 64.4% at 12 months the above assumption for statistical analysis was 

satisfied.   

 

 
 
 


