174 research outputs found

    Simplified open repair for anterior chest wall deformities. Analysis of results in 205 patients

    Get PDF
    SummaryIntroductionPectus deformities are the most frequently seen congenital thoracic wall anomalies. The cause of these conditions is thought to be abnormal elongation of the rib cartilages. We here report our clinical experience and the results of a sternochondroplasty procedure based on the subperichondrial resection of the elongated cartilages.HypothesisThis technique is a valuable surgical strategy to treat the wide variety of pectus deformities.Patients and methodsDuring the period from October 2001 through September 2009, 205 adult patients (171 men and 34 women) underwent pectus excavatum (181), carinatum (19) or arcuatum (5) repair. The patients’ pre and postoperative data were collected using a computerized database, and the results were assessed with a minimum 2-year follow-up.ResultsThe postoperative morbidity rate was minimal and the mortality was nil. The surgeon graded cosmetic results as excellent (72.5%), good (25%) or fair (2.5%), while patients reported better results. Patients with pectus excavatum were found to have much more patent foramen ovale (PFO) than the normal adult population, which occluded after the procedure in 61% of patients, and significant improvement was found in exercise cardiopulmonary function and exercise tolerance at the 1-year follow-up.DiscussionOur sternochondroplasty technique based on the subperichondrial resection of the elongated cartilages allows satisfactory repair of both pectus excavatum and sternal prominence. It is a safe procedure that might improve the effectiveness of surgical therapy in patients with pectus deformities.Level of evidenceLevel IV. Retrospective study

    Arabidopsis S2Lb links AtCOMPASS-like and SDG2 activity in H3K4me3 independently from histone H2B monoubiquitination.

    Get PDF
    The functional determinants of H3K4me3, their potential dependency on histone H2B monoubiquitination, and their contribution to defining transcriptional regimes are poorly defined in plant systems. Unlike in Saccharomyces cerevisiae, where a single SET1 protein catalyzes H3K4me3 as part of COMPlex of proteins ASsociated with Set1 (COMPASS), in Arabidopsis thaliana, this activity involves multiple histone methyltransferases. Among these, the plant-specific SET DOMAIN GROUP 2 (SDG2) has a prominent role. We report that SDG2 co-regulates hundreds of genes with SWD2-like b (S2Lb), a plant ortholog of the Swd2 axillary subunit of yeast COMPASS. We show that S2Lb co-purifies with the AtCOMPASS core subunit WDR5, and both S2Lb and SDG2 directly influence H3K4me3 enrichment over highly transcribed genes. S2Lb knockout triggers pleiotropic developmental phenotypes at the vegetative and reproductive stages, including reduced fertility and seed dormancy. However, s2lb seedlings display little transcriptomic defects as compared to the large repertoire of genes targeted by S2Lb, SDG2, or H3K4me3, suggesting that H3K4me3 enrichment is important for optimal gene induction during cellular transitions rather than for determining on/off transcriptional status. Moreover, unlike in budding yeast, most of the S2Lb and H3K4me3 genomic distribution does not rely on a trans-histone crosstalk with histone H2B monoubiquitination. Collectively, this study unveils that the evolutionarily conserved COMPASS-like complex has been co-opted by the plant-specific SDG2 histone methyltransferase and mediates H3K4me3 deposition through an H2B monoubiquitination-independent pathway in Arabidopsis

    Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women

    Get PDF
    The role of molecular signals from the microbiome and their coordinated interactions with those from the host in hepatic steatosis – notably in obese patients and as risk factors for insulin resistance and atherosclerosis – needs to be understood. We reveal molecular networks linking gut microbiome and host phenome to hepatic steatosis in a cohort of non diabetic obese women. Steatotic patients had low microbial gene richness and increased genetic potential for processing of dietary lipids and endotoxin biosynthesis (notably from Proteobacteria), hepatic inflammation and dysregulation of aromatic and branched-chain amino acid (AAA and BCAA) metabolism. We demonstrated that faecal microbiota transplants and chronic treatment with phenylacetic acid (PAA), a microbial product of AAA metabolism, successfully trigger steatosis and BCAA metabolism. Molecular phenomic signatures were predictive (AUC = 87%) and consistent with the gut microbiome making an impact on the steatosis phenome (>75% shared variation) and, therefore, actionable via microbiome-based therapies

    GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5Êč and 3Êč ends of its target genes

    Get PDF
    The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation. Here, we explored the mechanism through which GCN5 controls transcription. First, we fine-mapped its GCN5 binding sites genome-wide and then used several global methodologies (ATAC-seq, ChIP-seq and RNA-seq) to assess the effect of GCN5 loss-of-function on the expression and epigenetic regulation of its target genes. These analyses provided evidence that GCN5 has a dual role in the regulation of H3K14ac levels in their 5â€Č and 3â€Č ends of its target genes. While the gcn5 mutation led to a genome-wide decrease of H3K14ac in the 5â€Č end of the GCN5 down-regulated targets, it also led to an increase of H3K14ac in the 3â€Č ends of GCN5 up-regulated targets. Furthermore, genome-wide changes in H3K14ac levels in the gcn5 mutant correlated with changes in H3K9ac at both 5â€Č and 3â€Č ends, providing evidence for a molecular link between the depositions of these two histone modifications. To understand the biological relevance of these regulations, we showed that GCN5 participates in the responses to biotic stress by repressing salicylic acid (SA) accumulation and SA-mediated immunity, highlighting the role of this protein in the regulation of the crosstalk between diverse developmental and stress-responsive physiological programs. Hence, our results demonstrate that GCN5, through the modulation of H3K14ac levels on its targets, controls the balance between biotic and abiotic stress responses and is a master regulator of plant-environmental interactions

    An improved assembly and annotation of the melon (Cucumis melo L.) reference genome

    Get PDF
    We report an improved assembly (v3.6.1) of the melon (Cucumis melo L.) genome and a new genome annotation (v4.0). The optical mapping approach allowed correcting the order and the orientation of 21 previous scaffolds and permitted to correctly define the gap-size extension along the 12 pseudomolecules. A new comprehensive annotation was also built in order to update the previous annotation v3.5.1, released more than six years ago. Using an integrative annotation pipeline, based on exhaustive RNA-Seq collections and ad-hoc transposable element annotation, we identified 29,980 protein-coding loci. Compared to the previous version, the v4.0 annotation improved gene models in terms of completeness of gene structure, UTR regions definition, intron-exon junctions and reduction of fragmented genes. More than 8,000 new genes were identified, one third of them being well supported by RNA-Seq data. To make all the new resources easily exploitable and completely available for the scientific community, a redesigned Melonomics genomic platform was released at http://melonomics.net. The resources produced in this work considerably increase the reliability of the melon genome assembly and resolution of the gene models paving the way for further studies in melon and related species

    Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD.

    Get PDF
    OBJECTIVE: Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor expressed in tissues with high oxidative activity that plays a central role in metabolism. In this work, we investigated the effect of hepatocyte PPARα on non-alcoholic fatty liver disease (NAFLD). DESIGN: We constructed a novel hepatocyte-specific PPARα knockout (Pparα(hep-/-)) mouse model. Using this novel model, we performed transcriptomic analysis following fenofibrate treatment. Next, we investigated which physiological challenges impact on PPARα. Moreover, we measured the contribution of hepatocytic PPARα activity to whole-body metabolism and fibroblast growth factor 21 production during fasting. Finally, we determined the influence of hepatocyte-specific PPARα deficiency in different models of steatosis and during ageing. RESULTS: Hepatocyte PPARα deletion impaired fatty acid catabolism, resulting in hepatic lipid accumulation during fasting and in two preclinical models of steatosis. Fasting mice showed acute PPARα-dependent hepatocyte activity during early night, with correspondingly increased circulating free fatty acids, which could be further stimulated by adipocyte lipolysis. Fasting led to mild hypoglycaemia and hypothermia in Pparα(hep-/-) mice when compared with Pparα(-/-) mice implying a role of PPARα activity in non-hepatic tissues. In agreement with this observation, Pparα(-/-) mice became overweight during ageing while Pparα(hep-/-) remained lean. However, like Pparα(-/-) mice, Pparα(hep-/-) fed a standard diet developed hepatic steatosis in ageing. CONCLUSIONS: Altogether, these findings underscore the potential of hepatocyte PPARα as a drug target for NAFLD

    O-GlcNAcylation Increases ChREBP Protein Content and Transcriptional Activity in the Liver

    Get PDF
    International audienceOBJECTIVE Carbohydrate-responsive element–binding protein (ChREBP) is a key transcription factor that mediates the effects of glucose on glycolytic and lipogenic genes in the liver. We have previously reported that liver-specific inhibition of ChREBP prevents hepatic steatosis in ob/ob mice by specifically decreasing lipogenic rates in vivo. To better understand the regulation of ChREBP activity in the liver, we investigated the implication of O-linked ÎČ-N-acetylglucosamine (O-GlcNAc or O-GlcNAcylation), an important glucose-dependent posttranslational modification playing multiple roles in transcription, protein stabilization, nuclear localization, and signal transduction. RESEARCH DESIGN AND METHODS O-GlcNAcylation is highly dynamic through the action of two enzymes: the O-GlcNAc transferase (OGT), which transfers the monosaccharide to serine/threonine residues on a target protein, and the O-GlcNAcase (OGA), which hydrolyses the sugar. To modulate ChREBPOG in vitro and in vivo, the OGT and OGA enzymes were overexpressed or inhibited via adenoviral approaches in mouse hepatocytes and in the liver of C57BL/6J or obese db/db mice. RESULTS Our study shows that ChREBP interacts with OGT and is subjected to O-GlcNAcylation in liver cells. O-GlcNAcylation stabilizes the ChREBP protein and increases its transcriptional activity toward its target glycolytic (L-PK) and lipogenic genes (ACC, FAS, and SCD1) when combined with an active glucose flux in vivo. Indeed, OGT overexpression significantly increased ChREBPOG in liver nuclear extracts from fed C57BL/6J mice, leading in turn to enhanced lipogenic gene expression and to excessive hepatic triglyceride deposition. In the livers of hyperglycemic obese db/db mice, ChREBPOG levels were elevated compared with controls. Interestingly, reducing ChREBPOG levels via OGA overexpression decreased lipogenic protein content (ACC, FAS), prevented hepatic steatosis, and improved the lipidic profile of OGA-treated db/db mice. CONCLUSIONS Taken together, our results reveal that O-GlcNAcylation represents an important novel regulation of ChREBP activity in the liver under both physiological and pathophysiological conditions

    Perceived Barriers to Healthy Eating and Physical Activity among Adolescents in Seven Arab Countries: A Cross-Cultural Study

    Get PDF
    Objective. To highlight the perceived personal, social, and environmental barriers to healthy eating and physical activity among Arab adolescents. Method. A multistage stratified sampling method was used to select 4698 students aged 15–18 years (2240 males and 2458 females) from public schools. Seven Arab counties were included in the study, namely, Algeria, Jordan, Kuwait, Libya, Palestine, Syria, and the United Arab Emirates. Self-reported questionnaire was used to list the barriers to healthy eating and physical activity facing these adolescents. Results. It was found that lack of information on healthy eating, lack of motivation to eat a healthy diet, and not having time to prepare or eat healthy food were the main barriers to healthy eating among both genders. For physical activity, the main barriers selected were lack of motivation to do physical activity, less support from teachers, and lack of time to do physical activity. In general, females faced more barriers to physical activity than males in all countries included. There were significant differences between males and females within each country and among countries for most barriers. Conclusion. Intervention programmes to combat obesity and other chronic noncommunicable diseases in the Arab world should include solutions to overcome the barriers to weight maintenance, particularly the sociocultural barriers to practising physical activity
    • 

    corecore