36 research outputs found

    Polarimetric survey of main-belt asteroids: IV New results from the first epoch of the CASLEO survey

    Get PDF
    Aims: We present results of a polarimetric survey of main-belt asteroids at Complejo Astronómico El Leoncito (CASLEO), San Juan, Argentina. The aims of this survey are to increase the database of asteroid polarimetry, to estimate diversity in polarimetric properties of asteroids that belong to different taxonomic classes, and to search for objects that exhibit anomalous polarimetric properties. Methods: The data were obtained using the Torino and CASPROF polarimeters at the 2.15 m telescope. The Torino polarimeter is an instrument that allows simultaneous measurement of polarization in five different bands, and the CASPROF polarimeter is a two-hole aperture polarimeter with rapid modulation. Results: The survey began in 1995, and until 2012 data on a large sample of asteroids were obtained. We here present and analyze the unpublished results for 129 asteroids of different taxonomic types, 56 which were polarimetrically observed for the first time. We find that the asteroids (402) Chloe and (729) Watsonia are Barbarians, and asteroid (269) Justitia shows a phase – polarization curve that seems to have a small inversion angle. Data obtained in UBVRI colors allow us to sketch an analysis of the wavelength dependence of the degree of linear polarization for 31 asteroids, in spite of some large error bars in some cases.Fil: Gil Hutton, Ricardo Alfredo. Consejo Nacional de Investigaciones Cientí­ficas y Técnicas. Centro Cientí­fico Tecnológico San Juan. Complejo Astronómico "El Leoncito"; Argentina. Universidad Nacional de San Juan; ArgentinaFil: Cellino, A.. Osservatorio Astrofisico di Torino; ItaliaFil: Bendjoya, Ph.. Université de Nice Sophia Antipolis. Observatoire de la Côte d’Azur; Franci

    Evidence of an asymmetrical Keplerian disk in the Br{\gamma} and He I emission lines around the Be star HD 110432

    Get PDF
    Context. HD 110432 was classified as a "\gamma Cas X-ray analog" since it has similar peculiar X-ray and optical characteristics, i.e. a hard-thermal X-ray variable emission and an optical spectrum affected by an extensive disk. Lopes de Oliveira et al. (2007) suggest that it might be a Be star harboring an accreting white dwarf or that the X-rays may come from an interaction between the surface of the star and its disk. Aims. To investigate the disk around this Be star we used the VLTI/AMBER instrument, which combines high spectral (R=12000) and high spatial (\theta min =4 mas) resolutions. Methods. We constrain the geometry and kinematics of its circumstellar disk from the highest spatial resolution ever achieved on this star. Results. We obtain a disk extension in the Br{\gamma} line of 10.2 D\ast and 7.8 D\ast in the He I line at 2.05 \mu m assuming a Gaussian disk model. The disk is clearly following a Keplerian rotation. We obtained an inclination angle of 55\degree, and the star is a nearly critical rotator with Vrot /Vc =1.00±\pm0.2. This inclination is greater than the value found for \gamma Cas (about 42\degree, Stee et al. 2012), and is consistent with the inference from optical Fe II emission profiles by Smith & Balona (2006) that the inclination should be more than the \gamma Cas value. In the near-IR continuum, the disk of HD 110432 is 3 times larger than \gamma Cas's disk. We have no direct evidence of a companion around HD 110432, but it seems that we have a clear signature for disk inhomogeneities as detected for {\zeta} Tau. This asymmetrical disk detection may be interpreted within the one-armed oscillation viscous disk framework. Another finding is that the disk size in the near-IR is similar to other Be stars with different spectral types and thus may be independent of the stellar parameters, as found for classical Be stars.Comment: 9 page

    Asteroid Compositions: some evidence from polarimetry

    Get PDF
    Although it cannot provide direct and unambiguous information on the mineralogical composition of an asteroid surface, polarimetry is a very useful tool to get an improved understanding of parameters which are intimately related to surface composition and regolith structure. In recent times there has been a revival in the field of asteroid polarimetry, on the theoretical side, in relation to experimental simulations, and due to the activity of some teams who are engaged in extensive observational campaigns. Some new discoveries of objects exhibiting unprecedented polarimetric properties have been done. The above subjects are briefly reviewed.Fil: Cellino, A.. Istituto Nazionale di Astrofisica; ItaliaFil: Di Martino, M.. Istituto Nazionale di Astrofisica; ItaliaFil: Levasseur Regourd, A. C.. Centre National de la Recherche Scientifique; Francia. Universidad Pierre y Marie Curie; FranciaFil: Belskaya, I. N.. Astronomical Institute of Kharkiv National University; UcraniaFil: Bendjoya, Ph.. Universite Nice; FranciaFil: Gil Hutton, Ricardo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; Argentin

    The binary system of the spinning-top Be star Achernar

    Full text link
    Achernar, the closest and brightest classical Be star, presents rotational flattening, gravity darkening, occasional emission lines due to a gaseous disk, and an extended polar wind. It is also a member of a close binary system with an early A-type dwarf companion. We aim to determine the orbital parameters of the Achernar system and to estimate the physical properties of the components. We monitored the relative position of Achernar B using a broad range of high angular resolution instruments of the VLT/VLTI (VISIR, NACO, SPHERE, AMBER, PIONIER, GRAVITY, and MATISSE) over a period of 13 years (2006-2019). These astrometric observations are complemented with a series of more than 700 optical spectra for the period from 2003 to 2016. We determine that Achernar B orbits the Be star on a seven-year period, eccentric orbit (e = 0.7255 +/- 0.0014) which brings the two stars within 2 au at periastron. The mass of the Be star is found to be mA = 6.0 +/- 0.6 Msun for a secondary mass of mB = 2.0 +/- 0.1 Msun. We find a good agreement of the parameters of Achernar A with the evolutionary model of a critically rotating star of 6.4 Msun at an age of 63 million years. We also identify a resolved comoving low-mass star, which leads us to propose that Achernar is a member of the Tucana-Horologium moving group. Achernar A is presently in a short-lived phase of its evolution following the turn-off, during which its geometrical flattening ratio is the most extreme. Considering the orbital parameters, no significant interaction occurred between the two components, demonstrating that Be stars may form through a direct, single-star evolution path without mass transfer. Since component A will enter the instability strip in a few hundred thousand years, Achernar appears to be a promising progenitor of the Cepheid binary systems.Comment: 27 pages, Astronomy & Astrophysics, in press. The full set of continuum normalized high resolution spectra of Achernar is available at https://doi.org/10.5281/zenodo.697730

    The astrometric Gaia-FUN-SSO observation campaign of 99 942 Apophis

    Full text link
    Astrometric observations performed by the Gaia Follow-Up Network for Solar System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects first detected by ESA's Gaia mission remain recoverable after their discovery. An observation campaign on the potentially hazardous asteroid (99 942) Apophis was conducted during the asteroid's latest period of visibility, from 12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall performance of the Gaia-FUN-SSO . The 2732 high quality astrometric observations acquired during the Gaia-FUN-SSO campaign were reduced with the Platform for Reduction of Astronomical Images Automatically (PRAIA), using the USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric reduction process and the precision of the newly obtained measurements are discussed. We compare the residuals of astrometric observations that we obtained using this reduction process to data sets that were individually reduced by observers and accepted by the Minor Planet Center. We obtained 2103 previously unpublished astrometric positions and provide these to the scientific community. Using these data we show that our reduction of this astrometric campaign with a reliable stellar catalog substantially improves the quality of the astrometric results. We present evidence that the new data will help to reduce the orbit uncertainty of Apophis during its close approach in 2029. We show that uncertainties due to geolocations of observing stations, as well as rounding of astrometric data can introduce an unnecessary degradation in the quality of the resulting astrometric positions. Finally, we discuss the impact of our campaign reduction on the recovery process of newly discovered asteroids.Comment: Accepted for publication in A&

    Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022

    Full text link
    We present a campaign designed to train the GRANDMA network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they are expected to be an electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and start prompt observations as soon as possible to better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (which started at the end of May 2023), and future missions such as SM. To receive, manage and send out observational plans to our partner telescopes we set up dedicated infrastructure and a rota of follow-up adcates were organized to guarantee round-the-clock assistance to our telescope teams. To ensure a great number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB triggers were selected, nine fields had been observed, and three afterglows were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of z=0.82±0.09z=0.82\pm0.09, its lightcurve elution, fit the decay slope of the afterglows, and study the properties of the host galaxy

    Pluto's lower atmosphere and pressure evolution from ground-based stellar occultations, 1988-2016

    Get PDF
    Context. The tenuous nitrogen (N2) atmosphere on Pluto undergoes strong seasonal effects due to high obliquity and orbital eccentricity, and has recently (July 2015) been observed by the New Horizons spacecraft. Aims. The main goals of this study are (i) to construct a well calibrated record of the seasonal evolution of surface pressure on Pluto and (ii) to constrain the structure of the lower atmosphere using a central flash observed in 2015. Methods. Eleven stellar occultations by Pluto observed between 2002 and 2016 are used to retrieve atmospheric profiles (density, pressure, temperature) between altitude levels of ~5 and ~380 km (i.e. pressures from ~ 10 μbar to 10 nbar). Results. (i) Pressure has suffered a monotonic increase from 1988 to 2016, that is compared to a seasonal volatile transport model, from which tight constraints on a combination of albedo and emissivity of N2 ice are derived. (ii) A central flash observed on 2015 June 29 is consistent with New Horizons REX profiles, provided that (a) large diurnal temperature variations (not expected by current models) occur over Sputnik Planitia; and/or (b) hazes with tangential optical depth of ~0.3 are present at 4–7 km altitude levels; and/or (c) the nominal REX density values are overestimated by an implausibly large factor of ~20%; and/or (d) higher terrains block part of the flash in the Charon facing hemisphere

    New Polarimetric And Spectroscopic Evidence Of Anomalous Enrichment In Spinel-Bearing Calcium-Aluminium-Rich Inclusions Among L-Type Asteroids

    No full text
    Asteroids can be classified into several groups based on their spectral reflectance. Among these groups, the one belonging to the L-class in the taxonomic classification based on visible and near-infrared spectra exhibit several peculiar properties. First, their near-infrared spectrum is characterized by a strong absorption band interpreted as the diagnostic of a high content of the FeO bearing spinel mineral. This mineral is one of the main constituents of Calcium-Aluminum-rich Inclusions (CAI) the oldest mineral compounds found in the solar system. In polarimetry, they possess an uncommonly large value of the inversion angle incompatible with all known asteroid belonging to other taxonomical classes. Asteroids found to possess such a high inversion angle are commonly called Barbarians based on the first asteroid on which this property was first identified, (234) Barbara. In this paper we present the results of an extensive campaign of polarimetric and spectroscopic observations of L-class objects. We have derived phase-polarization curves for a sample of 7 Barbarians, finding a variety of inversion angles ranging between 25 and 30°. Spectral reflectance data exhibit variations in terms of spectral slope and absorption features in the near-infrared. We analyzed these data using a Hapke model to obtain some inferences about the relative abundance of CAI and other mineral compounds. By combining spectroscopic and polarimetric results, we find evidence that the polarimetric inversion angle is directly correlated with the presence of CAI, and the peculiar polarimetric properties of Barbarians are primarily a consequence of their anomalous composition

    Progress report on phase knife stellar coronagraphy at Dome C

    No full text
    Antarctic Science, 21, pp. 533-534 (2009)International audienc
    corecore