100 research outputs found

    Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators

    Get PDF
    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. (See CASI ID 20120009374 for Supplemental CD-ROM.

    Preparation for Scaling Studies of Ice-Crystal Icing at the NRC Research Altitude Test Facility

    Get PDF
    This paper describes experiments conducted at the National Research Council (NRC) of Canadas Research Altitiude Test Facility between March 26 and April 11, 2012. The tests, conducted collaboratively between NASA and NRC, focus on three key aspects in preparation for later scaling work to be conducted with a NACA 0012 airfoil model in the NRC Cascade rig: (1) cloud characterization, (2) scaling model development, and (3) ice-shape profile measurements. Regarding cloud characterization, the experiments focus on particle spectra measurements using two shadowgraphy methods, cloud uniformity via particle scattering from a laser sheet, and characterization of the SEA Multi-Element probe. Overviews of each aspect as well as detailed information on the diagnostic method are presented. Select results from the measurements and interpretation are presented which will help guide future work

    Direct Effects, Compensation, and Recovery in Female Fathead Minnows Exposed to a Model Aromatase Inhibitor

    Get PDF
    BackgroundSeveral chemicals in the environment have the potential to inhibit aromatase, an enzyme critical to estrogen synthesis.ObjectivesThe objective of this study was to provide a detailed characterization of molecular and biochemical responses of female fathead minnows to a model aromatase inhibitor, fadrozole (FAD).MethodsFish were exposed via water to 0, 3, or 30 microg FAD/L for 8 days and then held in clean water for 8 days, with samples collected at four time points during each 8-day period. We quantified ex vivo steroid production, plasma steroids, and plasma vitellogenin (Vtg) concentrations and analyzed relative transcript abundance of 10 key regulatory genes in ovaries and 3 in pituitary tissue by real-time polymerase chain reaction.ResultsEx vivo 17beta-estradiol (E2) production and plasma E2 and Vtg concentrations were significantly reduced after a single day of exposure to 3 microg or 30 microg FAD/L. However, plasma E2 concentrations recovered by the eighth day of exposure in the 3-microg/L group and within 1 day of cessation of exposure in the 30-microg/L group, indicating concentration- and time-dependent physiologic compensation and recovery. Concentration-dependent increases in transcripts coding for aromatase (A isoform), cytochrome P450 side-chain cleavage, steroidogenic acute regulatory protein, and follicle-stimulating hormone receptor all coincided with increased E2 production and recovery of plasma E2 concentrations.ConclusionsResults of this research highlight the need to consider compensation/adaptation and recovery when developing and interpreting short-term bioassays or biomarkers or when trying to predict the effects of chemical exposures based on mode of action

    Overexpression of the Linker Histone-binding Protein tNASP Affects Progression through the Cell Cycle

    Get PDF
    NASP is an H1 histone-binding protein that is cell cycle-regulated and occurs in two major forms: tNASP, found in gametes, embryonic cells, and transformed cells; and sNASP, found in all rapidly dividing somatic cells (Richardson, R. T., Batova, I. N., Widgren, E. E., Zheng, L. X., Whitfield, M., Marzluff, W. F., and O'Rand, M. G. (2000) J. Biol. Chem. 275, 30378-30386). When full-length tNASP fused to green fluorescent protein (GFP) is transiently transfected into HeLa cells, it is efficiently transported into the nucleus within 2 h after translation in the cytoplasm, whereas the NASP nuclear localization signal (NLS) deletion mutant (NASP-DeltaNLS-GFP) is retained in the cytoplasm. In HeLa cells synchronized by a double thymidine block and transiently transfected to overexpress full-length tNASP or NASP-DeltaNLS, progression through the G(1)/S border is delayed. Cells transiently transfected to overexpress the histone-binding site (HBS) deletion mutant (NASP-DeltaHBS) or sNASP were not delayed in progression through the G(1)/S border. By using a DNA supercoiling assay, in vitro binding data demonstrate that H1 histone-tNASP complexes can transfer H1 histones to DNA, whereas NASP-DeltaHBS cannot. Measurement of NASP mobility in the nucleus by fluorescence recovery after photobleaching indicates that NASP mobility is virtually identical to that reported for H1 histones. These data suggest that NASP-H1 complexes exist in the nucleus and that tNASP can influence cell cycle progression through the G(1)/S border through mediation of DNA-H1 histone binding

    When do myopia genes have their effect? Comparison of genetic risks between children and adults

    Get PDF
    Previous studies have identified many genetic loci for refractive error and myopia. We aimed to investigate the effect of these loci on ocular biometry as a function of age in children, adolescents, and adults. The study population consisted of three age groups identified from the international CREAM consortium: 5,490 individuals aged 25 years. All participants had undergone standard ophthalmic examination including measurements of axial length (AL) and corneal radius (CR). We examined the lead SNP at all 39 currently known genetic loci for refractive error identified from genome-wide association studies (GWAS), as well as a combined genetic risk score (GRS). The beta coefficient for association between SNP genotype or GRS versus AL/CR was compared across the three age groups, adjusting for age, sex, and principal components. Analyses were Bonferroni-corrected. In the age group <10 years, three loci (GJD2, CHRNG, ZIC2) were associated with AL/CR. In the age group 10–25 years, four loci (BMP2, KCNQ5, A2BP1, CACNA1D) were associated; and in adults 20 loci were associated. Association with GRS increased with age; β = 0.0016 per risk allele (P = 2 × 10–8) in <10 years, 0.0033 (P = 5 × 10–15) in 10- to 25-year-olds, and 0.0048 (P = 1 × 10–72) in adults. Genes with strongest effects (LAMA2, GJD2) had an early effect that increased with age. Our results provide insights on the age span during which myopia genes exert their effect. These insights form the basis for understanding the mechanisms underlying high and pathological myopia

    Thiophene-Fused Tropones as Chemical Warfare Agent-Responsive Building Blocks

    Get PDF
    We report the synthesis of dithienobenzotropone-based conjugated alternating copolymers by direct arylation polycondensation. Postpolymerization modification by hydride reduction yields cross-conjugated, reactive hydroxyl-containing copolymers that undergo phosphorylation and ionization upon exposure to the chemical warfare agent mimic diethylchlorophosphate (DCP). The resulting conjugated, cationic copolymer is highly colored and facilitates the spectroscopic and colorimetric detection of DCP in both solution and thin-film measurements.United States. Defense Threat Reduction Agency. Chemical and Biological Technologies Department (Grant BA12PHM123

    Chromogenic and fluorogenic reagents for chemical warfare nerve agents' detection

    Get PDF
    The ease of production, the extreme toxicity of organophosphorus-containing nerve agents, and their facile use in terrorism attacks underscores the need to develop accurate systems to detect these chemicals. Among different technologies we review here recent advances in the design of chromo-fluorogenic methods for the specific detection of nerve agents. Optical sensing (especially colorimetric detection) requires usually low-cost and widely used instrumentation and offers the possibility of so-called “naked eye detection”. Recent reported examples suggest that the application of chromo-fluorogenic supramolecular concepts for the chromogenic or fluorogenic sensing of nerve agents might be an area of increasing interest that would allow developing systems able to overcome some of the limitations shown by classical analytical methods.Costero Nieto, Ana Maria, [email protected] ; Parra Alvarez, Margarita, [email protected] ; Gil Grau, Salvador, [email protected]
    corecore