1,986 research outputs found

    Anomalous Thermal Transport of SrTiO3_3 Driven by Anharmonic Phonon Renormalization

    Full text link
    SrTiO3_3 has been extensively investigated owing to its abundant degrees of freedom for modulation. However, the microscopic mechanism of thermal transport especially the relationship between phonon scattering and lattice distortion during the phase transition are missing and unclear. Based on deep-potential molecular dynamics and self-consistent \textit{ab initio} lattice dynamics, we explore the lattice anharmonicity-induced tetragonal-to-cubic phase transition and explain this anomalous behavior during the phase transition. Our results indicate the significant role of the renormalization of third-order interatomic force constants to second-order terms. Our work provides a robust framework for evaluating the thermal transport properties during structural transformation, benefitting the future design of promising thermal and phononic materials and devices

    The Anti-Non-Small Cell Lung Cancer Cell Activity by a mTOR Kinase Inhibitor PQR620

    Get PDF
    In non-small-cell lung carcinoma (NSCLC), aberrant activation of mammalian target of rapamycin (mTOR) contributes to tumorigenesis and cancer progression. PQR620 is a novel and highly-potent mTOR kinase inhibitor. We here tested its potential activity in NSCLC cells. In primary human NSCLC cells and established cell lines (A549 and NCI-H1944), PQR620 inhibited cell growth, proliferation, and cell cycle progression, as well as cell migration and invasion, while inducing significant apoptosis activation. PQR620 disrupted assembles of mTOR complex 1 (mTOR-Raptor) and mTOR complex 2 (mTOR-Rictor-Sin1), and blocked Akt, S6K1, and S6 phosphorylations in NSCLC cells. Restoring Akt-mTOR activation by a constitutively-active Akt1 (S473D) only partially inhibited PQR620-induced cytotoxicity in NSCLC cells. PQR620 was yet cytotoxic in Akt1/2-silenced NSCLC cells, supporting the existence of Akt-mTOR-independent mechanisms. Indeed, PQR620 induced sphingosine kinase 1 (SphK1) inhibition, ceramide production and oxidative stress in primary NSCLC cells. In vivo studies demonstrated that daily oral administration of a single dose of PQR620 potently inhibited primary NSCLC xenograft growth in severe combined immune deficient mice. In PQR620-treated xenograft tissues, Akt-mTOR inactivation, apoptosis induction, SphK1 inhibition and oxidative stress were detected. In conclusion, PQR620 exerted potent anti-NSCLC cell activity via mTOR-dependent and -independent mechanisms

    Pharmacokinetic Comparison of Ferulic Acid in Normal and Blood Deficiency Rats after Oral Administration of Angelica sinensis, Ligusticum chuanxiong and Their Combination

    Get PDF
    Radix Angelica Sinensis (RAS) and Rhizome Ligusticum (RLC) combination is a popular herb pair commonly used in clinics for treatment of blood deficiency syndrome in China. The aim of this study is to compare the pharmacokinetic properties of ferulic acid (FA), a main bioactive constituent in both RAS and RLC, between normal and blood deficiency syndrome animals, and to investigate the influence of compatibility of RAS and RLC on the pharmacokinetic of FA. The blood deficiency rats were induced by injecting 2% Acetyl phenylhydrazine (APH) on the first day, every other day, to a total of five times, at the dosage of 100, 50, 50, 30, 30 mg/kg body mass, respectively. Quantification of FA in rat plasma was achieved by using a simple and rapid HPLC method. Plasma samples were collected at different time points to construct pharmacokinetic profiles by plotting drug concentration versus time, and estimate pharmacokinetic parameters. Between normal and blood deficiency model groups, both AUC(0–t) and Cmax of FA in blood deficiency rats after RAS-RLC extract administration increased significantly (P < 0.05), while clearance (CL) decreased significantly. Among three blood deficiency model groups, t1/2α, Vd, AUC(0–t) and AUC(0–∞) all increased significantly in the RAS-RLC extract group compared with the RAS group. The results indicated that FA was absorbed better and eliminated slower in blood deficiency rats; RLC could significantly prolong the half-life of distribution, increase the volume of distribution and the absorption amount of FA of RAS in blood deficiency rats, which may be due to the synergic action when RAS and RLC were used together to treat blood deficiency syndrome

    Characterization of the Sesbania rostrata Phytochelatin Synthase Gene: Alternative Splicing and Function of Four Isoforms

    Get PDF
    Phytochelatins (PCs) play an important role in detoxification of heavy metals in plants. PCs are synthesized from glutathione by phytochelatin synthase (PCS), a dipeptidyltransferase. Sesbania rostrata is a tropical legume plant that can tolerate high concentrations of Cd and Zn. In this study, the S. rostrata PCS gene (SrPCS) and cDNAs were isolated and characterized. Southern blot and sequence analysis revealed that a single copy of the SrPCS gene occurs in the S. rostrata genome, and produces four different SrPCS mRNAs and proteins, SrPCS1–SrPCS4, by alternative splicing of the SrPCS pre-mRNA. The SrPCS1 and SrPCS3 proteins conferred Cd tolerance when expressed in yeast cells, whereas the SrPCS2 and SrPCS4 proteins, which lack the catalytic triad and the N-terminal domains, did not. These results suggested that SrPCS1 and SrPCS3 have potential applications in genetic engineering of plants for enhancing heavy metal tolerance and phytoremediation of contaminated soils

    Proton-Boron Fusion Yield Increased by Orders of Magnitude with Foam Targets

    Full text link
    A novel intense beam-driven scheme for high yield of the tri-alpha reaction 11B(p,{\alpha})2{\alpha} was investigated. We used a foam target made of cellulose triacetate (TAC, C_9H_{16}O_8) doped with boron. It was then heated volumetrically by soft X-ray radiation from a laser heated hohlraum and turned into a homogenous, and long living plasma. We employed a picosecond laser pulse to generate a high-intensity energetic proton beam via the well-known Target Normal Sheath Acceleration (TNSA) mechanism. We observed up to 10^{10}/sr {\alpha} particles per laser shot. This constitutes presently the highest yield value normalized to the laser energy on target. The measured fusion yield per proton exceeds the classical expectation of beam-target reactions by up to four orders of magnitude under high proton intensities. This enhancement is attributed to the strong electric fields and nonequilibrium thermonuclear fusion reactions as a result of the new method. Our approach shows opportunities to pursue ignition of aneutronic fusion

    Genomewide association study of leprosy.

    Get PDF
    BACKGROUND: The narrow host range of Mycobacterium leprae and the fact that it is refractory to growth in culture has limited research on and the biologic understanding of leprosy. Host genetic factors are thought to influence susceptibility to infection as well as disease progression. METHODS: We performed a two-stage genomewide association study by genotyping 706 patients and 1225 controls using the Human610-Quad BeadChip (Illumina). We then tested three independent replication sets for an association between the presence of leprosy and 93 single-nucleotide polymorphisms (SNPs) that were most strongly associated with the disease in the genomewide association study. Together, these replication sets comprised 3254 patients and 5955 controls. We also carried out tests of heterogeneity of the associations (or lack thereof) between these 93 SNPs and disease, stratified according to clinical subtype (multibacillary vs. paucibacillary). RESULTS: We observed a significant association (P<1.00x10(-10)) between SNPs in the genes CCDC122, C13orf31, NOD2, TNFSF15, HLA-DR, and RIPK2 and a trend toward an association (P=5.10x10(-5)) with a SNP in LRRK2. The associations between the SNPs in C13orf31, LRRK2, NOD2, and RIPK2 and multibacillary leprosy were stronger than the associations between these SNPs and paucibacillary leprosy. CONCLUSIONS: Variants of genes in the NOD2-mediated signaling pathway (which regulates the innate immune response) are associated with susceptibility to infection with M. leprae

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
    corecore