51 research outputs found

    Molecular features of heterogeneous vancomycin-intermediate Staphylococcus aureus strains isolated from bacteremic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heterogeneous vancomycin-intermediate <it>Staphylococcus aureus </it>(hVISA) bacteremia is an emerging infection. Our objective was to determine the molecular features of hVISA strains isolated from bacteremic patients and to compare them to methicillin resistant <it>S. aureus </it>(MRSA) and methicillin sensitive <it>S. aureus </it>(MSSA) blood isolates.</p> <p>Results</p> <p>We assessed phenotypic and genomic changes of hVISA (n = 24), MRSA (n = 16) and MSSA (n = 17) isolates by PCR to determine staphylococcal chromosomal cassette (SCC<it>mec</it>) types, Panton-Valentine leukocidin (PVL) and the accessory gene regulator (<it>agr</it>) loci. Biofilm formation was quantified. Genetic relatedness was assessed by PFGE. PFGE analysis of isolates was diverse suggesting multiple sources of infection. 50% of hVISA isolates carried SCC<it>mec </it>type I, 21% type II; 25% type V; in 4% the SCC<it>mec </it>type could not be identified. Among MRSA isolates, 44% were SCC<it>mec </it>type I, 12.5% type II, 25% type V, 12.5% were non-typable, and 6% were SCC<it>mec </it>type IVd. Only one hVISA isolate and two MSSA isolates carried the PVL. Biofilm formation and <it>agr </it>patterns were diverse.</p> <p>Conclusion</p> <p>hVISA isolates were diverse in all parameters tested. A considerable number of hVISA and MRSA strains carried the SCC<it>mec </it>type V cassette, which was not related to community acquisition.</p

    Children must be protected from the tobacco industry's marketing tactics.

    Get PDF

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Future trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050. Methods: Using forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]). Interpretation: Globally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions

    A novel Alzheimer disease locus located near the gene encoding tau protein

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE ε4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE ε4+ (10 352 cases and 9207 controls) and APOE ε4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE ε4 status. Suggestive associations (P<1 × 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE ε4+: 1250 cases and 536 controls; APOE ε4-: 718 cases and 1699 controls). Among APOE ε4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 × 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE ε4+ subjects (CR1 and CLU) or APOE ε4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 × 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (P≤1.3 × 10-8), frontal cortex (P≤1.3 × 10-9) and temporal cortex (P≤1.2 × 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 × 10-6) and temporal cortex (P=2.6 × 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE ε4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted

    Reply to Vandijck et al

    No full text

    Prevalence and Characteristics of Heteroresistant Vancomycin-Intermediate Staphylococcus aureus Bacteremia in a Tertiary Care Center

    No full text
    Infections with S. aureus with heterogeneous intermediate resistance to vancomycin (hVISA) are occurring more frequently. The detection of these infections, their prevalence, clinical characteristics, and significance are controversial. During 2003 and 2004, all blood culture isolates of methicillin-resistant Staphylococcus aureus (264 patients) at the Sheba Medical Center, Tel Hashomer, Israel, were assessed for hVISA by using the Etest macromethod. A total of 16 patients (6%) were positive for hVISA. Resistance to teicoplanin alone and to vancomycin alone using the Etest macromethod was found in 14 and 10 patients, respectively. Standard MICs to vancomycin were between 1 to 4 mg/ml. Most of these isolates (12 of 16 [75%]) would have been missed without specific testing. The median number of bacteremic days was 4. Seven patients had positive blood cultures for more than 5 days. Twelve patients died, and for eight of these the deaths were directly related to hVISA sepsis. We found that hVISA bacteremia was prevalent in our institution, and we suggest seeking hVISA in patients with persistent S. aureus bacteremia

    Empiric Usage of &ldquo;Anti-Pseudomonal&rdquo; Agents for Hospital-Acquired Urinary Tract Infections

    No full text
    Hospital-acquired urinary tract infection (HAUTI) is one of the most common hospital-acquired infections, and over 80% of HAUTI are catheter-associated (CAUTI). Pseudomonas aeruginosa, as well as other non-glucose fermenting Gram negative organisms (NGFGN, e.g., Acinetobacter baumannii), are frequently covered empirically with &ldquo;anti-Pseudomonals&rdquo; being administered for every HAUTI (and CAUTI). However, this common practice was never trialed in controlled settings in order to quantify its efficacy and its potential impacts on hospitalization outcomes. There were 413 patients with HAUTI that were included in this retrospective cohort study (2017&ndash;2018), 239 (57.9%) had CAUTI. There were 75 NGFGN infections (18.2% of HAUTI, 22.3% of CAUTI). P. aeruginosa was the most common NGFGN (82%). Despite multiple associations per univariable analysis, recent (3 months) exposure to antibiotics was the only independent predictor for NGFGN HAUTI (OR = 2.4, CI-95% = 1.2&ndash;4.8). Patients who received empiric anti-Pseudomonals suffered from worse outcomes, but in multivariable models (one for each outcome), none were independently associated with the empiric administration of anti-Pseudomonals. To conclude, approximately one of every five HAUTI (and CAUTI) are due to NGFGN, which justifies the practice of empiric anti-Pseudomonals for patients with HAUTI (and CAUTI), particularly patients who recently received antibiotics. The practice is not associated with independent deleterious impacts on outcomes
    corecore