11 research outputs found

    Analyse d’alliages ternaire et quaternaire (Al, Ga, In)N pour application aux transistors à haute mobilité électronique par microscopie électronique en transmission

    No full text
    Group III-Nitrides and their alloys exhibit outstanding properties and are being extensively investigated since the 90’s. In comparison to other III-V semiconductors, III-nitrides (AlGaN, InGaN, and AlInN) cover from deep ultraviolet (UV) to near infrared (IR) across the visible range of wavelengths. Thus, they are suitable for numerous applications both in civilian and military fields showing higher performances. Moreover, the quaternary alloy AlGaInN shows versatile properties as it can grow either lattice or polarization or bandgap matched to GaN. Alongside to AlInN, these two alloys are expected to replace conventional AlGaN/GaN High Electron Mobility Transistors (HEMT) barriers as higher performances have been theoretically demonstrated.In this work, we have studied AlInN and AlGaInN grown by metal organic vapor phase epitaxy (MOVPE) using mainly TEM. The aim was to characterize defects and the MOVPE growth alloying process. In this instance, the gallium incorporation in the barrier due to the geometry of the growth chamber leading to a quaternary alloy was studied. The control of the gallium content is achieved by a cleaning process between runs or by the growth condition. Defects were then differentiated as extrinsic and intrinsic. In this way, dislocations and inversion domains from the GaN buffer layer generate extrinsic defects, while, pinhole not connected to dislocations and individual hillocks responsible of surface roughening are termed as intrinsic. The origins of the latter defects depend strongly on the physical mismatches of the end-binary compound. These systematic degradations happen also with optimized growth conditions as soon as the nominal composition is changed and/or the thickness is increased.Our work proposes different mechanisms to explain defects generation processes which constitutes a forward step for higher quality HEMTs.Les semi-conducteurs III-V à base d’azote et leurs alliages possèdent des propriétés remarquables et sont largement étudiés depuis les années 90. En comparaison à d'autres semi-conducteurs III-V, Les alliages de type ; AlGaN, InGaN et AlInN, ont leurs bandes interdites, directes, du lointain ultra-violet au proche infrarouge. Ainsi, ils sont appropriés pour de nombreuses applications dans des domaines tant civils que militaires tout en montrant de meilleures performances. De plus, l'alliage quaternaire AlGaInN montre des propriétés intéressantes car il peut être épitaxié soit avec un paramètre de maille ou une polarisation ou une bande interdite accordé au GaN. De plus, avec AlInN, ces deux alliages pourraient, à terme, remplacer les barrières conventionnelles AlGaN/GaN pour les applications aux Transistors à Haute Mobilité Électroniques (HEMT) grâce à des performances supérieures prouvées théoriquement.Dans ce travail, nous avons étudié les alliages AlInN et AlGaInN dont la croissance a été faite par épitaxie en phase vapeur d’organométalliques (MOVPE). Pour cela, la microscopie électronique en transmission a été notre principal outil de caractérisation. Le but était de caractériser les défauts et les mécanismes de croissance pendant la MOVPE. Dans cette optique, l'incorporation de gallium dans la barrière en raison de la géométrie de la chambre de croissance menant à un alliage quaternaire a été étudiée. Le contrôle du taux de gallium est réalisé soit par un processus de nettoyage entre les épitaxies soit par les conditions de croissance. Les défauts ont été ensuite différenciés comme extrinsèques et intrinsèques. En effet, les dislocations et les domaines d'inversion dans le GaN produisent des défauts extrinsèques, tandis que, les « pinholes » non connectés aux dislocations et les « hillocks » responsables de la rugosité de surface sont définis comme intrinsèques. Les origines des défauts intrinsèques dépendent fortement des propriétés physiques des composés parents binaires. Ces dégradations systématiques sont observées même lorsque les conditions de croissance sont optimisées et quand la composition du film mince est changée ou son épaisseur augmentée.Notre travail propose des mécanismes différents pour expliquer les processus de dégradation pour les différents défauts observés et constitue donc un pas en avant pour la réalisation de HEMT à base de AlInN et AlGaInN de meilleure qualité

    Analyse d’alliages ternaire et quaternaire (Al, Ga, In)N pour application aux transistors à haute mobilité électronique par microscopie électronique en transmission

    No full text
    Les semi-conducteurs III-V à base d’azote et leurs alliages possèdent des propriétés remarquables et sont largement étudiés depuis les années 90. En comparaison à d'autres semi-conducteurs III-V, Les alliages de type ; AlGaN, InGaN et AlInN, ont leurs bandes interdites, directes, du lointain ultra-violet au proche infrarouge. Ainsi, ils sont appropriés pour de nombreuses applications dans des domaines tant civils que militaires tout en montrant de meilleures performances. De plus, l'alliage quaternaire AlGaInN montre des propriétés intéressantes car il peut être épitaxié soit avec un paramètre de maille ou une polarisation ou une bande interdite accordé au GaN. De plus, avec AlInN, ces deux alliages pourraient, à terme, remplacer les barrières conventionnelles AlGaN/GaN pour les applications aux Transistors à Haute Mobilité Électroniques (HEMT) grâce à des performances supérieures prouvées théoriquement.Dans ce travail, nous avons étudié les alliages AlInN et AlGaInN dont la croissance a été faite par épitaxie en phase vapeur d’organométalliques (MOVPE). Pour cela, la microscopie électronique en transmission a été notre principal outil de caractérisation. Le but était de caractériser les défauts et les mécanismes de croissance pendant la MOVPE. Dans cette optique, l'incorporation de gallium dans la barrière en raison de la géométrie de la chambre de croissance menant à un alliage quaternaire a été étudiée. Le contrôle du taux de gallium est réalisé soit par un processus de nettoyage entre les épitaxies soit par les conditions de croissance. Les défauts ont été ensuite différenciés comme extrinsèques et intrinsèques. En effet, les dislocations et les domaines d'inversion dans le GaN produisent des défauts extrinsèques, tandis que, les « pinholes » non connectés aux dislocations et les « hillocks » responsables de la rugosité de surface sont définis comme intrinsèques. Les origines des défauts intrinsèques dépendent fortement des propriétés physiques des composés parents binaires. Ces dégradations systématiques sont observées même lorsque les conditions de croissance sont optimisées et quand la composition du film mince est changée ou son épaisseur augmentée.Notre travail propose des mécanismes différents pour expliquer les processus de dégradation pour les différents défauts observés et constitue donc un pas en avant pour la réalisation de HEMT à base de AlInN et AlGaInN de meilleure qualité.Group III-Nitrides and their alloys exhibit outstanding properties and are being extensively investigated since the 90’s. In comparison to other III-V semiconductors, III-nitrides (AlGaN, InGaN, and AlInN) cover from deep ultraviolet (UV) to near infrared (IR) across the visible range of wavelengths. Thus, they are suitable for numerous applications both in civilian and military fields showing higher performances. Moreover, the quaternary alloy AlGaInN shows versatile properties as it can grow either lattice or polarization or bandgap matched to GaN. Alongside to AlInN, these two alloys are expected to replace conventional AlGaN/GaN High Electron Mobility Transistors (HEMT) barriers as higher performances have been theoretically demonstrated.In this work, we have studied AlInN and AlGaInN grown by metal organic vapor phase epitaxy (MOVPE) using mainly TEM. The aim was to characterize defects and the MOVPE growth alloying process. In this instance, the gallium incorporation in the barrier due to the geometry of the growth chamber leading to a quaternary alloy was studied. The control of the gallium content is achieved by a cleaning process between runs or by the growth condition. Defects were then differentiated as extrinsic and intrinsic. In this way, dislocations and inversion domains from the GaN buffer layer generate extrinsic defects, while, pinhole not connected to dislocations and individual hillocks responsible of surface roughening are termed as intrinsic. The origins of the latter defects depend strongly on the physical mismatches of the end-binary compound. These systematic degradations happen also with optimized growth conditions as soon as the nominal composition is changed and/or the thickness is increased.Our work proposes different mechanisms to explain defects generation processes which constitutes a forward step for higher quality HEMTs

    InAlGaN/GaN HEMTs at Cryogenic Temperatures

    No full text
    We report on the electron transport properties of two-dimensional electron gas confined in a quaternary barrier InAlGaN/AlN/GaN heterostructure down to cryogenic temperatures for the first time. A state-of-the-art electron mobility of 7340 cm2·V−1·s−1 combined with a sheet carrier density of 1.93 × 1013 cm−2 leading to a remarkably low sheet resistance of 44 Ω/□ are measured at 4 K. A strong improvement of Direct current (DC) and Radio frequency (RF) characteristics is observed at low temperatures. The excellent current and power gain cutoff frequencies (fT/fmax) of 65/180 GHz and 95/265 GHz at room temperature and 77 K, respectively, using a 0.12 μm technology confirmed the outstanding 2DEG properties

    Influence of the stoichiometry and grain morphology on the magnetic properties of Co substituted Ni–Zn nanoferrites

    No full text
    International audienceA set of Co substituted Ni–Zn nanoferrites with a nominal composition Co0.2Ni0.3Zn0.5Fe2O4 was prepared by the polyol method. The influence of a number of synthetic parameters on the structure, microstructure, and the magnetic properties was investigated. X-ray diffraction, infrared, energy dispersive X-ray, transmission electron microscopy, and vibrating sample magnetometry were employed for this purpose. The X-ray diffraction results confirmed the formation of a single phase nanocrystalline spinel-type ferrite powders. In addition, the cell parameter and the integrated intensity ratio I220/I422 was found to vary with the synthesis conditions suggesting deviation from the nominal chemical composition and/or a probable deviation from the preferential (that of the bulk) cations occupancy of the tetrahedral (A) and the octahedral (B) spinel sites. For the so-called bulk ferrite obtained by moderate sintering nanoparticles of the stoichiometric ferrite, a cation distribution similar to that of the bulk was suggested. Transmission electron microscopy analysis of the as-produced ferrites revealed the formation of nanoparticles with mean particle size in the range ~4–12 nm. The magnetic properties of both as-prepared nanoparticles and the so-called bulk ferrite were studied. All the as-produced particles exhibited superparamagnetic behavior at room temperature with a gradual decrease of the blocking temperature with the decrease of crystallite size. Additionally, the saturation magnetization, the coercivity, and the Curie temperature were found to be clearly dependent on the stoichiometry, the cations occupancy, and/or the grains morphology. For the stoichiometric ferrites the relatively higher Curie temperature values measured for the smaller particles was interpreted on the basis on the cations distribution change; for the as-produced nanoparticles a fraction of Zn2+ ions is expected to migrate from A to B sites accompanied with a reverse transfer of an equal amount of the paramagnetic cations from B to A sites
    corecore