159 research outputs found

    Correlating Antimicrobial activity and Structure in Montmorillonite modified with Hexadecyltrimethylammonium and Silver

    Get PDF
    The relationship between antimicrobial properties and structure of montmorillonite (MMT) containing hexadecyltrimethylammonium bromide (HDTMA-Br) and silver (Ag) was determined. HDTMA was adsorbed at the clay interlayer by a cation exchange, through the positive head of the ammonium group. At higher surfactant loadings (100 and 200% cation exchange capacity (CEC); MH1 and MH2 samples, respectively) the prevalence of weak adsorption (Van der Waals forces) was observed; whereas below the clay CEC (50%, MH0.5) strong interactions predominated (cation exchange). These different interactions impacted on antimicrobial activity, increasing bactericidal capacity when the surfactant was more available to diffuse. For organo-montmorillonites (OMMT) and all samples with Ag, zeta potential pointed out electrical charge changes on the outer surface, respect to MMT. XPS analyses showed peaks attributed to clusters formation, silver oxidation, and Ag0 in MMTAg and MH0.5-Ag. The Ag0 peak was also present in MH1-Ag and MH2-Ag, the later showing an extra peak associated with AgBr. HDMTA+ and Ag adsorbed on the MMT acted synergistically against Staphylococcus aureus. This effect was less noticeable for Escherichia coli and the result was attributed to both, E. coli outer envelope which might lower the efficacy of HDMTA+ adsorbed on the MMT, and decreasing silver proportions when the surfactant loading increased. MH1-Ag presented the best bactericidal properties, showing synergistic effects against S. aureus, while maintaining activity against E. coli compared to MMT-Ag. Understanding MMT-HDMTA-Ag efficacy contributes to the design of new antimicrobial materials for potential applications in health careFil: Fernández Solarte, Alejandra María. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Corporacion Universitaria Minuto de Dios.; ColombiaFil: Blanco Massani, Mariana Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Molina, Vanesa Magali. Instituto Nacional de Tecnología Industrial; ArgentinaFil: Benítez Guerrero, Mónica. Universidad de Malaga. Facultad de Ciencias; EspañaFil: Torres Sánchez, Rosa M.. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentin

    Galaxy clusters and groups in the ALHAMBRA Survey

    Get PDF
    We present a catalogue of 348 galaxy clusters and groups with 0.2<z<1.20.2<z<1.2 selected in the 2.78 deg2deg^2 ALHAMBRA Survey. The high precision of our photometric redshifts, close to 1%1\%, and the wide spread of the seven ALHAMBRA pointings ensure that this catalogue has better mass sensitivity and is less affected by cosmic variance than comparable samples. The detection has been carried out with the Bayesian Cluster Finder (BCF), whose performance has been checked in ALHAMBRA-like light-cone mock catalogues. Great care has been taken to ensure that the observable properties of the mocks photometry accurately correspond to those of real catalogues. From our simulations, we expect to detect galaxy clusters and groups with both 70%70\% completeness and purity down to dark matter halo masses of Mh3×1013MM_h\sim3\times10^{13}\rm M_{\odot} for z<0.85z<0.85. Cluster redshifts are expected to be recovered with 0.6%\sim0.6\% precision for z<1z<1. We also expect to measure cluster masses with σMhMCL0.250.35dex\sigma_{M_h|M^*_{CL}}\sim0.25-0.35\, dex precision down to 3×1013M\sim3\times10^{13}\rm M_{\odot}, masses which are 50%50\% smaller than those reached by similar work. We have compared these detections with previous optical, spectroscopic and X-rays work, finding an excellent agreement with the rates reported from the simulations. We have also explored the overall properties of these detections such as the presence of a colour-magnitude relation, the evolution of the photometric blue fraction and the clustering of these sources in the different ALHAMBRA fields. Despite the small numbers, we observe tentative evidence that, for a fixed stellar mass, the environment is playing a crucial role at lower redshifts (z<<0.5).Comment: Accepted for publication in MNRAS. Catalogues and figures available online and under the following link: http://bascaso.net46.net/ALHAMBRA_clusters.htm

    Clinical and Epidemiological Characteristics of Streptococcus suis Infections in Catalonia, Spain

    Get PDF
    Introduction: Streptococcus suis (S. suis) is a human zoonotic pathogen of occupational origin, with infection acquired through contact with live pigs or pig meat. Pig farming is one of Catalonia's biggest industries and as a result this region of Spain has one of the highest density pig populations per km2. The aim of our study was to describe the infections caused by S. suis occurring in that area over a 9-year period. Materials and Methods: A retrospective, multi-center study was carried out by searching records from 15 hospitals in Catalonia for the period between 2010 and 2019. Results: Over the study period altogether nine cases of S. suis infection were identified in five hospitals, with five of these cases occurring in the 2018-2019 period. The mean age of patients was 48 ± 8.9 years and all of them were males. Five patients (55.6%) worked in pig farms. The most frequent manifestation of infection was meningitis (5 cases; 55.6%) followed by septic arthritis (3 cases; 33.3%). None of the patients died at 30 days; nonetheless, 4 developed hearing loss as a long-term complication. Conclusion: The most commonly identified S. suis infection was meningitis. Over 50% of the episodes occurred in the last 2 years and have affected pig farm workers. Further surveillance is needed in order to know its prevalence

    The miniJPAS survey quasar selection – II. Machine learning classification with photometric measurements and uncertainties

    Get PDF
    Full list of authors: Rodrigues, Natalia V. N.; Raul Abramo, L.; Queiroz, Carolina; Martinez-Solaeche, Gines; Perez-Rafols, Ignasi; Bonoli, Silvia; Chaves-Montero, Jonas; Pieri, Matthew M.; Gonzalez Delgado, Rosa M.; Morrison, Sean S.; Marra, Valerio; Marquez, Isabel; Hernan-Caballero, A.; Diaz-Garcia, L. A.; Benitez, Narciso; Cenarro, A. Javier; Dupke, Renato A.; Ederoclite, Alessandro; Lopez-Sanjuan, Carlos; Marin-Franch, Antonio; de Oliveira, Claudia Mendes; Moles, Mariano; Sodre, Laerte, Jr.; Varela, Jesus; Ramio, Hector Vazquez; Taylor, Keith.Astrophysical surveys rely heavily on the classification of sources as stars, galaxies, or quasars from multiband photometry. Surveys in narrow-band filters allow for greater discriminatory power, but the variety of different types and redshifts of the objects present a challenge to standard template-based methods. In this work, which is part of a larger effort that aims at building a catalogue of quasars from the miniJPAS survey, we present a machine learning-based method that employs convolutional neural networks (CNNs) to classify point-like sources including the information in the measurement errors. We validate our methods using data from the miniJPAS survey, a proof-of-concept project of the Javalambre Physics of the Accelerating Universe Astrophysical Survey (J-PAS) collaboration covering ∼1 deg2 of the northern sky using the 56 narrow-band filters of the J-PAS survey. Due to the scarcity of real data, we trained our algorithms using mocks that were purpose-built to reproduce the distributions of different types of objects that we expect to find in the miniJPAS survey, as well as the properties of the real observations in terms of signal and noise. We compare the performance of the CNNs with other well-established machine learning classification methods based on decision trees, finding that the CNNs improve the classification when the measurement errors are provided as inputs. The predicted distribution of objects in miniJPAS is consistent with the putative luminosity functions of stars, quasars, and unresolved galaxies. Our results are a proof of concept for the idea that the J-PAS survey will be able to detect unprecedented numbers of quasars with high confidence. © 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.This paper has gone through internal review by the J-PAS collaboration. NR acknowledges financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001. RA was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). CQ acknowledges financial support from FAPESP (grants 2015/11442-0 and 2019/06766-1) and CAPES – Finance Code 001. IPR was supported by funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowskja-Curie grant agreement number 754510. MPP and SSM were supported by the Programme National de Cosmologie et Galaxies (PNCG) of CNRS/INSU with INP and IN2P3, co-funded by CEA and CNES, the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the ‘Investissements d’Avenir’ French Government program, managed by the French National Research Agency (ANR), and by ANR under contract ANR-14-ACHN-0021. GMS, RMGD, and LADG acknowledge support from the State Agency for Research of the Spanish MCIU through the ‘Center of Excellence Severo Ochoa’ award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and the project PID2019-109067-GB100. JCM and SB acknowledge financial support from Spanish Ministry of Science, Innovation, and Universities through the project PGC2018-097585-B-C22. AFS acknowledges support from the Spanish Ministerio de Ciencia e Innovación through project PID2019-109592GB-I00 and the Generalitat Valenciana project PROMETEO/2020/085. RAD acknowledges partial support from CNPq grant 308105/2018-4. AE acknowledges the financial support from the Spanish Ministry of Science and Innovation and the European Union – NextGenerationEU through the Recovery and Resilience Facility project ICTS-MRR-2021-03-CEFCA. LSJ acknowledges support from CNPq (304819/2017-4) and FAPESP (2019/10923-5). This study is based on observations made with the JST250 telescope and PathFinder camera for the miniJPAS project at the Observatorio Astrofísico de Javalambre (OAJ), in Teruel, owned, managed, and operated by the Centro de Estudios de Física del Cosmos de Aragón (CEFCA). We acknowledge the OAJ Data Processing and Archiving Unit (UPAD) for reducing and calibrating the OAJ data used in this work. Funding for OAJ, UPAD, and CEFCA has been provided by the Governments of Spain and Aragón through the Fondo de Inversiones de Teruel; the Aragonese Government through the Research Groups E96, E103, E16_17R, and E16_20R; the Spanish Ministry of Science, Innovation, and Universities (MCIU/AEI/FEDER, UE) with grant PGC2018-097585-B-C21; the Spanish Ministry of Economy and Competitiveness (MINECO/FEDER, UE) under AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, and ICTS-2009-14; and European FEDER funding (FCDD10-4E-867 and FCDD13-4E-2685). Funding for the J-PAS Project has also been provided by the Brazilian agencies FINEP, FAPESP, and FAPERJ and by the National Observatory of Brazil, with additional funding provided by the Tartu Observatory and by the J-PAS Chinese Astronomical Consortium. Funding for the SDSS-III/IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-III/IV acknowledges support and resources from the Center for High Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration including the Brazilian Participation Group, the Carnegie Institution for Science, Carnegie Mellon University, Center for Astrophysics | Harvard & Smithsonian, the Chilean Participation Group, the French Participation Group, Instituto de Astrofísica de Canarias, The Johns Hopkins University, Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo, the Korean Participation Group, Lawrence Berkeley National Laboratory, Leibniz Institut für Astrophysik Potsdam (AIP), Max-Planck-Institut für Astronomie (MPIA Heidelberg), Max-Planck-Institut für Astrophysik (MPA Garching), Max-Planck-Institut für Extraterrestrische Physik (MPE), National Astronomical Observatories of China, New Mexico State University, New York University, University of Notre Dame, Observatário Nacional/MCTI, The Ohio State University, Pennsylvania State University, Shanghai Astronomical Observatory, United Kingdom Participation Group, Universidad Nacional Autónoma de México, University of Arizona, University of Colorado Boulder, University of Oxford, University of Portsmouth, University of Utah, University of Virginia, University of Washington, University of Wisconsin, Vanderbilt University, and Yale University.With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001131-S).Peer reviewe

    Molecular characterization of imported and autochthonous dengue in northeastern spain

    Get PDF
    Dengue is the most significant arbovirus worldwide and a public health threat to nonendemic areas in which Aedes vectors are present. Autochthonous dengue transmission has been reported in several European countries in the last decade. Infected travelers from endemic regions arriving to areas colonized by Aedes albopictus in Europe need to be monitored in surveillance and control programs. We aimed to perform molecular characterization of RT-PCR-positive dengue cases detected in Catalonia, northeastern Spain, from 2013 to 2018. The basic demographic information and the geographical regions of importation were also analyzed. One-hundred four dengue cases were studied (103 imported infections and the first autochthonous case in our region). The dengue virus strains detected were serotyped and genotyped using molecular methods, and phylogenetic analyses were conducted. All four dengue serotypes were detected in travelers, including up to 10 different genotypes, reflecting the global circulation of dengue in endemic areas. The primary travel-related case of the 2018 autochthonous transmission was not identified, but the molecular analysis revealed dengue serotype 1, genotype I of Asian origin. Our results highlight the diversity of imported dengue virus strains and the role of molecular epidemiology in supporting arbovirus surveillance programs

    VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory

    Full text link
    VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l. in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design, construction techniques and data acquisition system of the HAWC observatory. HAWC is an air-shower array currently under construction at the same site of VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water Cherenkov detectors and two different data acquisition systems. It was in operation between October 2011 and May 2012 with an average live time of 30%. Besides the scientific verification purposes, the eight months of data were used to obtain the results presented in this paper: the detector response to the Forbush decrease of March 2012, and the analysis of possible emission, at energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages, 10 figures). Corresponding authors: A.Marinelli and D.Zaboro

    The impact from survey depth and resolution on the morphological classification of galaxies

    Get PDF
    We consistently analyse for the first time the impact of survey depth and spatial resolution on the most used morphological parameters for classifying galaxies through non-parametric methods: Abraham and Conselice-Bershady concentration indices, Gini, M20moment of light, asymmetry, and smoothness. Three different non-local data sets are used, Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) and Subaru/XMMNewton Deep Survey (SXDS, examples of deep ground-based surveys), and Cosmos Evolution Survey (COSMOS, deep space-based survey). We used a sample of 3000 local, visually classified galaxies, measuring their morphological parameters at their real redshifts (z ~ 0). Then we simulated them to match the redshift and magnitude distributions of galaxies in the non-local surveys. The comparisons of the two sets allow us to put constraints on the use of each parameter for morphological classification and evaluate the effectiveness of the commonly used morphological diagnostic diagrams. All analysed parameters suffer from biases related to spatial resolution and depth, the impact of the former being much stronger. When including asymmetry and smoothness in classification diagrams, the noise effects must be taken into account carefully, especially for ground-based surveys. M20 is significantly affected, changing both the shape and range of its distribution at all brightness levels. We suggest that diagnostic diagrams based on 2-3 parameters should be avoided when classifying galaxies in ground-based surveys, independently of their brightness; for COSMOS they should be avoided for galaxies fainter than F814 = 23.0. These results can be applied directly to surveys similar to ALHAMBRA, SXDS and COSMOS, and also can serve as an upper/lower limit for shallower/deeper ones.MP acknowledge financial support from JAE-Doc programme of the Spanish National Research Council (CSIC), co-funded by the European Social Fund. This research was supported by the Junta de Andalucia through project TIC114, and the Spanish Ministry of Economy and Competitiveness (MINECO) through projects AYA2010-15169, AYA2013-42227-P, and AYA2013-43188-P.Peer Reviewe
    corecore