171 research outputs found

    Application GGE biplot and AMMI model to evaluate sweet sorghum (Sorghum bicolor) hybrids for genotype x environment interaction and seasonal adaptation,”

    Get PDF
    ABSTRACT The genotype × environment interaction influences greatly the success of breeding strategy in a multipurpose crop like sweet sorghum [Sorghum bicolor (L.) Moench]. Eleven improved sweet sorghum hybrids were evaluated in both seasons for three years and genotype main effects and genotype × environment interaction (GGE) biplot analysis revealed that the hybrids that performed well in rainy season are: 'ICSSH 24' and 'ICSSH 39' and post rainy season are: 'ICSSH 57' and 'ICSSH 28'. The stable hybrid, based on additive main effects and multiplicative interaction (AMMI) and GGE biplot analysis that performed well across seasons and over the years for grain yield and stalk sugar yield is: 'ICSSH 28'

    Genetic Variability, Genotype × Environment Interaction, Correlation, and GGE Biplot Analysis for Grain Iron and Zinc Concentration and Other Agronomic Traits in RIL Population of Sorghum (Sorghum bicolor L. Moench)

    Get PDF
    The low grain iron and zinc densities are well documented problems in food crops, affecting crop nutritional quality especially in cereals. Sorghum is a major source of energy and micronutrients for majority of population in Africa and central India. Understanding genetic variation, genotype × environment interaction and association between these traits is critical for development of improved cultivars with high iron and zinc. A total of 336 sorghum RILs (Recombinant Inbred Lines) were evaluated for grain iron and zinc concentration along with other agronomic traits for 2 years at three locations. The results showed that large variability exists in RIL population for both micronutrients (Iron = 10.8 to 76.4 mg kg−1 and Zinc = 10.2 to 58.7 mg kg−1, across environments) and agronomic traits. Genotype × environment interaction for both micronutrients (iron and zinc) was highly significant. GGE biplots comparison for grain iron and zinc showed greater variation across environments. The results also showed that G × E was substantial for grain iron and zinc, hence wider testing needed for taking care of G × E interaction to breed micronutrient rich sorghum lines. Iron and zinc concentration showed high significant positive correlation (across environment = 0.79; p 0.60, in individual environments) for Fe and Zn and other traits studied indicating its suitability to map QTL for iron and zinc

    The Cross-Talk between Spirochetal Lipoproteins and Immunity

    Get PDF
    Spirochetal diseases such as syphilis, Lyme disease and leptospirosis are major threats to public health. However the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are proinflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases
    corecore